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Abstract

An in-house contact mechanics model is used to simulate contact of rough spheres having
elastic-perfectly plastic contact with adhesion. The model uses a Boundary Element Method
(BEM) and employs Fast Fourier Transforms (FFT) for numerical efficiency. We have
validated our model for smooth surfaces with the Hertz contact behaviour in elastic, regime
JKR adhesive model in the adhesive regime and Thornton andsMirgytical model in
elasto-plastic adhesive regime. Furthermore, the effect of yield stress, interface energy and
surface roughness on the Coefficient of Restitution (COR) is investigittedresults show

that surface roughness dramatically affects the COR and higher roughness values lead to lower
CORs in general. In addition, changes of COR based on different maximum indentation depth
in the presence of surface roughness consists of 3 stages; The asperity dominant, bulk elastic
dominant and bulk plastic dominant. Interestingly, it was shown that there is a critical
indentation depth in which the effect of surface roughness will disappear and rough surfaces
act like smooth ones. This critical indentation depth is proportional to dhalRe of the

surface roughness. Numerical results suggest that the yield stress influences the COR and
higher yields stress results in higher COR for both rough and smooth surfaces. Results also
suggest that the effect of interface energy on the COR for smooth surfaces is significant at low

indentations and minimum for rough surfaces.

Keywords: Coefficient of restitution; Roughness; Adhesion; Contact mechanics

1 Introduction

Interaction of particles is an important phenomena in the assemblies of particles and their bulk
behaviour in a wide range of applications such as food and biosyms [1], pharmaceuticals
, rock mechanicﬂB] and gas patrticle flows$ [4]. The collision between particles have been
extensively studied analyticall[l[4], numericaﬂ [5] and experimentEIIy [6]. In terms of the

elastic contact, Hertzian contact model has been widely used which offers a non-linear

1


mailto:A.Hassanpour@leeds.ac.uk

32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64

behaviou]. However, in majority of the granular flow simulations simple linear model is

used to increase the computational efficiency. Since different materials show complicated
plastic behaviours, incorporation of a complete analytical model for elasto-plastic contact is a
challenge. Therefore semi-analytical models are often used to account for the effect of
plasticity in contact mechanig¢s|[9]. Other works have introduced simplified linear models using
Finite Element Analysis (FEAELl]. These models can be used to numerically and

analytically calculate the COR based on the loading and unloading energy.

It was shown that adhesion is playing an important role in the dissipation of the contact energy
and the coefficient of restitution and several theories were introd [12]. In an analytical
model developed by Thornton and Ni@ [4] coefficient of restitution was modelled for an
elasto-plastic contact with consideration of adhesion. The model showed that coefficient of
restitution is dependent on the impact velocity, yield stress and the interface energy. Analytical
and semi-analytical models are easy to implement numerically, however they do are not able
to take into account the complexities that real engineering surfaces could have such as surface
roughness. The effect of surface roughness in the contact mechanics have been the subject of
many studies. The pioneering work of Greenwood and Williamson (E/}l) [13] has shown that
the surface roughness can influence the real area of contact and the discrete contact pressures
The theory assumed a distribution of the surface asperity height with similar geometry and
asperity radius and the interaction of individual asperities was ignored in the model. Following

that, numerous works have considered the effect of surface roughness in solving the contact

problems|[14-1F]. Others used half-space approximation and numerous mathematical models

for increasing the efficiency of the computat¢h7-19]. More recently, researchers developed

models for the elasto-plastic contact of rough surface [20-22]. Recent advances in

computational power and contact algorithms led to development of contact mechanics models

with finer grids and consideration of adhesive problgms [23-25]. Surface roughness is known

to alter the loading and unloading behaviour of materials, therefore affecting the energy
dissipation. It also dramatically affects the separation of surfaces, real area of contact and
adhesion. Hence, importance of the surface roughness in calculation of energy dissipation and

restitution coefficient is clear.

Despite the fast improvements in simulating the contact mechanics of real engineering surfaces,
to the best of authors’ knowledge, very scarce numerical models of granular materials consider

the roughness as an input parameter. Recently attempts have been made to considdr the effe

of roughness on the normal force-displacement of particulate Jolids [26-28]. However, the
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effect of surface roughness on calculation of COR is still not studied numerically. Interestingly,
this has only been studied experimentally to investigate the effect of roughness on wettability
and COR in butterfly wingg]. In this paper, a numerical in-house BEM contact mechanics
model that considers elastic-perfectly plastic and adhesive contact of rough surfaces have been
employed to calculate the COR. The theory of the model as well as its validation have bee
presented in Sectiﬁ Zhe effect of surface roughness, yield stress and interface energy (to
take account of adhesion) tdre COR has been reported in Sectiomor! Reference source

not found.. The results of the current model, for the first time, highlight the importance of

surface roughness in determining the COR in particle-particle interactions.

2 Theory

2.1 Elastic-perfectly plastic contact

The normal force-displacement relationship for the contact of rough particles is modelled using
our contact mechanics in-house c [30]. In the case of contact of rough surfaces, ostly highe
asperities of surfaces will stand the load and the area of real contact is orders of magnitude
smaller than the nominal contact area. The contact mechanics model is a coupled model in
which load on any asperity can deform the whole material with respect to the influence
coefficientslH]. The problem is to solve the complementary potential energy in order to obtain
the true stress and strain matrices. The composite deformation of the su(fggasdue to

the applied load op(x, y) can be calculated by the linear convolution according Boussinesg-

Cerruti theory:

ue=K*pd=f f K(x—¢&y—n)p(&n) d§dn (D

in which x and y are two dimensional coordinates, K is the convolution kernel and can be
calculated from the half-space approximation as the following:
1

1
K(X_E’y_n)_ﬂE*\/(x—f)2+(y—n)2 (2)

.2 .2

where E* is the composite elastic modulus of both materiagl*sz((1 L ), @ 2 ),
1 2

Here,v,,v,, E; and E, are the Poisson’s ratio and Elastic Modulus of material 1 and 2

respectively. For the sake of numerical calculations efficiency, roughness of both surfaces can

be integrated as a composite surface roughness only on one contacting surface and the counter-

ody can pe assume to be ri . ererore, py movement of the rgl ody In norma
bod b d to be ri§id [7]. Therefore, b f the rigid body i |
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direction, the body interferences (i) are calculated as shown in Figure 1. For the points of
contact, the elastic deformation calculated using Equation 1 should be equal to the body
interference (i). In order to solve the contact problem numerically, the load balance also should
be considered. This will imply that the sum of all nodal contact pressures should equate the
total normal applied load. The model considers a perfectly plastic behaviour and a yield criteria
is assumed to be the cut-off value for the contact pressure at every node. The surface asperities
that reach the yield pressure are assumed to float freely on the surface and do not take part in
the deformation calculations. Therefore, the set of the following equations should be solved

iteratively.

(1= (20 - Zx) +TxY) Vry €A, (3.1) )

p(x,y) >0 Vx,y € A, (3.2)
p(x,y) <py (3.3)

. > (3)
i,j=N
z pij = Fn (3.4)

\ i j=1 J

In Equation 3 r is the rigid body movement of two rough surfaces in normal directiandZ

Z; are the surface profiles of the two rough particlesignd the composite elastic deformation

of two materials calculated by EquationF}.is the total applied load in the normal direction,

py is the yield stress of the softer material in contécts the area of contact and N is the total
number of nodes in the domain of study. In the current contact mechanics model, an elastic-
perfectly plastic approach is incorporated. Yield stress of the softer material is set to be the
threshold for the plastic flow and the pressure does not exceed this value. This approach is

widely used in other works in order to simulate elastic-plastic contacts. More details of the

contact mechanics approach can be found in 1, 32].

2.2 Adhesion

The model for adhesive contact of smooth surfaces was developed by Johnet al. [33] (JKR)
where they extended the Hertzian contact to account for adhesive region. There have been
numerous attempts to adapt JKR theory to different applica@ﬁn recent years,
development of numerical models for adhesive contact of rough surfaces have been the subject
of many studie3, 36-88]. The BEM model developed by Pohrt and 'ﬁ [39, 40] was used
in this work which introduced a local mesh size-dependant criteria for detachment of surface

asperities in adhesion.

In the adhesive contact the first part of Equation 3 will be modified as:
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r= (Zz(x,Y)—Z1(x,}’))+u_z(X,Y)+d (4)

in which d is the pulled apart distance (Figuyevken surfaces are unloading. It should be
noted that the surface stresses that only occur inside the contact region for non-adhesive
contacts are positive (compressive). When the bodies keep the same contact area after
compression and are pulled away for a distance d, Equation 4 will be valid. Therefore, set of
Equation 3 will be solved iteratively but the first part is replaced with Equation 4. It should be
noted that the adhesive forces are considered in both loading and unloading. In order to consider
adhesion in loading, after each loading step, a small unloading step (d=0.1 nm) was considered.
The local detachment criteria was then applied as the follomg [39]:

_ E*Ay .
Pa= 10.473201.h ®)

Ay is the interface energy and h is the grid size. Equation 5 calculates the maximum tensile
(adhesive) pressure that a node can sustain before detachment. If the tensile stress at each node

exceed the, value, the detachment occurs and the stress will be set to zero.

2.3 Numerical discretisation
In order to solve the set of Equations 3, the numerical domain should be discretised into

rectangular elements of similar size in which the contact pressure can be assumed to be

constant. Equation 1 will get the discretised form given by:

N N
u(i,j)=K*pd=ZZK(i—k,j—l)p(k,l) ij=12.,N 6)

k=11=1
where p(k, 1) is the constant pressure acting on the element centred at (k,I). Solving Equation
6 along with Equation 3 requires an iterative process to modify the contact pressures and
finding the corresponding surface deformations. This can be solved using the matrix inversion
process and requirgg? x N? operations. Using DC-FFT algorithm widely reported in the

literature ] can reduce the computational demand dramatically. Equation 6 will be
then converted to:

U, = IFFT(R, ;. Bi] Lj=12...,N (7)



148  where K;; andp; ;are the Fast Fourier Transforms (FFT) of the influence coefficient and
149  contact pressure matrices and are multiplied eleimgeiement. The FFT-based convolution

150 is accompanied by periodicity errors that can be minimized by means of zero-padding contact
151  pressure matrix (doubling the domain and putting zero pads in both x and y directions) and
152 wrap-around]. It should be noted that dealing with 2-dimensional surfaces, both contact
153  pressure and influence matrices should be expanded in both x and y directions. In order to
154  increase the applicability and efficiency of the method, the number of nodes chosen for the
155  numerical study should be a power of 2. The surfaces used in this study consist of 512x512

156  nodes of 0.25 pum size for 500um radius spheres.
157

158 2.4 Calculation of the COR

159 It should be highlighted that parameters such as impact angle and tangential loading or friction
160  have significant impact on the energy dissipation and the COR. In this model only the normal
161  impact of the particles has been considered. Considering other parameters such as tangential
162  stiffness will add more complexity to the model and can be the subject of future studies. Once
163  the contact behaviour of loading and unloading is modelled, calculation of the COR will be
164  straightforward by simply calculating the energy of loading and unloading from the area under
165 the curve in load-displacement graph. The formula for the calculation of COR will be as the

166  following:

167 COR = Wy 8
= w, 8

168  In Equation 8Wjis the energy of loading that is transferred to the materiallgsithe energy
169  which is released from the material in the process of unloading. The calculatibanafit, is

170  shown schematically in Figure 3.

171 25 Numerical model validations

172 2.5.1 Hertzian contact

173 An example of the surfaces used in the numerical simulation is shown in Figure 4. In order to
174  obtain the normal force-displacement curves, the upper particle (upper surface) is moved in the
175 normal direction. The normal forc&y() is then calculated from the contact mechanics code

176  solving the set of Equation 3. Movement of the upper surface is adjusted by changing the value
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of r in Equation 3. The indentation of the particles is simulated with step-wise increase in the
value of r and the corresponding normal force is recorded. The results of normal force-
displacement is compared with the Hertzian model for the case of smooth particles ywith 500
radius,Young’s modulus of 210 GPa (resembling a typical grade of steghd Poisson’s ratio

of 0.25 in Figure 5 in order to test the accuracy of the elastic numerical model prior to elasto-
plastic and adhesive simulations. It should be noted that the shape of surface asperities
influence the calculation of the real contact area and the corresponding surface pressures (this
is still an open area of research in the field of contact mechs [25]). Consideration of other
properties of rough surfaces such as slope of the surface roughness in the calculation of surface

area, energy dissipation and COR will be the subject of future developments of the model.

2.5.2 Elastic-perfectly plastic contact

The same numerical approach as the previous section has been implemented with incorporation
of the yield cut-off (Equation 3.3). It is assumed that the loading occurs in elastic-perfectly
plastic mode and the unloading is only elastic. The loading and unloading of particles have
been simulated and the results are compared to the analytical model of Thornton Ning [4].
The simulations were conducted for two smooth spheres phd@8dius with elastic modulus

of 210 GPa and Poisswiratio of 0.25. The yield pressure was set to 750MPa. Numerical BEM
simulations were carried out for surfaces of & 125.m. BEM numerical results of Figure

6 show very good agreement with the prediction from analytical model of Thornton and Ning

.

2.5.3 Adhesive contact

Adhesion was considered in both loading and unloading and for validation purposes, the
adhesive contact was simulated for the unloading of surfaces using the theory of Pohrt et al.
by step-wise increasiraf parameter d in Equation 4. It should be noted that the resolution

in the z direction is 0.1nm in our simulations. All the simulation parameters are the same as the

elastic model shown earligelastic modulus of 210 GPa and Poisson’s ratio of 0.25). The
interface energyAy) in the range of 0.01 to 0-0?”]—20 is used in Section 2.5.5 of this
manuscript for comparison reasons. However, in this section and other simulations, the highest
value 0.09 ;(,]1—2) is selected to signify the effect of adhesion on the COR for both rough and

smooth surfaces. The formulation of the JKR theory has been take m [39]. The critical
point that the maximum adhesive force will occur for a parabolic profile is formulated as the

following:
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Faan = 5 AymR 9)

2
5 1
97 AyR?\3
=|— 1
o= () (10)
1
. 3m? Ay?R\3 1"

F,4nis the total normal force required to separate the surfaggsis critical value of the
contact radius at the moment of detachment @nds the crucial value of the negative
indentation at the time of detachment. For comparison reasons, normalized indetidation (

normalized forceK) and the normalized area)(are formulated as:

_ 1
d = 3a% — 4a2 (12)
_ 3
F=a3-2az (13)
5
F~012(d+1)3-1 (14)

The results of simulation for elastic adhesive contact are plotted in Figure 7 and compared
with the JKR theory, where a good agreement can be observed.

2.5.4 Effect of yield stress
Simulations were conducted at different yield stress values of 0.75 and 1.5 GPa for adhesive

contact Ay = 0.09 LZ) of two smooth spheres. All other simulation parameters (radius,
m

Young’s modulus and Poisson ratio) are kept the same as the previous section. The results are
plotted in form of COR (Equation 8) as a function of indentation depth in Figure 8. In order to
compare the results with the analytical model of Thornton and Ning [4], the impact velocity in

their work has been converted to the indentation depth by using the energy equations:

1
Smy? = JF.di (15)

In the energy equation abowéjs the impact velocity, m is the mass of the partiElés the

total normal force andi is the incremental indentation until the maximum indentation reaches.
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It can be seen that the results are following similar trends as reported by Thornton and Ning
, where for both yield stresses the COR initially increases by the indentation and then

reduces.

2.5.5 Effect of interface energy
Interface energy is known to affect the adhesive force and thus the COR. Simulations were

carried out for smooth surfaces for different values of interface energy Apea
0.01(#) to 0.09 (#), but constant yield stress of 750 MPa. The results are plotted in Figure

9 in log scale in order to make the difference clear. Results suggest that interface energy only
affects the COR at small indentations where the effect of adhesion is comparable to elastic and
plastic energies. The findings are in-line with the findings of Thornton aI. [4] which used
higher values for the interface energy. In this paper, we have chosen a rathgeifiterface

energy that are mostly observed in the engineering applications.

3 Effect of Root Mean Square surface roughness

Calculation of the contact behaviour of the rough surfaces is carried out using the theory
presented in Section 2, considering the initial digital topography input of the model. The
discretisation procedure of the rough surface topography is also discussed in Section 2.3.
Rough surfaces are generated incorporating the method introduced by Ht al. [43] who used
2-D digital filters and autocorrelation functions. Fast Fourier Transforms are used for
numerical efficiency. There are several parameters that can be used to characterise the
topography of the surfaces such as Root Mean Square (RMS) roughness, Skewness, kurtosis
etc. Incorporation of all these surface parameters in a digitised surface needs a careful
characterisation of the real engineering surfaces and extracting the desired parameters as input
to the surface generation mod[44]. Therefore, for simplicity, generation of rough
topography was carried out by only introducing the RMS roughness of the siRgcéhe
topography was generated off-line prior to any contact calculations and used as input for the
contact solver. Surfaces used in the model are similar to the ones shown in Figure 4. The upper
surface is set to be perfectly smooth and the lower surface has the composite surface roughness
of both particles in contact. The contact in this condition is known to be equivalent to the real
system of two rough particles. The effect of surface roughness on the COR of an elasto-plastic
adhesive contact (elasticodulus of 210 GPa, yield pressure of 750MPa and Poisson’s ratio

of 0.25) have been studied numerically and the results are plotted against the maximum

indentation deptin Figure 10.
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The maximum indentation depth is the depth that loading is stopped and the spheres start to
unload. Since the contact mechanics algorithms inevitably use indentation depth and numerical
simulations are based on this concept, it is more convenient to use the indentation depth as the
analysis factor. More importantly, it should be noted that, analysis of rough surfaces should
mainly be carried out based on indentation depth since it makes it possible to compare that with
the R, of roughness surfaces. Due to the non-linear behaviour of load and indentation,
correlating incident velocity and indentation -and as a result- incident velocity and surface
roughness will be highly non-linear and extracting useful information in this stage of the

research will be cumbersome.

All other simulation parameters are set the same as Sectioh 2.5.2 and Sectjon 2.5.3. For smooth

surfaces, COR increases with the maximum indentation depth due to the decreased effect of
interface energy. Then a decrease in the COR is observed which is a result of plastic energy
dissipation. Results for the smooth case, are in good agreement with the analytical work

reported by Thornton et a[l[4] in terms of the trend seen. The scenario changes when surface

roughness is introduced to the contact.

4 Discussion
From results in previous sections, it can be oleskttvat surface roughness can dramatically

influence the COR. There are three distinctive stages in this case. In the first stage, the COR
decreases in the beginning and that is due to the initial plastic deformation of asperities. In the
second stage, a general increase in the COR is observed which can be due to the reduction in
the influence of surface roughness on the overall contact behaviour as the asperities flatten
. Finally, a gradual decrease in the COR is observed which is similar to the smooth case
and can be attributed to the plastic deformation of the bulk of particle. For the cas®df R

um and R=0.2um this final decrease is happening earlier than the casg0fFum and R=1

um and not surprisingly they show a closer behaviour to the smooth surface. Interestingly the
values of COR tend to converge to the values for smooth case at certain indentation depths as
shown by the arrows in Figure 10. This new finding suggests that in the incident of the rough
particles and the corresponding COR, there is a critical indentation dgpih,() in which

the behaviour of the rough particles align with the behaviour of smooth particles. The effect of
surface roughness on the COR will disappear after the critical indentation depth,0.

This suggest that COR -or energy dissipation in other words- are influenced by the surface

roughness mainly where the compression is in the scale of surface roughness, otherwise they

10
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tend to be close to the values of smooth surfaces. We have plotted the critical indentation depth
(icr max) @gainst normalised surface roughness valugR)®Rhere R is the radius of particles

and the results are shown in Figure 11, where a linear dependépcy,@f on the R/R value

of the surface roughness can be observed. Moreover, as the indentation gets smaller, typically
less than 50nm, the COR for all roughness values follows exactly the same trend, as in this
region plasticity is not dominant. Finally, COR merges to that of a smooth surface below the
indentation of 8nm, regarded as the minimum critical indentation dépth;£), a unique
number for all roundness values. This is where the indentation gets small enough so that only
tip of the first asperities come into contact. The effect of different asperity lateral sizes and

slope of surface roughness will be studied on this phenomena in the future works of the author.

It is useful to analyse the energy loss due to surface roughness to highlight its significance. For
comparison reasons, the percentage differences between COR values in the case of smooth
surface and the case of rough surfaces ((£&&R- CORougn/ CORsmootr) have been calculated

and plotted in Figure 12. The energy dissipation due to roughness can be interpreted based on

the difference shown in Figure 12. The differences in COR are not quantitatively representing
the energy loss, but since COR is equay%, higher decrease in its value means an increase
l

in the energy loss. Rougher surfaces show higher deviation from the behaviour of smooth

surfaces for longer indentation depths therefore show higher energy loss

4.1.1 Effect of yield stress and roughness
In order to investigate the effect of yield stress on the COR for an adljagive 0.09 #)

rough surface, simulations were carried out for the surface witl) Rum for two different

values of yield stress (150 MPa and 750 MPa) and the results are presented in Figure 13. Similar

to the results of Sectipn 2.%.4, it can be seen that yield stress dramatically affects the COR also

for rough surfaces. In the very initial stage of indentation (less than)3@mene the plasticity
is not yet dominant the trends are similar but a clear differentiation can be observed when the
plastic deformation takes place. The trend emerges to that of a smooth particle beyond the

critical indentation, where plasticity undergoes to a bulk dominant stage.

4.1.2 Effect of interface energy and roughness
The effect of interface energy on the COR for smooth surfaces has been investigated and

reported in Sectign 2.5.5. In this section, the effect on the COR for rough surfaces is presented.

Computational results for COR at two different surface energigg =

11
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0.01 (#) and 0.09 (#) for the rough surface witfioung’s modulus of 210 GPa, yield stress

of 750 MPa and g 0.1um are plotted in Figure 14. Results suggest that interface energy and
therefore adhesion have less effect on the loading and unloading behaviour and the
corresponding COR for rough surfaces. This is in line with other works in the Iitere [23,
,] that state, interface energy will be dramatically reduced for rough surfaces especially
where roughness is significantly larger than the atomic distances due to the largeosepfrati
surface points. However, when the surfaces are smooth (Figure 9), interface energy has

significant effect on the COR, but only in the regions where plasticity is not dominant.

5 Conclusions

In this work elastic-perfectly plastic and adhesive contact behaviour of surfaces has been
simulated using a fast numerical Boundary Element Model (BEM). Coeffididestitution

(COR) was calculated by considering the loading and unloading energies of smooth and rough

surfaces and the following conclusions are drawn.

- Itis shown that BEM is an efficient deterministic method to model the particle contact
behaviour and the corresponding loading/unloading curves.

- For rough surfaces a significant dependency of COR on the surface roughness has been
observed. This is the first time that surface roughness has been considered in the
numerical calculation of the COR by means of BEM.

- Our results show that higher values gfrBughness result in lower COR for the same
maximum indentation. This is because higher roughness leaagreater energy
dissipation and thus lower COR. However, this behaviour changes beywdmum
critical indentation depthi{- ,,4,) after which COR trend is similar to that of smooth
surfaces. This was argued to be where the indentation is beyond the scale of surface
roughness and the contact becomes bulk-dominant.

- It is also found that, below a minimum critical indentatiap. 4;,), where the
behaviour is mostly elastic, rough surfaces behave similar to that of smooth surfaces.

- It has been shown that for rough surfaces, the effect of yield stress on COR is
significant. The lower yield stress results in lower COR, but only in the regions where
the plasticity is dominant.

- Unlike smooth surfaces, interface energy slightly affects the COR of rough sunféces

in the small indentation regions where the behaviour is more elastic. Therefore, the

12



358 effect of interface energy on COR for rough surfaces is minimal, due to larger

359 separations of surface points for rough surfaces.

360 Authors believe that consideration of the surface roughness in the bulk behaviour of the
361 granular materials as well as particle-particle interactions is significantly important and will
362 influence the future calculations. The method is fairly fast and could be used for a variety of

363 maerials and complicated surface geometries.
364
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Figure 1 Schematics of the rigid body interference with the composite surface roughness
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Figure 12 The difference in COR for rough and smooth surfaces.
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