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Abstract 7 

An in-house contact mechanics model is used to simulate contact of rough spheres having 8 

elastic-perfectly plastic contact with adhesion. The model uses a Boundary Element Method 9 

(BEM) and employs Fast Fourier Transforms (FFT) for numerical efficiency. We have 10 

validated our model for smooth surfaces with the Hertz contact behaviour in elastic regime, 11 

JKR adhesive model in the adhesive regime and Thornton and Ning’s analytical model in 12 

elasto-plastic adhesive regime.  Furthermore, the effect of yield stress, interface energy and 13 

surface roughness on the Coefficient of Restitution (COR) is investigated. The results show 14 

that surface roughness dramatically affects the COR and higher roughness values lead to lower 15 

CORs in general. In addition, changes of COR based on different maximum indentation depth 16 

in the presence of surface roughness consists of 3 stages; The asperity dominant, bulk elastic 17 

dominant and bulk plastic dominant. Interestingly, it was shown that there is a critical 18 

indentation depth in which the effect of surface roughness will disappear and rough surfaces 19 

act like smooth ones. This critical indentation depth is proportional to the Rq value of the 20 

surface roughness. Numerical results suggest that the yield stress influences the COR and 21 

higher yields stress results in higher COR for both rough and smooth surfaces. Results also 22 

suggest that the effect of interface energy on the COR for smooth surfaces is significant at low 23 

indentations and minimum for rough surfaces. 24 

Keywords: Coefficient of restitution; Roughness; Adhesion; Contact mechanics 25 

1 Introduction 26 

Interaction of particles is an important phenomena in the assemblies of particles and their bulk 27 

behaviour in a wide range of applications such as food and biosystems [1], pharmaceuticals 28 

[2], rock mechanics [3] and gas particle flows [4]. The collision between particles have been 29 

extensively studied analytically [4], numerically [5] and experimentally [6]. In terms of the 30 

elastic contact, Hertzian contact model has been widely used which offers a non-linear 31 
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behaviour [7, 8]. However, in majority of the granular flow simulations simple linear model is 32 

used to increase the computational efficiency. Since different materials show complicated 33 

plastic behaviours, incorporation of a complete analytical model for elasto-plastic contact is a 34 

challenge. Therefore semi-analytical models are often used to account for the effect of 35 

plasticity in contact mechanics [9]. Other works have introduced simplified linear models using 36 

Finite Element Analysis (FEA) [10, 11]. These models can be used to numerically and 37 

analytically calculate the COR based on the loading and unloading energy. 38 

It was shown that adhesion is playing an important role in the dissipation of the contact energy 39 

and the coefficient of restitution and several theories were introduced [12]. In an analytical 40 

model developed by Thornton and Ning [4] coefficient of restitution was modelled for an 41 

elasto-plastic contact with consideration of adhesion. The model showed that coefficient of 42 

restitution is dependent on the impact velocity, yield stress and the interface energy. Analytical 43 

and semi-analytical models are easy to implement numerically, however they do are not able 44 

to take into account the complexities that real engineering surfaces could have such as surface 45 

roughness. The effect of surface roughness in the contact mechanics have been the subject of 46 

many studies. The pioneering work of Greenwood and Williamson (GW) [13] has shown that 47 

the surface roughness can influence the real area of contact and the discrete contact pressures. 48 

The theory assumed a distribution of the surface asperity height with similar geometry and 49 

asperity radius and the interaction of individual asperities was ignored in the model. Following 50 

that, numerous works have considered the effect of surface roughness in solving the contact 51 

problems [14-16]. Others used half-space approximation and numerous mathematical models 52 

for increasing the efficiency of the computations [17-19]. More recently, researchers developed 53 

models for the elasto-plastic contact of rough surface [20-22]. Recent advances in 54 

computational power and contact algorithms led to development of contact mechanics models 55 

with finer grids and consideration of adhesive problems [23-25]. Surface roughness is known 56 

to alter the loading and unloading behaviour of materials, therefore affecting the energy 57 

dissipation. It also dramatically affects the separation of surfaces, real area of contact and 58 

adhesion. Hence, importance of the surface roughness in calculation of energy dissipation and 59 

restitution coefficient is clear.  60 

Despite the fast improvements in simulating the contact mechanics of real engineering surfaces, 61 

to the best of authors’ knowledge, very scarce numerical models of granular materials consider 62 

the roughness as an input parameter. Recently attempts have been made to consider the effect 63 

of roughness on the normal force-displacement of particulate solids [26-28]. However, the 64 
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effect of surface roughness on calculation of COR is still not studied numerically. Interestingly, 65 

this has only been studied experimentally to investigate the effect of roughness on wettability 66 

and COR in butterfly wings [29]. In this paper, a numerical in-house BEM contact mechanics 67 

model that considers elastic-perfectly plastic and adhesive contact of rough surfaces have been 68 

employed to calculate the COR. The theory of the model as well as its validation have been 69 

presented in Section 2. The effect of surface roughness, yield stress and interface energy (to 70 

take account of adhesion) on the COR has been reported in Section Error! Reference source 71 

not found.. The results of the current model, for the first time, highlight the importance of 72 

surface roughness in determining the COR in particle-particle interactions.     73 

2 Theory 74 

2.1 Elastic-perfectly plastic contact 75 

The normal force-displacement relationship for the contact of rough particles is modelled using 76 

our contact mechanics in-house code [30]. In the case of contact of rough surfaces, only highest 77 

asperities of surfaces will stand the load and the area of real contact is orders of magnitude 78 

smaller than the nominal contact area. The contact mechanics model is a coupled model in 79 

which load on any asperity can deform the whole material with respect to the influence 80 

coefficients [7]. The problem is to solve the complementary potential energy in order to obtain 81 

the true stress and strain matrices.  The composite deformation of the surfaces ݑሺݔǡ  ሻ due to 82ݕ

the applied load of ݌ሺݔǡ  ሻ can be calculated by the linear convolution according Boussinesq-83ݕ

Cerruti theory: 84 

௘ݑ ൌ ܭ כ ௗ݌ ൌ න න ݔሺܭ െ ǡߦ ݕ െ ǡߦሺ݌ ሻߟ ାஶߟ݀ ߦ݀ ሻߟ
ିஶ

ାஶ
ିஶ                               ሺͳሻ 85 

in which x and y are two dimensional coordinates, K is the convolution kernel and can be 86 

calculated from the half-space approximation as the following: 87 

ݔሺܭ െ ǡߦ ݕ െ ሻߟ ൌ ͳכܧߨ ͳඥሺݔ െ ሻଶߦ ൅ ሺݕ െ ሻଶߟ                       ሺʹሻ 88 

where כܧ is the composite elastic modulus of both materials (
ଵாכ ൌ ൫ଵିఔభమ൯ாభ ൅ ൫ଵିఔమమ൯ாమ ). 89 

Here, ߥଵ, ߥଶ, ܧଵ and ܧଶ are the Poisson’s ratio and Elastic Modulus of material 1 and 2 90 

respectively. For the sake of numerical calculations efficiency, roughness of both surfaces can 91 

be integrated as a composite surface roughness only on one contacting surface and the counter-92 

body can be assumed to be rigid [7]. Therefore, by movement of the rigid body in normal 93 
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direction, the body interferences (i) are calculated as shown in Figure 1. For the points of 94 

contact, the elastic deformation calculated using Equation 1 should be equal to the body 95 

interference (i). In order to solve the contact problem numerically, the load balance also should 96 

be considered. This will imply that the sum of all nodal contact pressures should equate the 97 

total normal applied load. The model considers a perfectly plastic behaviour and a yield criteria 98 

is assumed to be the cut-off value for the contact pressure at every node. The surface asperities 99 

that reach the yield pressure are assumed to float freely on the surface and do not take part in 100 

the deformation calculations. Therefore, the set of the following equations should be solved 101 

iteratively.  102 

ەۖۖ
۔ۖ
ۓۖ ݎ ൌ ൫ܼଶሺݔǡ ሻݕ െ ܼଵሺݔǡ ሻ൯ݕ ൅ ௭തതതሺxǡݑ yሻ     ݔ׊ǡ ݕ א ǡݔሺ݌௖                           ሺ͵Ǥͳሻܣ ሻݕ ൐ Ͳ                                                   ݔ׊ǡ ݕ א ௖ܣ                            ሺ͵Ǥʹሻ݌ሺݔǡ ሻݕ ൏ ௬                                                                                                  ሺ͵Ǥ͵ሻ     ෍݌ ௜ǡ௝௜ǡ௝ୀே݌

௜ǡ௝ୀଵ ൌ ே                                                                                              ሺ͵ǤͶሻܨ ۙۖۖ
ۘۖ
ۖۗ                ሺ͵ሻ 103 

In Equation 3 r is the rigid body movement of two rough surfaces in normal direction, Z2 and 104 

Z1 are the surface profiles of the two rough particles and ݑ௭തതത is the composite elastic deformation 105 

of two materials calculated by Equation 1. ܨே is the total applied load in the normal direction, 106 ݌௬ is the yield stress of the softer material in contact, ܣ௖ is the area of contact and N is the total 107 

number of nodes in the domain of study.  In the current contact mechanics model, an elastic-108 

perfectly plastic approach is incorporated.  Yield stress of the softer material is set to be the 109 

threshold for the plastic flow and the pressure does not exceed this value.  This approach is 110 

widely used in other works in order to simulate elastic-plastic contacts. More details of the 111 

contact mechanics approach can be found in Refs [31, 32]. 112 

2.2 Adhesion 113 

The model for adhesive contact of smooth surfaces was developed by Johnson et al. [33] (JKR) 114 

where they extended the Hertzian contact to account for adhesive region. There have been 115 

numerous attempts to adapt JKR theory to different applications [34, 35]. In recent years, 116 

development of numerical models for adhesive contact of rough surfaces have been the subject 117 

of many studies [23, 36-38]. The BEM model developed by Pohrt and Popov [39, 40] was used 118 

in this work which introduced a local mesh size-dependant criteria for detachment of surface 119 

asperities in adhesion. 120 

In the adhesive contact the first part of Equation 3 will be modified as: 121 
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ݎ ൌ ൫ܼଶሺݔǡ ሻݕ െ ܼଵሺݔǡ ሻ൯ݕ ൅ ௭തതതሺxǡݑ yሻ ൅ ݀                          ሺͶሻ 122 

 in which d is the pulled apart distance (Figure 2) when surfaces are unloading. It should be 123 

noted that the surface stresses that only occur inside the contact region for non-adhesive 124 

contacts are positive (compressive). When the bodies keep the same contact area after 125 

compression and are pulled away for a distance d, Equation 4 will be valid. Therefore, set of 126 

Equation 3 will be solved iteratively but the first part is replaced with Equation 4. It should be 127 

noted that the adhesive forces are considered in both loading and unloading. In order to consider 128 

adhesion in loading, after each loading step, a small unloading step (d=0.1 nm) was considered. 129 

The local detachment criteria was then applied as the following [39]: 130 

ௗ݌ ൌ ඨ ͲǤͶ͹͵ʹͲͳǤߛοכܧ ݄                                      ሺͷሻ 131 

οߛ is the interface energy and h is the grid size. Equation 5 calculates the maximum tensile 132 

(adhesive) pressure that a node can sustain before detachment. If the tensile stress at each node 133 

exceed the ݌ௗ value, the detachment occurs and the stress will be set to zero.  134 

2.3 Numerical discretisation 135 

In order to solve the set of Equations 3, the numerical domain should be discretised into 136 

rectangular elements of similar size in which the contact pressure can be assumed to be 137 

constant. Equation 1 will get the discretised form given by: 138 

   139 

ሺ௜ǡ௝ሻݑ ൌ ܭ כ ௗ݌ ൌ ෍ ෍ ሺ݅ܭ െ ݇ǡ ݆ െ ݈ሻ ݌ሺ݇ǡ ݈ሻே
௟ୀଵ

ே
௞ୀଵ                    ݅ǡ ݆ ൌ ͳǡʹǡ ǥ ǡ ܰ                            ሺ͸ሻ 140 

where  ݌ሺ݇ǡ ݈ሻ is the constant pressure acting on the element centred at (k,l). Solving Equation 141 

6 along with Equation 3 requires an iterative process to modify the contact pressures and 142 

finding the corresponding surface deformations. This can be solved using the matrix inversion 143 

process and requires ܰଶ ൈ ܰଶ operations. Using DC-FFT algorithm widely reported in the 144 

literature [17, 41, 42] can reduce the computational demand dramatically. Equation 6 will be 145 

then converted to: 146 ݑሺ௜ǡ௝ሻ ൌ ෩௜ǡ௝Ǥܭൣܶܨܨܫ ෤௜ǡ௝൧                             ݅ǡ݌ ݆ ൌ ͳǡʹǡ ǥ Ǥ ǡ ܰ                    ሺ͹ሻ    147 
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where  ܭ෩௜ǡ௝ and ݌෤௜ǡ௝are the Fast Fourier Transforms (FFT) of the influence coefficient and 148 

contact pressure matrices and are multiplied element-by-element. The FFT-based convolution 149 

is accompanied by periodicity errors that can be minimized by means of zero-padding contact 150 

pressure matrix (doubling the domain and putting zero pads in both x and y directions) and 151 

wrap-around [41]. It should be noted that dealing with 2-dimensional surfaces, both contact 152 

pressure and influence matrices should be expanded in both x and y directions. In order to 153 

increase the applicability and efficiency of the method, the number of nodes chosen for the 154 

numerical study should be a power of 2. The surfaces used in this study consist of 512×512 155 

nodes of 0.25 ȝm size for 500 µm radius spheres. 156 

 157 

2.4 Calculation of the COR 158 

It should be highlighted that parameters such as impact angle and tangential loading or friction 159 

have significant impact on the energy dissipation and the COR. In this model only the normal 160 

impact of the particles has been considered. Considering other parameters such as tangential 161 

stiffness will add more complexity to the model and can be the subject of future studies. Once 162 

the contact behaviour of loading and unloading is modelled, calculation of the COR will be 163 

straightforward by simply calculating the energy of loading and unloading from the area under 164 

the curve in load-displacement graph. The formula for the calculation of COR will be as the 165 

following: 166 

ܴܱܥ ൌ ඨ ௨ܹܹ௟                            ሺͺሻ 167 

In Equation 8, ܹ ௟is the energy of loading that is transferred to the material and ௨ܹis the energy 168 

which is released from the material in the process of unloading. The calculation of ௟ܹand ܹ ௨is 169 

shown schematically in Figure 3. 170 

2.5 Numerical model validations 171 

2.5.1 Hertzian contact 172 

An example of the surfaces used in the numerical simulation is shown in Figure 4. In order to 173 

obtain the normal force-displacement curves, the upper particle (upper surface) is moved in the 174 

normal direction. The normal force (ܨே) is then calculated from the contact mechanics code 175 

solving the set of Equation 3. Movement of the upper surface is adjusted by changing the value 176 
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of r in Equation 3. The indentation of the particles is simulated with step-wise increase in the 177 

value of r and the corresponding normal force is recorded. The results of normal force-178 

displacement is compared with the Hertzian model for the case of smooth particles with 500µm 179 

radius, Young’s modulus of 210 GPa (resembling a typical grade of steel) and Poisson’s ratio 180 

of 0.25  in Figure 5 in order to test the accuracy of the elastic numerical model prior to elasto-181 

plastic and adhesive simulations. It should be noted that the shape of surface asperities 182 

influence the calculation of the real contact area and the corresponding surface pressures (this 183 

is still an open area of research in the field of contact mechanics [25]). Consideration of other 184 

properties of rough surfaces such as slope of the surface roughness in the calculation of surface 185 

area, energy dissipation and COR will be the subject of future developments of the model. 186 

2.5.2 Elastic-perfectly plastic contact 187 

The same numerical approach as the previous section has been implemented with incorporation 188 

of the yield cut-off (Equation 3.3). It is assumed that the loading occurs in elastic-perfectly 189 

plastic mode and the unloading is only elastic. The loading and unloading of particles have 190 

been simulated and the results are compared to the analytical model of Thornton and Ning [4]. 191 

The simulations were conducted for two smooth spheres of 500µm radius with elastic modulus 192 

of 210 GPa and Poisson’s ratio of 0.25. The yield pressure was set to 750MPa. Numerical BEM 193 

simulations were carried out for surfaces of 125µm×125µm. BEM numerical results of Figure 194 

6 show very good agreement with the prediction from analytical model of Thornton and Ning 195 

[4].    196 

2.5.3 Adhesive contact 197 

Adhesion was considered in both loading and unloading and for validation purposes, the 198 

adhesive contact was simulated for the unloading of surfaces using the theory of Pohrt et al. 199 

[39] by step-wise increasing of parameter d in Equation 4. It should be noted that the resolution 200 

in the z direction is 0.1nm in our simulations. All the simulation parameters are the same as the 201 

elastic model shown earlier (elastic modulus of 210 GPa and Poisson’s ratio of 0.25). The 202 

interface energy (οߛሻ in the range of 0.01 to 0.09 (
௃௠మሻ is used in Section 2.5.5 of this 203 

manuscript for comparison reasons. However, in this section and other simulations, the highest 204 

value 0.09 (
௃௠మሻ  is selected to signify the effect of adhesion on the COR for both rough and 205 

smooth surfaces. The formulation of the JKR theory has been taken from [39]. The critical 206 

point that the maximum adhesive force will occur for a parabolic profile is formulated as the 207 

following: 208 
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௔ௗ௛ܨ ൌ ͵ʹ οܴߨߛ                                ሺͻሻ 209 

ܽ௖ ൌ ቆͻͅߨ οܴߛଶכܧ ቇଵଷ                        ሺͳͲሻ 210 

݀௖ ൌ െ ቆ͵ߨଶ͸Ͷ οߛଶܴכܧଶ ቇଵଷ                 ሺͳͳሻ 211 

௔ௗ௛ܨ is the total normal force required to separate the surfaces, ܽ௖௥௜௧ is critical value of the 212 

contact radius at the moment of detachment and ݀௖ is the crucial value of the negative 213 

indentation at the time of detachment. For comparison reasons, normalized indentation (ҧ݀), 214 

normalized force (ܨത) and the normalized area (തܽ) are formulated as: 215 

ҧ݀ ൌ ͵ തܽଶ െ Ͷ തܽଵଶ                        ሺͳʹሻ 216 ܨത ൌ തܽଷ െ ʹ തܽଷଶ                            ሺͳ͵ሻ 217  ܨത ൎ ͲǤͳʹ൫ ҧ݀ ൅ ͳ൯ହଷ െ ͳ                ሺͳͶሻ 218 

  219 

The results of simulation for elastic adhesive contact are plotted in Figure 7 and compared 220 

with the JKR theory, where a good agreement can be observed. 221 

2.5.4 Effect of yield stress 222 

Simulations were conducted at different yield stress values of 0.75 and 1.5 GPa for adhesive 223 

contact (οߛ ൌ ͲǤͲͻ ௃௠మሻ of two smooth spheres. All other simulation parameters (radius, 224 

Young’s modulus and Poisson ratio) are kept the same as the previous section. The results are 225 

plotted in form of COR (Equation 8) as a function of indentation depth in Figure 8. In order to 226 

compare the results with the analytical model of Thornton and Ning [4], the impact velocity in 227 

their work has been converted to the indentation depth by using the energy equations: 228 ͳʹ ܸ݉ଶ ൌ න Ǥܨ ݀݅                                     ሺͳͷሻ 229 

In the energy equation above, V is the impact velocity, m is the mass of the particle, ܨ is the 230 

total normal force and ݀݅ is the incremental indentation until the maximum indentation reaches.    231 
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It can be seen that the results are following similar trends as reported by Thornton and Ning 232 

[4], where for both yield stresses the COR initially increases by the indentation and then 233 

reduces. 234 

2.5.5 Effect of interface energy 235 

Interface energy is known to affect the adhesive force and thus the COR. Simulations were 236 

carried out for smooth surfaces for different values of interface energy from οɀ ൌ237 ͲǤͲͳሺ ௃௠మሻ ݋ݐ ͲǤͲͻ ሺ ௃௠మሻ, but constant yield stress of 750 MPa. The results are plotted in Figure 238 

9 in log scale in order to make the difference clear. Results suggest that interface energy only 239 

affects the COR at small indentations where the effect of adhesion is comparable to elastic and 240 

plastic energies. The findings are in-line with the findings of Thornton et al. [4] which used 241 

higher values for the interface energy. In this paper, we have chosen a range for the interface 242 

energy that are mostly observed in the engineering applications.  243 

3 Effect of Root Mean Square surface roughness 244 

Calculation of the contact behaviour of the rough surfaces is carried out using the theory 245 

presented in Section 2, considering the initial digital topography input of the model. The 246 

discretisation procedure of the rough surface topography is also discussed in Section 2.3. 247 

Rough surfaces are generated incorporating the method introduced by Hu et al. [43] who used 248 

2-D digital filters and autocorrelation functions.  Fast Fourier Transforms are used for 249 

numerical efficiency. There are several parameters that can be used to characterise the 250 

topography of the surfaces such as Root Mean Square (RMS) roughness, Skewness, kurtosis 251 

etc. Incorporation of all these surface parameters in a digitised surface needs a careful 252 

characterisation of the real engineering surfaces and extracting the desired parameters as input 253 

to the surface generation models [44].  Therefore, for simplicity, generation of rough 254 

topography was carried out by only introducing the RMS roughness of the surfaces (Rq). The 255 

topography was generated off-line prior to any contact calculations and used as input for the 256 

contact solver. Surfaces used in the model are similar to the ones shown in Figure 4. The upper 257 

surface is set to be perfectly smooth and the lower surface has the composite surface roughness 258 

of both particles in contact. The contact in this condition is known to be equivalent to the real 259 

system of two rough particles. The effect of surface roughness on the COR of an elasto-plastic 260 

adhesive contact (elastic modulus of 210 GPa, yield pressure of 750MPa and Poisson’s ratio 261 

of 0.25) have been studied numerically and the results are plotted against the maximum 262 

indentation depth in Figure 10.  263 



10 

 

The maximum indentation depth is the depth that loading is stopped and the spheres start to 264 

unload. Since the contact mechanics algorithms inevitably use indentation depth and numerical 265 

simulations are based on this concept, it is more convenient to use the indentation depth as the 266 

analysis factor. More importantly, it should be noted that, analysis of rough surfaces should 267 

mainly be carried out based on indentation depth since it makes it possible to compare that with 268 

the Rq of roughness surfaces. Due to the non-linear behaviour of load and indentation, 269 

correlating incident velocity and indentation -and as a result- incident velocity and surface 270 

roughness will be highly non-linear and extracting useful information in this stage of the 271 

research will be cumbersome.  272 

All other simulation parameters are set the same as Section 2.5.2 and Section 2.5.3. For smooth 273 

surfaces, COR increases with the maximum indentation depth due to the decreased effect of 274 

interface energy. Then a decrease in the COR is observed which is a result of plastic energy 275 

dissipation. Results for the smooth case, are in good agreement with the analytical work 276 

reported by Thornton et al. [4] in terms of the trend seen. The scenario changes when surface 277 

roughness is introduced to the contact.  278 

4 Discussion 279 

From results in previous sections, it can be observed that surface roughness can dramatically 280 

influence the COR. There are three distinctive stages in this case. In the first stage, the COR 281 

decreases in the beginning and that is due to the initial plastic deformation of asperities. In the 282 

second stage, a general increase in the COR is observed which can be due to the reduction in 283 

the influence of surface roughness on the overall contact behaviour as the asperities flatten 284 

[28]. Finally, a gradual decrease in the COR is observed which is similar to the smooth case 285 

and can be attributed to the plastic deformation of the bulk of particle. For the case of Rq=0.1 286 

µm and Rq=0.2 µm this final decrease is happening earlier than the case of Rq=0.5 µm and Rq=1 287 

µm and not surprisingly they show a closer behaviour to the smooth surface. Interestingly the 288 

values of COR tend to converge to the values for smooth case at certain indentation depths as 289 

shown by the arrows in Figure 10. This new finding suggests that in the incident of the rough 290 

particles and the corresponding COR, there is a critical indentation depth (݅௖௥̴௠௔௫ሻ in which 291 

the behaviour of the rough particles align with the behaviour of smooth particles. The effect of 292 

surface roughness on the COR will disappear after the critical indentation depth (݅௖௥̴௠௔௫  ሻ. 293 

This suggest that COR -or energy dissipation in other words- are influenced by the surface 294 

roughness mainly where the compression is in the scale of surface roughness, otherwise they 295 
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tend to be close to the values of smooth surfaces. We have plotted the critical indentation depth 296 

(݅௖௥̴௠௔௫ሻ against normalised surface roughness values (Rq/R) where R is the radius of particles 297 

and the results are shown in Figure 11, where a linear dependency of ݅௖௥̴௠௔௫ on the Rq/R value 298 

of the surface roughness can be observed.  Moreover, as the indentation gets smaller, typically 299 

less than 50nm, the COR for all roughness values follows exactly the same trend, as in this 300 

region plasticity is not dominant. Finally, COR merges to that of a smooth surface below the 301 

indentation of 8nm, regarded as the minimum critical indentation depth (݅௖௥̴௠௜௡ሻ, a unique 302 

number for all roundness values. This is where the indentation gets small enough so that only 303 

tip of the first asperities come into contact. The effect of different asperity lateral sizes and 304 

slope of surface roughness will be studied on this phenomena in the future works of the author. 305 

It is useful to analyse the energy loss due to surface roughness to highlight its significance. For 306 

comparison reasons, the percentage differences between COR values in the case of smooth 307 

surface and the case of rough surfaces ((CORsmooth - CORrough)/ CORsmooth) have been calculated 308 

and plotted in Figure 12. The energy dissipation due to roughness can be interpreted based on 309 

the difference shown in Figure 12. The differences in COR are not quantitatively representing 310 

the energy loss, but since COR is equal to ටௐೠௐ೗, higher decrease in its value means an increase 311 

in the energy loss. Rougher surfaces show higher deviation from the behaviour of smooth 312 

surfaces for longer indentation depths therefore show higher energy losses.  313 

4.1.1 Effect of yield stress and roughness 314 

In order to investigate the effect of yield stress on the COR for an adhesive ሺοɀ ൌ  ͲǤͲͻ ୎୫మሻ 315 

rough surface, simulations were carried out for the surface with Rq= 0.1ȝm for two different 316 

values of yield stress (150 MPa and 750 MPa) and the results are presented in Figure 13. Similar 317 

to the results of Section 2.5.4, it can be seen that yield stress dramatically affects the COR also 318 

for rough surfaces. In the very initial stage of indentation (less than 50nm) where the plasticity 319 

is not yet dominant the trends are similar but a clear differentiation can be observed when the 320 

plastic deformation takes place. The trend emerges to that of a smooth particle beyond the 321 

critical indentation, where plasticity undergoes to a bulk dominant stage.  322 

4.1.2 Effect of interface energy and roughness 323 

The effect of interface energy on the COR for smooth surfaces has been investigated and 324 

reported in Section 2.5.5. In this section, the effect on the COR for rough surfaces is presented. 325 

Computational results for COR at two different surface energies οɀ ൌ326 
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ͲǤͲͳ ቀ ௃௠మቁ and ͲǤͲͻ ሺ ௃௠మሻ for the rough surface with Young’s modulus of 210 GPa, yield stress 327 

of 750 MPa and Rq= 0.1ȝm are plotted in Figure 14. Results suggest that interface energy and 328 

therefore adhesion have less effect on the loading and unloading behaviour and the 329 

corresponding COR for rough surfaces. This is in line with other works in the literature [23, 330 

45, 46] that state, interface energy will be dramatically reduced for rough surfaces especially 331 

where roughness is significantly larger than the atomic distances due to the large separation of 332 

surface points.  However, when the surfaces are smooth (Figure 9), interface energy has 333 

significant effect on the COR, but only in the regions where plasticity is not dominant. 334 

5 Conclusions 335 

In this work elastic-perfectly plastic and adhesive contact behaviour of surfaces has been 336 

simulated using a fast numerical Boundary Element Model (BEM). Coefficient of Restitution 337 

(COR) was calculated by considering the loading and unloading energies of smooth and rough 338 

surfaces and the following conclusions are drawn. 339 

- It is shown that BEM is an efficient deterministic method to model the particle contact 340 

behaviour and the corresponding loading/unloading curves.  341 

- For rough surfaces a significant dependency of COR on the surface roughness has been 342 

observed. This is the first time that surface roughness has been considered in the 343 

numerical calculation of the COR by means of BEM. 344 

- Our results show that higher values of Rq roughness result in lower COR for the same 345 

maximum indentation. This is because higher roughness leads to a greater energy 346 

dissipation and thus lower COR. However, this behaviour changes beyond a maximum 347 

critical indentation depth (݅௖௥̴௠௔௫ሻ after which COR trend is similar to that of smooth 348 

surfaces. This was argued to be where the indentation is beyond the scale of surface 349 

roughness and the contact becomes bulk-dominant. 350 

- It is also found that, below a minimum critical indentation (݅௖௥̴௠௜௡ሻ, where the 351 

behaviour is mostly elastic, rough surfaces behave similar to that of smooth surfaces. 352 

- It has been shown that for rough surfaces, the effect of yield stress on COR is 353 

significant. The lower yield stress results in lower COR, but only in the regions where 354 

the plasticity is dominant. 355 

- Unlike smooth surfaces, interface energy slightly affects the COR of rough surfaces but 356 

in the small indentation regions where the behaviour is more elastic. Therefore, the 357 
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effect of interface energy on COR for rough surfaces is minimal, due to larger 358 

separations of surface points for rough surfaces.  359 

Authors believe that consideration of the surface roughness in the bulk behaviour of the 360 

granular materials as well as particle-particle interactions is significantly important and will 361 

influence the future calculations. The method is fairly fast and could be used for a variety of 362 

materials and complicated surface geometries.  363 

 364 

 365 

 366 

 367 
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  482 

Figure 1 Schematics of the rigid body interference with the composite surface roughness 483 
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 502 

Figure 2 Illustration of the contact geometry based on JKR and Hertzian theory and the pull-503 

off distance d. Positive (compressive) pressures occur in Hertzian region and repulsive forces 504 

are at the outer ring (JKR region). d is the distance in which surfaces are pulled apart.  505 
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Figure 3 Schematics of loading and unloading energy calculations 527 
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Figure 4 Digitised surfaces, domain, configuration of the BEM and the contact pressures 545 
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 564 

Figure 5 BEM numerical solution of the elastic contact compared with the Hertzian solution 565 
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Figure 6 Comparison of different loading models  583 
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Figure 7 Adhesive pull-off for the contact of two spheres and comparison with JKR 601 
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 618 

Figure 8 (a) Effect of yield stress on the COR for constant E (210 GPa) and οߛ (ͲǤͲͻ ௃௠మሻ 619 

(b) one example of loading and unloading curve for elastic-perefectly plastic and adhesive 620 

contact of smooth surfaces at maximum indentation depth of 1 ȝm for yield stress of 750 621 

MPa. 622 
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 626 

Figure 9 Effect of surface energy on the COR for οߛ ൌ ͲǤͲͳ ݋ݐ ͲǤͲͻ ሺ ௃௠మሻ but constant E 627 

(210 GPa) and yield stress (750 MPa) 628 
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Figure 10 Effect of surface roughness on COR 644 
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Figure 11 Critical indentation depth at different normalised roughness values 652 
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Figure 12 The difference in COR for rough and smooth surfaces.  661 
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Figure 13 Effect of yield stress on the COR for rough surface with Rq= 0.1ȝm 671 
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 688 

Figure 14 Effect of surface energy on the COR for rough surface with Rq= 0.1ȝm, E= 210 689 

GPa and yield stress of 750 MPa 690 
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