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Abstract MuLTI (Multimodal Layered Transdimensional Inversion) is a Markov chain Monte Carlo
implementation of Bayesian inversion for the probability distribution of shear wave velocity (Vs) as a
function of depth. Based on Multichannel Analysis of Surface Wave methods, it requires as data (i) a
Rayleigh-wave dispersion curve and (ii) additional layer depth constraints, the latter we show significantly
improve resolution compared to conventional unconstrained inversions. Such depth constraints may be
drawn from any source (e.g., boreholes, complementary geophysical data) provided they also represent a
seismic interface. We apply MuLTI to a Norwegian glacier, Midtdalsbreen, in which ground-penetrating radar
was used to constrain internal layers of snow, ice, and subglacial sediments, with transitions at 2 and 25.5 m,
and whose Vs is assumed to be in the range 500–1,700, 1,700–1,950, and 200–2,800 m/s, respectively.
Synthetic modeling demonstrates that MuLTI recovers the true model of Vs variation with depth.
Significantly, compared to inversions without depth constraints, in this synthetic case MuLTI not only reduces
by about a factor of 10 the error between the true and the best fitting model, but also reduces by a factor of 2
the vertically averaged spread of the distribution of Vs based on the 95% credible intervals. We further show
that using frequencies above about 100 Hz lead to unconverged solutions due to mode ambiguities
associated with fine spatial structures. For our acquired data on Midtdalsbreen, we use 14-100 Hz data for
which MuLTI produces a large-scale converged inversion.

Plain Language Summary Geophysical inversion is used to infer plausible subsurface features from
surface measurements. However, inversions based on data sets acquired with a single geophysical technique
often have poor resolution due to many different subsurface models fitting the data within the error
tolerance. This study presents a novel method, Multimodal Layered Transdimensional Inversion, MuLTI, for
inverting seismic surface wave data with constraints on depths of internal layers to obtain a more accurate
and reliable interpretation of the subsurface. Here our depth constraints are drawn from ground-penetrating
radar horizon observations. MuLTI has been tested on an example data set from a glaciated environment
to determine the seismic wave velocity of the subglacial sediment, which has important implications for
glacier flow dynamics. By constraining the subsurface with ground-penetrating radar depth horizons, results
show the inverted solution being 2 times better resolved and 10 times more accurate within the glaciological
subsurface, than without constraints applied. Thus, we demonstrate MuLTI can mitigate poor resolution
of an unconstrained inversion, particularly at increased depth. Although we present examples from a
glaciated data set, this novel methodology is applicable to any layered subsurface environment.

1. Introduction

Many inversions of geophysical data derived from a single type of geophysical instrument are undercon-
strained, a property that results from not only limitations of the size and accuracy of the data set, but inherent
nonuniqueness: manymodels of the subsurface may be consistent with the single class of surface-based con-
straints. For this reason, joint inversions using data sets of mixed types can be a powerful method of con-
straining the model space, where ambiguities of one methodology are mitigated by resolution in the
other. Over the past few decades several different joint inversion algorithms and techniques have been
developed in various geological settings to overcome such underconstrained problems. Geoelectric and seis-
mic surface wave data have been combined (Hering et al., 1995; Wisén & Christiansen, 2005) to improve the
definition of layered structure in near surface environments (e.g., Ronczka et al., 2018). Similarly, reflection
seismic and controlled source electromagnetics have been combined to estimate fluid properties of petro-
leum reservoirs, which could not be obtained from one survey-type alone (Hoversten et al., 2006).
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Colombo et al. (2017) used the joint inversion of seismic and airborne time domain electromagnetics to
improve imaging of complex near surface structures to reduce risk in shallow petroleum exploration. In
deep-Earth investigations, surface wave dispersion and teleseismic P wave receiver functions both supply
constraints on the crustal and upper mantle geology and efficient algorithms for joint inversions have been
developed (e.g., Bodin et al., 2012; Julià et al., 2000; Shen et al., 2012). Our paper focuses on the use of con-
strained inversions to characterize a glaciated subsurface by inverting Rayleigh (surface) wave data sets in the
presence of depth constraints here provided by ground-penetrating radar (GPR) data.

Rayleigh waves are a type of seismic wave that travel along the ground surface, which, in an active seismic
survey, are efficiently generated by a compressional wave source: such a source typically converts more than
two thirds of the total seismic energy into Rayleigh waves (Richart et al., 1970). Using Multichannel Analysis of
Surface Wave (MASW) methods, the dispersive properties of the Rayleigh waves can be utilized to infer the
elastic properties of the subsurface (Park et al., 1999), often expressed in terms of shear wave velocity (Vs),
compressional wave velocity (Vp), and density. The MASW technique is most sensitive to Vs (Xia et al.,
2003), being only weakly dependent on Vp and density (Wathelet, 2005). When inverted with no other con-
straint, Rayleigh wave dispersion curves have poor depth sensitivity (Foti et al., 2009) particularly given data
collection issues including noise and finite bandwidth, the latter being problematic for resolving short length
scales and near-surface structures. Indeed, a direct inversion of such data has a vertical resolution of only one
third of the shortest wavelengths sampled (Gazetas, 1982), typically with 1–10 m resolution in active source
surveys. In view of this limitation in resolution, many models of subsurface Vs structure may provide an
acceptable level of fit to the observed data, therefore giving an ambiguous inversion.

An independent geophysical survey technique is GPR which is sensitive to changes in subsurface dielectric
permittivity and can resolve the layered near-surface velocity-depth structure to centimeter accuracy
(Booth et al., 2010). However, as with MASW, GPR data itself cannot unambiguously constrain subsurface
structure, and often has limited depth penetration. By combining Rayleigh wave observations and depth
information from GPR data, constrained inversion offers a powerful way to reduce the ambiguities inherent
in single-technique inversions, provided that subsurface interfaces correspond to colocated contrasts in both
elastic and electromagnetic properties. This assumption is likely appropriate in (for example) a glaciated
environment with snow, ice, and a subglacial substrate (Tsuji et al., 2012); a permafrost environment featuring
unfrozen and frozen ground (Kneisel et al., 2008); and hydrological settings such as the imaging of shallow
aquifers (Cardimona et al., 1998). Such inversions both honor the centimeter-scale accuracy of the GPR con-
straints and, assuming the layered GPR model can be interpreted, their major advantage is the narrowed
range of elastic properties that is permitted for each layer within the model. This latter effect vastly reduces
the space of subsurface models consistent with the data, and thus significantly improves the resolution of
any inversion. Furthermore, layer constraints mean that poor surface wave resolution in one layer does not
necessarily spread to the adjacent layers. Of course, this approach is only viable when the contrasts detected
by the seismic and GPRmethods are likely the same; in situations where a change in electromagnetic proper-
ties would produce no linked elastic contrast (e.g., a salinity horizon within an aquifer), our approach would
not be useful. In this study, we use synthetic and real data examples from a glaciological setting, modeling
the subsurface distribution of snow, ice, and subglacial material. In this setting, we expect that elastic and
electromagnetic horizons will be colocated. In practice, depth constraints could be added from any external
data source—for example, from seismic reflection studies or borehole control.

Even when multiply constrained, inversions are seldom unique. In many inversions, regularization is
employed to penalize small-scale roughness to produce a single smooth solution. However, single solutions
may not be sufficient given the nonuniqueness issues in surface wave inversions. Bayesian Markov Chain
Monte Carlo is a type of method that probabilistically quantifies the model space consistent with the obser-
vations. The application of the method results in a posterior probability distribution of the subsurface struc-
ture, numerically approximated by an ensemble of models, from which representative models such as the
mean or mode can be obtained, in addition to rigorous estimates of uncertainties. This posterior probability
distribution must lie within the bounds defined by a specified prior distribution, but is honed by the data into
peaks that correspond to the most likely models. A refinement, applied here, is to use a transdimensional
Bayesian method that allows each ensemble member to self-select both its model values and complexity
based on the data. Averaging over the many ensemble members, to obtain a mean solution, then provides
an effective smoothing. Furthermore, in the case where surface observations are weakly informative (as is
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often the case in surface wave dispersion), a Bayesian transdimensional approach will prefer models with
fewer layers, and therefore larger length scales (MacKay, 2003), rather than models with many thin layers.
Here we base our method on existing implementations of such a transdimensional method, which have suc-
cessfully inverted both single and multiple data sets (Bodin et al., 2012; Bodin & Sambridge, 2009; Livermore
et al., 2018).

In this paper we present the algorithmMuLTI (Multimodal Layered Transdimensional Inversion), which imple-
ments a Bayesian inversion of surface wave data, honoring depth constraints. MuLTI is coded in Matlab and is
freely available; we provide all data sets and scripts needed to reproduce the figures in this paper. The
remainder of the paper is structured as follows. We first describe MuLTI in detail and demonstrate its ability
to retrieve a known subsurface structure using synthetic data sets within a glacial setting. We then show an
application of MuLTI to image the structure, both within and under a Norwegian glacier using a data set
which we acquired in situ. Although we focus on glacial environments, MuLTI can be used in any layered geo-
logical environment where electromagnetic and elastic properties change at the same depths.

2. The MuLTI Algorithm

MuLTI is a Bayesian method which seeks to determine the posterior distribution of the Vs as a function of
depth, for a prescribed profile of Vp and density (see also Bodin et al., 2012; Wathelet, 2005). Denoting the
data set by d and the model description of Vs by m, using Bayes’ theorem this can be written

p mjdð Þ ¼ p djmð Þp mð Þ=p dð Þ; (1)

where p(m| d) is the posterior probability of the model given the data, p(m) is the prior information known
about the model before introduction of the data, p(d|m) is the likelihood (probability of observing the mea-
sured data given a particular model (m)), and p(d) is the evidence. In what follows, we consider a Markov
Chain Monte Carlo methodology to sample the posterior distribution, in which relative inference is sufficient:
thus, here the evidence does not enter our analysis. The algorithm traverses the space of admissible models,
sampling with greater frequency those models that are more likely. Provided that the chain of models is long
enough, the statistics of the discretized ensemble will converge to those of the underlying posterior
distribution.

It is important to note what we take to mean for the data, d. Both GPR and Rayleigh wave data sets are data in
the geophysical sense but, because the GPR-derived layer depths are comparatively so well resolved, we use
the two data sets in different ways. The GPR data we take to be part of our background knowledge of the
system and are included in the prior, while the Rayleigh wave data we take to comprise the data (d), used
in the likelihood. Hence, the two data sets are not treated on an equal footing.

MuLTI can run in two different modes. In the first, it conducts a constrained inversion using both seismic data
and layer-depth constraints, here derived from GPR data and assuming an underlying infinite half-space. In
the second mode, MuLTI runs with no predefined internal boundaries, and the subsurface here is described
by an infinite half-space.

2.1. The Data

Rather than using raw data from synthetic waveform models, seismograms, or active seismic acquisitions,
MASW uses the derived dispersion curve in the frequency-phase velocity domain. This dispersion curve is
characterized by a discrete set of points that we term the data, d, by picking the phase velocity for a set of
frequencies according to the spectral maximum (Foti et al., 2015). If N discrete points are picked in this
domain, the data comprise N pairs of frequency (f) and Rayleigh wave phase velocity (PV) values with corre-
sponding standard deviation σ:

d ¼ f 1 f 2…:f N; PV1 PV2…:PVN½ �; (2)

σ ¼ σ1 σ2…:σN½ �: (3)

The standard deviation of the phase velocities is a measure of uncertainty in the picked dispersion curve,
which is either prescribed as a constant vector (e.g., in a synthetic test), or determined as a function of
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frequency from the width of the waveform dispersion image. For the latter case, we note that the resolution
of the dispersion curve depends on the survey parameters used to acquire the seismic data. For example, a
higher density of wavefield sampling, that is, more receivers and longer source-receiver offset ranges,
produces better resolved dispersion curves; furthermore, in general, higher frequencies are typically better
resolved than lower frequencies (Park et al., 2001).

2.2. Model Parameterization

We describe the 1-D variation of Vs with depth as a piecewise constant function using Voronoi nuclei (but see
Dettmer et al., 2010, for an alternative), in which each layer is divided into a variable number of sublayers with
constant velocities; at each depth, the value of Vs is determined by its nearest nucleus within the same layer
(Bodin et al., 2012), see Figure 1 for an illustration of this model parameterization. To ensure that Vs within each
prespecified layer is always described (requiring aminimumnumber of nuclei of 1 within each layer), we define
a set of confined nuclei, which are confined to the given layers but are otherwise unconstrained in depth. The
number of confined nuclei is equal to the number, l, of internal layers including the half space. All other k nuclei
in the model are unconstrained in depth, and are termed floating nuclei. The model vector is then

m ¼ dp1; dp2;…:; dpk ; Vs1; Vs2;…:; Vsk ; k; dpc1; dpc2…:dpcl; c; Vsc2;…:; Vscl½ �; (4)

where dpi are the floating nuclei depths, Vsi are the floating nuclei wave speeds, dpci are the depths of the
confined nuclei, Vsci are the wave speeds of the confined nuclei, and k is the number of floating nuclei. In
our transdimensional framework, the number of floating nuclei k≥0, characterizing the complexity of the
Vs profile, is a free parameter. All Voronoi nuclei are defined with depths ranging from 0 to a predefined
maximum depth dpmax. We note that the lowermost Voronoi cell is unbounded in downward vertical extent
and describes an infinite half-space.

2.3. The Likelihood

The likelihood expresses the probability of observing the data (in our case, the picked dispersion curve) given
a specific model m, here achieved by running a forward calculation of the frequency-PV response and com-
paring to the observed data (d). For a given frequency, there are multiple phase velocities at which the

Figure 1. Illustration of Multimodal Layered Transdimensional Inversion’s model parameterization using Voronoi nuclei
(floating and confined) comparing (a) a 1-layer model with no internal layers and (b) a GPR-determined 3-layer structure
assuming different ranges of shear wave velocity within each layer. Gray indicates the range of possible shear wave velocity
values. Figure adapted from Bodin et al. (2012). GPR = ground-penetrating radar.
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Rayleigh wave can travel; the slowest velocity is called the fundamental mode, the next highest velocity is
called the first higher-order mode, then the second higher-order mode, and so forth (Park et al., 1999).
Early models of surface wave inversion only considered the fundamental mode with simple near surface
environments (Xia et al., 1999), although it has been shown subsequently that higher order modes are pre-
ferred over the fundamental mode in several types of velocity structures (e.g., when a high velocity layer
overlies a low velocity layer; Gucunski & Woods, 1992). Here we calculate all relevant modes (fundamental,
first and second higher-order modes) and we assume that the probability of the ith datum PVi (fi) is normally
distributed about the nearest modal value, c (fi), at frequency fi (of the three calculated) with standard devia-
tion σi (fi). We deliberately do not specify which mode should be associated with any given datum because it
is often difficult in practice to unambiguously assign the correct modal index (see section 3.5). Assuming that
each datum (indexed by i = 1, 2 … Ndata) is independent, the likelihood p(m| d) is then proportional to

∏Ndata
i¼1 e

� PVi�c f ið Þð Þ2
2σ f ið Þ2 :

(5)

We calculate the modal dispersion curves using the Geopsy dispersion curve algorithm of Wathelet (2005) by
first converting our Voronoi cells to a layer-model. The Geopsy dispersion curve algorithm uses a propagator
matrix method to find the eigenvalues of the dispersion equation (Wathelet, 2005). This is a fast algorithm
suitable for running repeatedly within MuLTI. We note that there is an option within MuLTI to limit the calcu-
lation of misfit to use either only the fundamental mode, or to use only a subset of the frequency range.

Our framework can be easily altered to include a different definition of likelihood: the choice we made above
is not unique. Other definitions include a characterization of the misfit in terms of a determinant, removing
the need to calculate the modal curves (Maraschini & Foti, 2010), or use of a full wavefield inversion approach
using the dispersion spectra instead of a picked curve (Dou & Ajo-Franklin, 2014).

2.4. Prior Information

The remaining key aspect of our Bayesian method is the prior information that is assumed for the model
parameters: the number (k), depth (dp), and material properties (Vs) associated with the Voronoi nuclei. By
conditioning on the value of k, the prior can be written as

p mð Þ ¼ p dp1; dp2;…:; dpk ; Vs1; Vs2…:Vsk ; dpc1; dpc2;…:; dpcl; Vsc1; Vsc2;…:; Vscljkð Þ p kð Þ : (6)

By further assuming that each pair (dpj Vsj), for both the floating and confined nodes, is independent of the
others, the above probability can be written as

∏kþl
j¼1p Vsj; dpjjk

� � ¼ ∏kþl
j¼1p Vsjjdpj; k

� �
p dpj
� �

: (7)

We assume that k is uniformly distributed between given bounds: we commonly take k ~ U[0,30], limiting the
maximum number of floating nuclei to 30. We further assume that the depth of each Voronoi nucleus is inde-
pendent and has a depth uniformly distributed within given bounds: either the limits defined by GPR-defined
layers for confined nuclei or dp ~ U[0, dpmax] for floating nuclei, with dpmax typically taken to be 40 m. The
value of Vs attached to each nuclei is assumed to be uniformly distributed within bounds dependent on
its assumed composition. Without GPR constraints, wide bounds are applied for the infinite half space, typi-
cally Vs ~ U[200,2800] m/s, but with GPR constraints the much narrower ranges are defined by the
layers’ composition.

Figure 1 illustrates the model geometry and shows schematic differences between the unconstrained
(Figure 1a) and GPR-constrained (Figure 1b) cases. Without GPR constraints, there is a large range of possible
Vs values (gray shading) at any depth. The inclusion of GPR constraints reduces the model parameter space
significantly, although Vs variability within each layer is permitted by the unconstrained number of floating
Voronoi nuclei within each layer.

While all the model prior distributions are uniform, this does not mean the distributions of all diagnostics of
the prior are also uniform. For example, the distribution of nuclei depths is not uniform (when using GPR con-
straints), because the existence of the confined nuclei that are tied to certain layers skews the distribution.
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2.5. Numerical Sampling of the Posterior

We sample the posterior distribution by using the Monte Carlo Markov chain algorithm, in which we itera-
tively generate a long chain of models. The algorithm is very similar to that described in Gallagher et al.
(2011) and Bodin and Sambridge (2009) and there is no need to reproduce all the details here; we present
only the key features and any differences. At each step, a new model m0 is proposed that differs from the
current model by one of four perturbations (Figure 2), which depend on a set of user specified parameters
(σchange, σmove, and σbirth) whose values affect the speed of convergence to the posterior distribution:

• change Vs: perturb the velocity of a randomly chosen nucleus by a random amount distributed as N(0,
σchange2 ).

• move nucleus: alter the depth of a randomly chosen nucleus; if it is a floating nucleus it is perturbed by an
amount distributed as N(0, σmove2 ) and can move between the depth-derived layers; if it is a confined
nucleus it is moved to a random depth distributed uniformly over that layer to which it is tied.

• birth: add a floating nucleus to the existing model whose depth is uniformly distributed U[0, dpmax] and
whose Vs is distributed N(v, σbirth2 ), where v is the value of Vs based on the current nuclei distribution.

• death: remove a floating nucleus from the existing model. Confined nuclei cannot be removed.

Each proposed model is tested to see if it satisfies a certain acceptance criterion which involves the quantity

α ¼ min 1;
p m

0� �
q mjm0� �

p djm0� �
p mð Þq m0 jmð Þp djmð Þ : Jj j

" #
; (8)

where q(m
0
|m) is the probability of moving from model m to m

0
. For the type of transdimensional proposal

used in this approach, the Jacobian term (J) is unity (Bodin & Sambridge, 2009). The evaluation of α for the
types of perturbation shown in Figure 2 is standard (and is not described here) except the move perturbation
when considering floating nuclei. For this case, q(m|m

0
) = q(m

0
|m), p(d|m

0
) p(d|m)�1 is the ratio of the two

model likelihoods and p(m
0
)p(m)�1 is the ratio of the ranges of Vs between the layers that the nucleus may

move between. After α is evaluated it is compared to a random number u ~ U[0,1]: if α > u the proposed
model is accepted, added to the chain, and becomes the current model; if it is not accepted the existing
model is retained as the current model.

The method is initialized with a randomized model from the prior and the method is run for a burn-in period.
At this point, the Markov chain is presumed independent of the initial condition and statistics of the chain are
recorded from then on. This technique therefore differs fundamentally from techniques such as the Genetic

Figure 2. Illustration of four possible perturbations to a current model (a) change Vs of a nucleus, (b) move a nucleus to a
different depth, (c) give birth to a new floating nucleus, and (d) remove a floating nucleus. Vs = shear wave velocity.
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Algorithm which relies on an initial reference model to start the inversion process (Hayashi, 2012). On
completion, all diagnostics must be checked to ensure sufficient iterations have been taken to achieve
convergence. Perturbations that improve the data fit are mostly accepted; those which decrease the fit are
most likely to be rejected but are occasionally (and randomly) accepted. Proposed models that lie outside
the prior bounds give p(m

0
) = 0; it follows that α = 0 and such models are never accepted. Figure 3 shows

a schematic view of the algorithmic core of MuLTI.

MuLTI produces a variety of diagnostic statistics of the ensemble. These include the posterior probability of
the model of Vs as a function of depth; the best model sampled with the lowest calculated misfit; the average
and modal models; 95% credible intervals on Vs with depth; posterior distribution of the number of nuclei;
comparative plots of the observed data with dispersion curves for the best, average and modal models;
and plots of the misfit against iteration count highlighting convergence of the solution. We reiterate that
MuLTI can be used in any geological layered environment where electromagnetic and elastic rock property
changes are coincident.

3. Case Studies Using MuLTI

This section describes applications of MuLTI to both synthetic test data created assuming a simple glacial
structure and real data acquired from a Norwegian glacier. Because the output of MuLTI depends upon
the resolution of the input surface wave dispersion curve, we first describe the Norwegian field setting
and the data acquisition procedure in order to motivate the specific synthetic tests that will provide insight
into the reliability and limitations of inversions from real data.

3.1. Data Acquisition

Data were acquired on Midtdalsbreen, an outlet glacier of Norway’s Hardangerjøkulen ice cap (60.59°N,
7.52°E), with the aim of characterizing the Vs properties of the subglacial environment. These properties pro-
vide an important insight into subglacial water storage and the flow dynamics of the overlying glacier, thus
motivating this study. The subsurface comprises fresh snow over ~25 m of glacier ice and a substrate of
unknown subglacial material (likely sediment). Midtdalsbreen is surrounded by mountains of crystalline rock,
and it is thought that this hard rock lies below the subglacial material.

Seismic shots (e.g., Figure 4a) were recorded with 48 10 Hz vertical-component geophones at 2 m incremen-
tal offset from a hammer-and-plate source, and digitized using a Geometrics GEODE system. A GPR profile
was acquired along the length of the seismic line with Malå Geosciences antennas of 200 MHz center-
frequency. The thickness of snow and ice layers were estimated from velocity analysis of a GPR commonmid-
point gather located half way along the seismic spread (Figure 4b), using themethod described in Booth et al.
(2010, 2011). The GPR velocity in the snow and ice layers was 0.213 ± 0.0014 and 0.172 ± 0.0015 m/ns, respec-
tively, with depths to their base of 2.0 ± 0.07 and 25.5 ± 0.22m, respectively. The small relative size of the layer

Figure 3. Schematic illustration of MuLTI. Gray boxes highlight the starting input data and final output model of the
algorithm. The circular workflow represents the iterative inversion processes at the core of MuLTI. MuLTI = Multimodal
Layered Transdimensional Inversion.
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depth uncertainties compared with resolution of surface waves (typically 1–10 m) supports our choice of
fixing the layer depths. The underlying half-space is assumed to be unconsolidated sediment and bedrock.
The prior distributions on Vs (defining the upper and lower bounds) for each layer were defined as the
values listed in Table 1, obtained from previous glaciological seismic studies (Peters et al., 2008; Podolskiy
& Walter, 2016; Tsoflias et al., 2008). The shear wave speed Vs is narrowly constrained within the snow and
ice layers but, given the uncertainty about the subglacial material properties, we permit a large range of Vs
to encompass soft, wet sediment to hard frozen sediment and bedrock.

3.2. Synthetic Data Tests

To evaluate the performance of MuLTI, we constructed a synthetic version of our acquired data, but under-
pinned by a simple known subsurface structure. Figure 5a shows our 4-layer model of snow, ice, soft sedi-
ment, and hard sediment that plausibly represents our glacial setting.

We use the discrete wavenumber method (DWM; Bouchon & Aki, 1977) to
generate a full synthetic waveform data set, based on the true model
shown in Figure 5a. A dispersion image is calculated from the waveform
created by transforming into the frequency-phase velocity domain where
the dispersive pattern of the Rayleigh wave can be determined (Figure 5b).
The maximum amplitudes of the frequency-phase velocity image are
picked to create the Rayleigh wave dispersion curve, which is input into
MuLTI as the data (d) along with an estimate of its width, the uncertainty
σ(f), Figure 5c. For the first two examples (sections 3.3 and 3.4), the DWM
parameters used to calculate the synthetic waveform were chosen to have
a long offset and large number of receivers, in order to sample the full
wavefield. However, in the final synthetic example (section 3.5), we limit

Figure 4. (a) Seismic shot gather acquired on Midtdalsbreen; the Rayleigh wavetrain is highlighted in the red polygon.
(b) GPR CMP gather acquired half way along the line. GPR velocities were derived by matching the curvature of diffraction
hyperbolae, highlighted in blue, which were used to determine the thickness of snow and ice layers via Dix inversion (Dix,
1955). GPR = ground-penetrating radar; CMP = common midpoint.

Table 1
Elastic Parameter Boundaries (Priors) Applied in Multimodal Layered
Transdimensional Inversion for the Glaciated Case Study, Adapted From
Peters et al. (2008), Podolskiy and Walter (2016), and Tsoflias et al. (2008)

Material

Elastic property

Density (g/cm3)
constant

Vp (m/s)
constant

Vs (m/s)
variable

Snow 0.47 2,500 500–1,700
Ice 0.92 3,810 1,700–1,950
Subglacial material 2.5 4,000 200–2,800

Note. Vp = compressional wave velocity; Vs = shear wave velocity.
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the DWM parameters to those used when acquiring the real Norwegian data to see the effect of a reduced
data set.

MuLTI was run with and without GPR constraints applied. With constraints, the bases of snow and ice layers
were fixed at respective depths of 2 and 25.5 m. The maximum number of floating nuclei was set at 30 and
the maximum depth, dpmax, of the model was set to 40 m. The burn-in chain length was set to 10000. We
used parameter values σchange = 20 m/s, σmove = 1 m, and σbirth = 400 m/s, and 1 million iterations (including
the burn-in) were found to be enough for convergence of the posterior distribution sampled by the single
Markov chain. Convergence was also confirmed by running multiple independent chains with different initial
states. To test the Markov chain was sampling correctly, the likelihood was set to unity, effectively removing
the data (and rendering equivalent the posterior and prior distributions) and so the Markov chain sampled
the known prior distribution against which it was benchmarked. As a preliminary test, we confirmed that
MuLTI reproduced the prior distributions with the likelihood set to unity.

3.3. The Effect of High Frequencies on the Inversion

We first assess whether or not MuLTI can recover the known subsurface structure from a full frequency spec-
trum. Figure 6 shows the results from MuLTI of the posterior Vs distribution with GPR constraints applied and
frequency range of 1–140 and 1–100 Hz (bandlimiting the high frequencies). Although ostensibly including
high frequency (>100 Hz) picks adds extra data, they cause ambiguities in higher order modes associated
with these frequencies, where many different models of Vs can fit the observed data. This arises because
we do not assign any specific mode to each frequency, an unavoidable consequence of poor resolution in
real data (see section 3.5). The plethora of complex models that all have a low misfit overwhelms the natural
parsimony of the Bayesian method, producing a posterior density that is far from the true model. The prob-
ability density distribution of Vs values within their 95% credible interval are plotted as colored contours
alongside the true solution (black line). The highest density distribution (red) for each depth corresponds
to the most likely values of Vs. These high frequency ambiguities are highlighted in Figure 6(I); even though
the observed data fit the final solution, the underlying true solution is not recovered. Limiting the high fre-
quency range to 100 Hz (Figure 6(II)) mitigates this problem and the true solution is almost exactly recovered
(to within ~60 m/s) in this inversion.

3.4. Model Uncertainties Caused by Finite Bandwidth

As a second test that more closely aligns with the frequency content of real acquired data (e.g., those
recorded with 10 Hz geophones), a new synthetic data set was created with a frequency range of
14–100 Hz, avoiding the high-frequency ambiguities described above. Figure 7 displays the posterior Vs
distribution, respectively, with and without GPR constraints applied. Figure 7(II) shows significant deviation
between the true solution and the model ensemble particularly between 0–7 and 25–35 m depth, without

Figure 5. (a) Synthetic Vsmodel of glaciated environment and (b) its associated Rayleigh wave dispersion curve image cre-
ated from the Discrete Wavenumber Method. (c) Picked dispersion curve (dotted red lines) with an estimate of the
uncertainty σ(f) (solid red lines). The yellow lines display the theoretical true dispersion curves for this model, computed
using the Geopsy dispersion curve algorithm of Wathelet (2005) implemented within Multimodal Layered
Transdimensional Inversion. Vp and density are constant in each layer. Vs = shear wave velocity; Vp = compressional wave
velocity.
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GPR constraints applied. With GPR constraints applied the results are much improved. The density plot in
Figure 7(I) shows that MuLTI recovers a distribution that is everywhere peaked close to the true model.
This difference in resolution can be quantified by comparing the range of Vs values between the lower
and upper 95% credible interval boundaries. Without and with GPR constraints, respectively, this range is
1,140 and 618 m/s, on average over the whole depth range. Therefore, including GPR constraints yields a
stark decrease in the range of Vs (and therefore a reduction of uncertainty) by a factor of about 2.
Quantified in a different way, the inversion using GPR constraints has a depth-averaged absolute error
between the modal and true values of 62 m/s, about a factor of 10 smaller than the comparable error of
540 m/s associated with the inversion without GPR data.

Here we briefly discuss the uncertainties in the recovered subsurface model which limit resolution at both
small and large length scales. At a given frequency, the phase velocity PV specifies the resolvable wavelength
λ associated with each datum (Stokoe et al., 1994) as

λ ¼ PV fð Þ
f

; (9)

and its associated resolvable scale is L = λ/3, assuming a one-third wavelength resolution criterion (Gazetas,
1982). If the data points are bandlimited in the frequency range, which is the case for most real MASW data

Figure 6. Ground-penetrating radar-constrained Vs inversion results from Multimodal Layered Transdimensional Inversion
with frequency ranges 1–140 (I) and 1–100 Hz (II). (a) Posterior distribution of Vs solution with probability density
distribution; colored values are only shownwithin the 95% credible intervals, (b) posterior distribution on number of nuclei,
(c) synthetic data and modal dispersion curves of the single ensemble member with the lowest misfit. Vs = shear wave
velocity.
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sets, this immediately limits the resolvable scales by an unconstrained inversion to Lmin ≤ L ≤ Lmax, where
Lmin is the thinnest resolvable layer and Lmax is the maximum resolvable depth. However, the addition of
independent depth constraints will improve the resolution beyond what is possible with surface waves
alone, so in the constrained inversion case these bounds will widen. Because it is not possible to easily
quantify these improved resolution bounds in a simple way, in what follows we use Lmin and Lmax as illus-
trative values. For the tests shown in section 3.4, the data points were bandlimited with frequency range
14–100 Hz (Figure 7), illustrating the nature of any real data set. Therefore, in this example, L lies in the illus-
trative range 5 m≤ L ≤ 50 m. Which frequencies remain sufficiently clear above the noise level to be picked
depends both on survey design: the dispersion curves are better resolved for a longer source-receiver offset
(Park et al., 1998, 2001) and on the specific frequency: lower frequencies have lower resolution and hence a
larger error.

Although the final inverted Vs solution may contain shallow and layers thinner than Lmin, the calculated Vs
values for these layers may be considered unreliable (Park et al., 1999). An illustrative case is our first synthetic
example, shown in section 3.3 (Figure 6b), where Lmin = 5 m which is greater than the imposed snow depth
(layer 1). The structure within that layer is therefore not well resolved, as shown by the 95% credible intervals
that span themajority of the prior range in Vs, hence themismatch between the true and themodal posterior

Figure 7. Vs inversion results from Multimodal Layered Transdimensional Inversion with (I) and without (II) ground-pene-
trating radar constraints applied, with a 14–100 Hz frequency range. (a) Posterior distribution of shear wave velocity
solution; colored values are only shown within the 95% credible intervals, (b) posterior distribution on number of nuclei,
(c) synthetic data and modal dispersion curves of the single ensemble member with the lowest misfit. Vs = shear wave
velocity.
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distribution of Vs in this layer. Put another way, in the snow layer the data are relatively uninformative and do
not constrain the posterior much beyond what is already assumed in the prior. It is worth remarking however
that the snow layer depth of 2 m, being less than the nominal resolution limit of 5 m from the surface waves,
is well resolved by the additional GPR constraints.

3.5. Influence of Survey Design on MuLTI

In addition to the issues described above, there can also be resolution difficulties at large depths caused by
cut-off at long λ (low frequencies), a realistic scenario when using dispersion curves derived from active
source seismic data. If the signal-to-noise ratio is low, the dispersion curve can be difficult to pick out over
the noise, and the low frequencies then unavoidably have a higher uncertainty.

We illustrate this effect by creating a final full synthetic waveform data set, designed to mimic as closely
as possible the real data we acquired. As before, this is based on the same true model as in section 3.2,
using the DWM (Bouchon & Aki, 1977). As for the usual processing, dispersion images are calculated from
these waveforms created and dispersion curves picked from the images (Figure 8b). The DWM parameters
used to calculate the synthetic waveform were chosen to be equal to the parameters used when acquir-
ing our Norwegian data: 48 geophones with 2 m spacing. The maximum amplitudes of the frequency-
phase velocity image are picked to create the Rayleigh wave dispersion curve. It is especially noteworthy
that the picked dispersion curve no longer overlies the true modal lines (as for the examples in sections
3.3 and 3.4), due to the restriction to realistic survey parameters. In this synthetic example the lowest
resolvable frequencies are limited to 14 Hz, where the dispersion curve becomes very wide (with large
uncertainty) with no clear maxima to pick below this frequency (see Figure 8b). From this picked disper-
sion curve Lmin is 5 m and the maximum resolvable length scale Lmax (i.e., the maximum resolvable depth)
is 49 m. The Rayleigh wave dispersion curve picked from the DWN generated synthetic waveform, along
with an estimate of its width, were used as the data d and uncertainty σ(f) (section 2.3) in MuLTI. It is also
noteworthy that the poor resolution of Figure 8b makes it difficult to uniquely identify the first and sec-
ond order modes, motivating our methodological choice of defining a likelihood based on the nearest
modal value.

With GPR constraints applied and using the same parameters as before, Figure 8b shows this DWM synthetic
inversion. Within the resolvable depth interval, there is a high probability of the posterior Vs model

Figure 8. (a) Synthetic wavefield created from the Discrete Wavenumber Method of the simulated glacier model
(Figure 5a). (b) Corresponding dispersion image, used to pick the surface wave dispersion curve. Dotted red lines indi-
cate the picked dispersion curve with the solid red lines showing an estimate of the uncertainty σ(f). (c) Inversion results of
Multimodal Layered Transdimensional Inversion with ground-penetrating radar constraints applied, showing the posterior
distribution of Vs. Vs = shear wave velocity.
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(highlighted in red in the Vs plot) being very close to the true model. The Vs distribution scatter is however
larger than the previous synthetic examples, due to the larger uncertainty caused by weak sensitivities of the
observations to structures at 25 m depth, itself a result of the survey parameters used in this DWN synthetic.
This example demonstrates MuLTI works well with dispersion curves picked from synthetic waveform data
simulating a MASW data set, within the data’s resolvable depths, and accurately reflects the sensitivities of
the observations.

3.6. Application to the Midtdalsbreen Data Set

Figure 9a shows the dispersion curve corresponding to the seismic data in Figure 4a, acquired on the glacier
Midtdalsbreen. The dispersion curve from Figure 8b (derived from a synthetic model with a low velocity layer)
and Figure 9a are visually comparable, suggesting that a low velocity zone under the glacier is plausible. From
the picked dispersion curve, equation (9) suggests that the thinnest resolvable layer (Lmin) in this real data set
is 5 m, and the maximum resolvable depth (Lmax) is 48 m. As elsewhere in this paper, we assumed 3-D effects
were negligible: there were no surface objects on the glacier front and we modeled the subsurface as
laterally homogeneous.

The same MuLTI inversion parameters were used for this real data example as the previous synthetic exam-
ples, and results are shown in Figures 9b–9d. The modal Vs within the ice layer is shown to be at the low end
of the prior distribution, around 1,700 m/s. A low velocity zone is identified directly below the glacier (at 25 m
depth), roughly 7 m thick, which could be due to unfrozen wet subglacial sediment. The high Vs zone at
32–40 m depth could be the hard bedrock boundary, underlying the sediment layer.

Lastly, Figure 9d shows a comparison of the best-fitting model to the data set, following comparable plots in
previous sections. Although illustrative of data-fitting, it is possible that this end-member model, which is
consistent with the prior, nevertheless shows some extreme physical properties. Figure 9d shows an increase
with frequency of one of the modal velocity curves, whereas it might be expected that all such curves
decrease with frequency. Physically, the best-fit model is largely comparable to the modal model of
Figure 9b with the exception of a rapid adjustment at 35 m depth to a low-velocity half space (of about
700 m/s), which is consistent with the prior but physically unexpected and rather exotic.

4. Discussion and Conclusions

Many techniques have been recently established utilizing Rayleigh wave dispersion curves to infer the seis-
mic structure of the subsurface. However, recurring problems in the inversion of Rayleigh wave dispersion

Figure 9. (a) Calculated surface wave dispersion image from Mitdalsbreen shot gather (Figure 4a) with associated picks
(d) and uncertainty σ(f). (b) Posterior distribution of Vs solution; colored values are shown only within the 95% credible
intervals. (c) Posterior distribution on number of nuclei. (d) Observed data and dispersion curves of the single ensemble
member which has the lowest misfit. Vs = shear wave velocity.
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curves are poor depth sensitivity, low resolution, and ambiguous, nonunique solutions. Here we have pre-
sented MuLTI, a novel tool for the inversion of Rayleigh wave dispersion curves with additional depth con-
straints drawn from any external data source.

MuLTI implements a Bayesian formulation using a Markov chain Monte Carlo approach to explore the depen-
dence of Vswith depth, and rests on the assumption that subsurface interfaces correspond to colocated con-
trasts in both elastic and electromagnetic properties. It uses a new methodology to restrict the space of
admissible subsurface models that are compatible with the observed Rayleigh wave data by adding fixed
depth constraints, here using a GPR-derived layered structure. The uncertainty in the depth constraints
applied is negligible (centimeter-accuracy) compared to the dispersion curve uncertainty (of meter-
accuracy), motivating us to fix the internal interface depths. The constraining layered structure is implemen-
ted by narrowing the Vs bounds for each material layer defined from the GPR, however Vs variability within
each layer is still permissible.

The Bayesian formulation within MuLTI is employed to produce a variety of diagnostic statistics of the ensem-
ble used to assess the reliability of the solution for interpretation. The multiple different outputs available
enables a variety of marginal posterior distributions to be examined, for example, the most likely Vs solution
along with its uncertainty range, and the distribution of the number of nuclei. A potential criticism of our
methodology is that we only invert for S-wave velocity while holding Vp and density constant throughout
the velocity model. By deriving material-layer boundaries we are able to fix the Vp and density appropriately
in each layer according to the material expected. This is an improvement from models that have no defined
layers with Vp and density fixed as constants throughout the model space (Hayashi, 2012). However, a devel-
opment of the algorithmwould be, at increased computational cost, to also consider resolving Vp and density
in each layer.

Using synthetic tests based on a glaciological snow-ice-sediment layered setting, we showed that the depth
constrained inversion gives a marked improvement in accuracy (decreasing the absolute error between the
best fitting and true model by a factor of 10) and depth resolution compared to inverting Rayleigh wave data
in isolation. Based on the difference between the upper and lower 95% credible interval limits, the posterior
distribution of Vs in the constrained inversion compared to the nonconstrained inversion is 2 times better
resolved within the glaciological subsurface. We also demonstrate that including high frequency data
(>100 Hz) causes ambiguities in the higher order modes associated with spatially fine scale structure, which
overwhelms the natural parsimony of the Bayesian methods, producing solutions that are far from the true
model. Therefore, it is important to take caution if using frequencies >100 Hz in any multimodal Rayleigh
wave dispersion curve inversion.

We present a real data application of MuLTI to a glaciated field site in Norway. However, MuLTI is applicable to
any layered subsurface provided depth constraints and elastic property changes are colocated at the
same depths.
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