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The importance of mathematical modelling in chemical

risk assessment and the associated quantification of

uncertainty

John Paul Goslinga,

aSchool of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom

Abstract

Computational models pervade modern toxicology and are becoming an ac-
cepted part of chemical risk assessments. Mathematical and statistical tools are
versatile enough to capture information from wide arrays of existing data and
from our mechanistic understanding of human biology and chemical reactions.
They are more accessible than ever given the number of readily available guid-
ance documents and software packages. In the present article, we will highlight
the utility of modelling for next generation risk assessments whilst emphasising
the importance of characterising and reporting uncertainty. The concepts herein
are the foundations for a paradigm shift in toxicology where transparency about
scientific understanding replaces faith in animal models.

Keywords: in silico predictions, mathematical modelling, next generation risk
assessment, uncertainty

1. Introduction

Mathematical and statistical models are becoming popular tools for toxicol-
ogists when performing chemical risk assessments. However, there is still a long
way to go for these tools to form the core of such assessments due to the general
reluctance to accept new approaches [1, 2]. Some of this reluctance to accep-
tance is due to the fact that mathematical and statistical models cannot fully
replicate the complexity of human biology and its interactions with chemicals.
Analogously, mice, rats and other animals are not the same as humans, and,
where we are able to measure effects in humans, the experimental cohort will
almost always be a tiny subset of the population of interest and not fully repre-
sentative of the people that we would like to protect. Realising the imperfections
of our model systems, be them animal or mathematical, is an important part of
making them fit-for-purpose as part of a chemical risk assessment. Despite the
imperfections, mathematical models should still be attractive to risk assessors
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because the costs of running mathematical models as computer-based experi-
ments or statistical prediction models are far less than the costs of laboratory
experimentation.

In a laboratory, a researcher would hope that their experiments can be used
to test plausible hypotheses that accord with their scientific understanding. Sim-
ilarly, mathematical models provide a window on what the modeller believes is
occurring in a system of interest. In our context, we could consider the process
of investigating a mathematical model as being the same as when experimenting
in the laboratory. When an experiment is performed, the experimenter believes
that the observed response (or lack of it) is informative about the human re-
sponse. However, this is a subjective judgement, and risk assessors will have
their own views on which experiments are most informative for different toxico-
logical endpoints. A more detailed exposition of what is covered by the phrase
“mathematical model” is given in Section 2.

To aid modern chemical risk assessment, we must appreciate the uncertainty
in the transition from experimental and computational results to the risk assess-
ment endpoints of interest. Our motivation for addressing the uncertainty in
using mathematical models comes from the fact that understanding uncertainty
is fundamental for defensible risk management. In this, there is a distinction
to be made between aleatory and epistemic uncertainty: aleatory uncertainty
covers the irreducible randomness that we are used to seeing when we sample
from populations or when we repeat experiments and epistemic uncertainty cov-
ers the lack of knowledge that can be reduced by collecting further evidence.
Chemical risk assessment has both types of uncertainty: for instance, there are
the experimental variabilities, which give rise to aleatory uncertainty, and un-
knowns regarding the relevance of experimental results to populations we are
trying to predict, which give us epistemic uncertainty. Many other fields have
embraced uncertainty quantification as a crucial part of their risk assessments:
for example, nuclear waste containment [3], flood defences [4] and exotic dis-
eases in livestock [5]. Information on the probabilities of alternative outcomes
that stem from quantitative uncertainty analyses is necessary to enable decision
makers to choose courses of action that increase the chances of favourable out-
comes, which, in our setting, protect against toxic effects in the population of
interest. Suggestions of methods relevant to toxicology for characterising and
dealing with uncertainty are given in Section 3. In the present article, we fo-
cus on chemical risk assessment for human populations, but the methods and
principles stated could easily transfer to ecotoxicological or other chemical risk
settings.

In Section 4, we will offer a framework for assimilating mathematical models
into chemical risk assessments whilst pointing at attempts to fulfill part of this
aim and referencing relatively new guidelines and methodologies that will aid
risk assessors in implementing the framework. The suggestions are with refer-
ence to next generation risk assessments (NGRAs) [6] and building mathemati-
cal models that are consistent with adverse outcome pathway (AOP) approaches
to understanding toxicities at the population level [7]. Also, in Section 4, we
link these concepts with mathematical model building and uncertainty quan-
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tification where we have lots of data that are not necessarily directly about the
chemical or human endpoint of interest.

2. Mathematical modelling in toxicology

Before discussing how models and better accounting for uncertainty can aid
chemical risk assessment, we will discuss the different types of mathematical
model available to risk assessors. One reason for spelling out the different model
types here is because terms such as “computer-based models” [8], “network
models” [9], “prediction models” [10] and “in silico models” [11, 12] have been
used in many settings, and, in some cases, interchangeably for very different
types of models that are used for making toxicity predictions. In Table 1,
we have provided examples of the terms used to describe models that can be
broadly categorised as one of three model types: data-driven, statistical and
mechanistic. Also, in Table 1, some of the key features of these model types
are given alongside examples of the models being employed in the toxicology
literature. The division into three distinct categories here is forced to help
highlight the different model types, and there is a continuum of possibilities
as the mathematical methods go from being mechanistic to data driven. The
move from data-driven to statistical to mechanistic models sees more structure
imposed on the model that is thought to mirror the biological and chemical
realities of the system being modelled, and there is also a greater burden on
the user to make more specifications about the system. For instance, a machine
learning approach might require access to a database of toxicities whereas a
mechanistic approach would need the specification in mathematical terms of
how such toxicities occur.

Within all the groups of models in Table 1, we have included quantitative
structure-activity relationship models (QSARs), which are classification or pre-
diction models that are built using databases that include chemical properties
and toxicological outcomes. The reason they have been included in all is that
they are not always exclusively built using relationships discovered in the data:
information about relationships between chemical properties and toxicological
end-points that is external to the data can also be included and can be the driv-
ing force in predictions. The interpretation accords with the OECD principles
for the validation of QSARs [23]. The OECD principles require information on
the defined endpoint for a regulatory purpose, the algorithm, the applicability
domain of the model, the predictive ability of the model, and a mechanistic inter-
pretation. These same expectations should be carried forward for more general
mathematical models in chemical risk assessment, and this will be discussed in
Section 4.

A mechanistic model is traditionally much more prescribed than its data-
driven or statistical counterparts in that it will be based on some appreciation of
a system’s behavior that can be expressed in some mathematical equations that
may stem from physical laws (conservation of mass, for example). When de-
veloping mechanistic mathematical models, it is important that potential users
understand the behaviour of the models and, in particular, the influence that
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Type of model Some descriptors that can be
associated with this model type

Key features Relevant examples

Data-driven Machine learning, data mining,
deep learning, neural network,
QSAR, support vector machines,
random forest.

Relationships are derived through discovery of
patterns in the combined predictor and endpoint
data set.
Large number of predictor variables used to
improve performance.
Able to handle large amounts of data and
various types of data.

[13],
[14],
[15].

Statistical Regression, correlation-based,
classification, read-across,
QSAR, structural-alert-based,
dose-response, decision trees,
Bayesian belief networks.

Relationships are hypothesised between various
predictor variables and the endpoints of interest.
Predictor variables can be selected if importance
is known a priori.
Performance is usually determined through
sensitivity and specificity for classification or
goodness-of-fit for regression.

[16],
[17],
[18],
[19].

Mechanistic Process-based, biology-based,
structural-alert-based, read across,
network, agent-based, QSAR,
physiologically-based kinetic,
Petri-net, mathematical.

Relationships between predictor variables and
the endpoints of interest are governed by
mathematical equations or sets of rules.
Known relationships are encoded in the
implemented model.
Performance is usually determined through
goodness-of-fit or agreement with existing
data sources.

[20],
[21],
[22].
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different inputs have on the models’ outputs. This can be made easier if the
model building is guided by an adverse outcome pathway (AOP) [10] alongside
biokinetic considerations [24]. An AOP gives the steps from a molecular initi-
ating event to a population-level effect and can act as a blueprint for building
a mechanistic model whilst highlighting the gaps in the evidence and the im-
portance of the model inputs. Indeed, the use of molecular initiating events
to motivate choices in in silico modelling is common place [25, 26]. By under-
standing the relative influence of the inputs, the model builders and subject-area
experts are able to focus their research efforts on improving parts of the model
that have a significant impact on the outputs that matter. Apart from hav-
ing a formal mechanistic understanding of the input-output relationship, model
builders can also employ statistical techniques to gauge the relative importance
of each input. This type of exploration is traditionally done through input
screening [27, 28] or sensitivity analysis techniques [29, 30]. As part of this
process, it is important to verify that the model is encoded in the way that
was meant from the underlying mathematical equations and relationships. It
can also be beneficial to identify the inputs to that model that have an impact
on the model’s outputs. If we can identify such important inputs, we can de-
termine which inputs need to be determined more carefully and which inputs
we have the best chance of learning about in a parameter estimation scheme.
In the context of physiologically-based kinetic (PBK) modelling, [31] provides
a workflow for conducting sensitivity analyses; [32] shows the utility of inves-
tigating the sensitivity of risk assessment outcomes to modelling choices for a
model of exposure to food allergens; a more general discussion that is relevant
for mechanistic biology models is given in [33].

Typically, chemical risk assessors will not be experts in operating mathemat-
ical models or processing the models’ results. By providing links to mechanistic
understanding, as suggested in the OECD principles, or explicitly linking the
model to an AOP, the assessor will be able to see the scientific basis of the model
predictions and this will aid confidence. However, understanding the model’s
single prediction is not enough: the assessor must also be able to understand
the lack of certainty in the predictions.

3. Uncertainty in chemical risk assessment

Mathematician and pioneer of probability theory Jacob Bernoulli wrote that
“it is utterly implausible that a mathematical formula should make the future
known to us, and those who think it can would once have believed in witchcraft”
[34]. This remains true today in our context: it is unrealistic to believe that a
mathematical or statistical model can completely capture the complexity of toxic
effects and be able to predict population-level effects with absolute accuracy.
As such, we must consider the gap between our models’ predictions and reality
because we need to inform decisions that occur in the real world rather than
the modelled world. The Codex Alimentarius Commission, which provides an
international forum for food safety issues, published a set of working principles
for risk analysis that includes the following pertinent statement [35]:
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“Constraints, uncertainties and assumptions having an impact
on the risk assessment should be explicitly considered at each step
in the risk assessment and documented in a transparent manner.
Expression of uncertainty or variability in risk estimates may be
qualitative or quantitative, but should be quantified to the extent
that is scientifically achievable.”

The characterisation and quantification of uncertainty is important to give risk
managers and decision makers confidence in their actions. The typical pro-
vision of confidence intervals or standard errors is not enough because these
constructs inform us about experimental or population variability rather than
uncertainty in the end-point of interest. Statistics has played a major role in the
replacement, refinement and reduction of animal testing in scientific research.
Classical experimental design is ubiquitous, and often mandatory, in the set-up
of experiments involving animals [36, 37]. Regression modelling, and more re-
cently machine learning techniques, are used to draw inferences from and make
predictions based upon results from such experiments [38, 39]. Non-probabilistic
methods such as those stemming from Dempster-Shafer theory have also been
used in an attempt to capture uncertainties around QSAR modelling [40]. Using
statistical methods to capture the multitude of uncertainties that can occur in
risk analyses has been recommended in a number of influential guidance doc-
uments that are relevant for chemical risk assessment. One of the most recent
and most comprehensive is [41] where it is stated that “uncertainty analysis is
an integral part of scientific assessment” and very many methods for capturing
and characterising uncertainty are given with some practical examples.

Returning to the types of models that are being used in chemical risk assess-
ment, the model builder believes that the mathematically-modelled effect is in-
formative about the human response. Of course, this is a subjective judgement.
Also, like when applying an experimental protocol, a modeller can catalogue the
choices that are made when building the model and this allows others the oppor-
tunity to challenge and improve the model in the future. The assumptions and
compromises that are made give rise to various forms of uncertainty in the gap
between the model and reality. Uncertainty appears in many guises including
measurement error, lack of knowledge about the input parameters, discrepancy
between the models and reality, and uncertainty about the linkage between the
models and in vitro data sets. The preceding list is not exhaustive and a more
detailed listing is given in [41] and specifics for PBK models are given in [42]
with guidance for PBK models currently being developed by the OECD. For
data-driven and statistical models, there may be other uncertainties stemming
from the coverage of the training sets and the extent of their applicability do-
mains. Of course, sensitivities and specificities of classification approaches can
be evaluated, but, again, subjective judgments will be needed to characterise
the uncertainty in extrapolations.

Despite the guidance and apparent importance of uncertainty characterisa-
tion, uncertainty analysis is often thought of as an addition to the end of a
study: an experiment is performed or a mathematical model is run, and, then,
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we consider the uncertainty in the results. Far more value can be gained for
both the investigator and the ultimate risk manager if uncertainty is accommo-
dated from the start of the process. Of course, it is unrealistic to believe that
all uncertainties can be quantified, but, if we are transparent in our analyses,
we can highlight areas where scientific understanding is lacking, where further
research is warranted or where a risk manager will need to make a judgement
about acceptable levels of risk. Further guidance on when mathematical models
will be fit-for-purpose and the types of uncertainty we may encounter (including
unquantifiable uncertainties) is given in [43].

The uncertainty table approach, as described in [44] and applied in [45],
gives a mechanism for capturing uncertainties from the start of the process. An
uncertainty table is a tool that provides transparency about the uncertainties in
a risk assessment where the uncertainties and assumptions are listed and their
impacts are qualitatively judged. This method is not a replacement for more
rigorous methods for uncertainty modelling: it is a tool to help lay bare the
assumptions in the process and to assess the impact that removing the assump-
tions would have. An uncertainty table in its simplest form consists of just two
columns: the first is populated by the list of uncertainties and the second is
used to capture judgements about the potential effects of formally accounting
for the uncertainty in a probabilistic risk assessment. Table 2 shows the layout
of an uncertainty table with an extra column added to capture the evidence
that supports the use of the assumption and information about its impact if it
were removed. The column headed direction and magnitude gives the modeller
an opportunity to qualitatively assess the impact of the assumptions on the risk
end-point. Further extensions and discussions of how to complete uncertainty
tables are given in [44] and [46].

In the context of mathematical modelling to aid chemical risk assessment,
model uncertainty can be assessed by evaluating the appropriateness of the un-
derlying assumptions. For each assumption, the evidence to support or refute
it is collected and the strength of the evidence would also be qualitatively eval-
uated. In addition, the impact of the assumption on the discrepancy between
model prediction and reality as well as the uncertainty regarding this impact
are also judged by the experts. The simplicity of the uncertainty table approach
means that it can be an effective tool for keeping track of the uncertainties and
assumption whilst guiding research directions and more formal quantification
of uncertainty during the risk assessment. In addition to this, when the risk
assessment is completed, the unresolved uncertainties (that is, the uncertainties
that have not been removed or formally quantified) can be laid out for users of
the risk assessment in a transparent fashion.

In most cases, it will not be sufficient to give a qualitative appreciation
of uncertainty in a risk assessment outcome because we would like to be able
to give quantitative estimates of the number of people at risk. This is where
statistical methods that can capture uncertainty due to a lack of knowledge
come into risk assessment. In particular, Bayesian statistical methods give us a
framework for capturing both variability in populations and experimental results
and uncertainty due to a lack of knowledge. There have been several examples

7



Table 2: The layout of an uncertainty table with some example entries.

Source of uncertainty Direction and

magnitude

Supporting

evidence

Assumption that clinical studies are representative of general
population (and description of impact on risk assessment
endpoint)

−− /+ Article
explaining
population
variability

Assumption that physiological parameters derived from murine
experiments are relevant (and description of impact on risk
assessment endpoint)

−− /+ Article
explaining
validity of
assumption

Modelling assumption that the compartments are well-mixed
with respect to chemical distribution (and description of impact
on risk assessment endpoint)

−/+ Report
showing
effect of
relaxing
assumption

Assumption that the model is an accurate representation of
reality (and description of impact on risk assessment
endpoint)

−− /++ Report
covering
validity of
model
choices

...
...

...

Overall effect of identified uncertainties:

Description of combined effect of preceding uncertainties.
−−−/++

of Bayesian approaches being used in chemical risk assessment [47, 48], and [49]
provides an overview of the Bayesian philosophy that is aimed at practitioners of
computational toxicology. The key features of a Bayesian approach is the ability
to combine many disparate sources of information and the flexibility to model
uncertainty that occurs due to a lack of knowledge and inherent randomness
simultaneously. Using Bayesian statistical modelling, we can move towards
quantifying some of the uncertainties already mentioned in this section and
help focus future research on areas where reduction of uncertainty will help risk
assessors. In particular, we can calibrate the model in the light of the available
data and reduce our uncertainty in the model parameters [47, 50, 51].

The ability to incorporate expert knowledge into an analysis makes Bayesian
modelling even more appealing for chemical risk assessors because it allows
them to formalise part of their typical assessment process. Expert elicitation is
the process of deriving quantitative measures of experts’ uncertainty [52, 53].
For our purpose, the elicitation exercise could tackle the uncertainty about a
model parameter value [54], the likelihood of an event on an adverse outcome
pathway [55] or the difference between some measure of true toxicity in humans
as opposed to some other animal [56]. The methods and protocols that have been
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established for the purpose of eliciting expert knowledge are far beyond simply
asking experts for their best guess: they aim to minimise biases in judgements
and to maintain transparency [details of modern protocols for expert elicitation
are given in 57, 58].

Careful uncertainty quantification for chemical risk assessment is worthless
if it is not communicated effectively to the decision maker. The results of the
uncertainty analysis should be presented in a way such that the decision maker
or risk manager can incorporate it into their (hopefully quantitative) decision
analysis. Recently, there has been a great deal of research into effective commu-
nication of quantitative analyses and uncertainties [59, 60] and some discussion
in the context of computational toxicology in [61]. Alongside these efforts, [62]
have recently provided guidance on the communication of uncertainty in the
risk assessment context.

4. Modelling in next generation risk assessment

Since the turn of the century, there has been significant effort in the devel-
opment of non-animal approaches to chemical risk assessment. This effort has
been driven by an ethical and regulatory need [63] and a desire to take advan-
tage of recent technological advances in the study of human biology [64]. This is
elevating the role of in vitro and in silico models in characterising the key biolog-
ical events that lead to toxicity [7, 65, 66]. NGRA is an approach to chemical
risk assessment that aims to integrate predictions from mathematical models
with in vitro experiments that investigate biological, chemical and toxicological
properties [6]. Indeed, future risk assessments should be able to combine math-
ematical models with relevant in vitro experiments to help risk assessors make
predictions about adverse effects in a population of interest without the use of
animals:

“Advances in toxicogenomics, bioinformatics, systems biology,
epigenetics, and computational toxicology could transform toxicity
testing from a system based on whole-animal testing to one founded
primarily on in vitro methods that evaluate changes in biologic pro-
cesses using cells, cell lines, or cellular components, preferably of
human origin” [67]

A key challenge is to understand how the different proposed elements of such
a chemical risk assessment (for example, chemical characterisation and in vitro

toxicity testing data) can be integrated to enable robust risk assessments. There
are clear complexities due to the differing scales in the models and the multitude
of uncertainties at each stage. Also, to incorporate it in a risk assessment, asses-
sors need to understand the output accuracy of such an integrated framework
of models and in vitro data.

Recent attempts to justify the adoption of non-animal alternatives (including
in vitro systems and mathematical models) use statistical methods to evaluate
the prediction accuracy of the new system by considering the level of corre-
spondence with existing animal data. With such a strategy, the better the
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goodness-of-fit, the better the predictor, and the mechanistic understanding is
often ignored. There have also been some efforts to link the results of in vitro

experiments and mathematical models to in vivo outcomes using Bayesian be-
lief networks in [68] and influence diagrams in [56]. However, these approaches
again largely ignore the detailed mechanistic understanding that, hopefully, un-
derpins mathematical models of biological processes [as recommended in 23, 10].
Reverse dosimetry approaches [like those described in 69] directly link in vitro

and exposure information via simple kinetics modelling. The uncertainties in
such approaches due to the unknown link between the in vitro outcomes and
human responses and the quality of the parameter estimates have led them to
be screening tools for risk assessment rather than predictive tools for chemical
potency [70]. Confidence in such approaches could be increased if there was
break from overly simplistic modelling assumptions (like the link between the
crude internal dose measurements and in vitro endpoints) and characterisation
of the associated uncertainties.

Mechanistic models have the potential to be much more than extra strands
in a risk assessor’s weight-of-evidence approach. We can improve prediction by
using a statistical framework that places mechanistic models at the centre of
a toxicological risk assessment [71, 72]. By doing this, we enable experts to
make judgements about how the elements of the mathematical model link vari-
ous sources of experimental evidence and, more importantly, we create a system
that focuses on the human end-points of interest (cancer incidence or adverse
reactions in a consumer population for example). If adopted, these approaches
could give a better prediction of potential effects in humans accounting for the
inherent uncertainty, reduce the time and monetary costs of reliable risk assess-
ment, and reduce the reliance on animals. A schematic of such a framework
showing potential links and conditional independencies between the true pop-
ulation effects and external data is given in Figure 1. The key element in the
framework is that the disparate data sources are all being used to inform the
risk end-point of interest, which is crucial because we are not only following
the principles of [7] by translating from models to meaningful risk end-points:
we will have a framework within which to discuss the chances of adverse events
occurring for our populations of interest.

In Figure 1, we show how the true human biological processes and true
chemical properties have given rise to experimental data either directly, if the
experiments are on humans or the chemical of interest, or indirectly, if the ex-
periments are performed on another species, in vitro or on related chemicals. In
theory, each of the biological-, physiological- and chemical-specific parameters
of the mechanistic model has a true underlying value. By true, we are referring
to what we would observe if we were able to take perfect measurements from
the exact population of interest. In practice, we never know the true values due
to limitations in our knowledge and the inability to test every individual in our
population of interest. In such a framework, we must characterise, and aim to
quantify, the variability in experimental results, the uncertainty in extrapolat-
ing from experiment to reality (especially when crossing from non-human or in
vitro studies) and the variability in the population of interest. The variability

10



may be characterised using traditional statistical modelling methods, but ex-
trapolation steps are more challenging as due to the unobservable nature of the
parameters of interest in which case, as mentioned in Section 3, methods such
as expert elicitation and model calibration will be needed. The distinction in
the network between unobservable true states and experimental results allows
the uncertainty regarding the adequacy of the assays to be separated from the
uncertainty concerning interspecies differences between laboratory animals and
humans and differences between animal systems and inherent properties of the
chemical. This distinction was made in the method proposed by [56] with a
difference that the true human response is easier to link to due to the mech-
anistic understanding within the mathematical model. Unlike in animal-based
methods where interspecies differences are hopefully covered by safety factors
or ignored, the multitude of uncertainties in the extrapolations can be handled
within this framework. Discussions of the additional uncertainties that dealing
with animal data bring can be found in [73, 74, 75, 76, 77].

The framework shown in Figure 1 focusses on the use of single models for
each part of the process. We may have scenarios where the experts and model
builders have several competing models for a biological process. Multiple mod-
els could be accommodating within this framework in two complementary ways.
First, the uncertainty table approach, as described in Section 3, allows the ex-
perts to lay bare the strengths and weaknesses of the models, which could lead
to some models being abandoned if the scientific basis is weak. Secondly, if
several models were thought to be potentially useful, they could be accommo-
dated within a hierarchical structure. The challenge here for the experts and
the statistician would be to capture the interdependencies between the mod-
els given the possible shared scientific understandings being codified and the
complications of common input parameters.

Although the focus has been on toxicity modelling thus far, we also have un-
certainty about exposure levels of chemicals, and we can propagate this uncer-
tainty about exposure model parameters whilst taking account of the variability
in exposures in the population of interest. Mechanistic models for exposure are
just as developed as toxicity models [78, 79] and some work has been done to
account for variability in populations alongside the uncertainty for the model
itself [80, 81]. Clearly, time can be saved with regards to formal quantitative
uncertainty modelling if extreme estimates of tolerable dose and exposure are
far apart. Properly accounting for uncertainty in chemical risk assessments can
require a great deal of effort (although some of the results could be reused from
one chemical assessment to the next); therefore, a tiered approach to the risk
assessment is worthwhile [as suggested in both 6, 41].

5. Discussion

Despite investment and research in developing biologically-relevant mathe-
matical models, there is not a general acceptance of the value of mathematical
models in a risk assessment context. The challenge is getting the risk assessors
to see the value of using models where, historically, chemical risk assessments
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that have been driven by animal data. Part of this shift might be in the accep-
tance that animal models, in vitro models and mathematical models share many
common features. One of the main aims of developing mathematical models is
to reduce the need for animal use in toxicological research and risk assessments.
However, it is false to think that mathematical models are not compatible with
more traditional laboratory-based approaches: most mathematical models will
be created using knowledge that has been established through laboratory ex-
periments. Confidence in using mathematical models can also be improved by
risk assessors embracing a benefit of accounting for uncertainty: uncertainty
quantification can determine how conservative the risk management decisions
are, and, typically, risk managers want to identify a safe level of chemical use
without being unnecessarily over-conservative.

To boost confidence amongst risk assessors in using mathematical modelling
for chemical risk assessments, there must be communication between the math-
ematical modellers and the risk assessors. The human body is complicated, and
most realistic mechanistic models are also mathematically complicated. Math-
ematical and statistical models have a much better chance of acceptance if
the model builders communicate regularly with the end users and are clear on
how their modelling assumptions are affecting model behaviour. Software for
building models and performing uncertainty analyses and probabilistic risk as-
sessments are making mathematical models more accessible. Software for these
purposes go from tailor-made solutions like Lhasa Limited’s structural alert
software Derek Nexus [82] and Certara’s PBPK modelling platform [83] to pro-
gramming languages like R and Python with libraries available to aid modelling
and computation (like PySB [84]). There has also been some efforts to stan-
dardise modelling, coding and subsequent analyses that is aimed at modellers
and toxicologists (for instance, the Systems Biology Markup Language [85]).
In order to fully exploit the power of these methods, more effort is needed to
educate risk assessors of the clear benefits, and the risk assessors need to work
closely with modellers and statisticians to understand the utility of the compu-
tational methods and to make implementation smoother. Of course, expertise
in toxicology, chemistry or biology does not immediately translate into expertise
in computer science, mathematical modelling or statistical analysis.

As mentioned in Section 3, inevitably, there will be gaps in quantitative
uncertainty analyses. In line with the principles of NGRA, the key to having
a useful model that the experts and risk assessors have confidence in is trans-
parency of the model-building process so that the users understand the limi-
tations of the model and can make informed judgements about the potential
deficiencies of the model. As such, by properly employing the models described
herein and accounting for uncertainty, we can reduce the number of animals
used in future studies (either to evaluate the toxicity of new chemicals or to
help understand biological processes) and put historical experimental data to
better use. This because an appreciation of uncertainty about a chemical risk
end-point will help inform where further experiments might reduce uncertainty
and what information we can take from existing studies.
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Figure 1: A network demonstrating how experimental results and observed data (given in
shaded boxes) are determined by the true world situation (given in the unshaded boxes).
Arrows that are dashed indicate that the translation from experiment to human relevant
information would require an extrapolation across species or from in vitro to in vivo. On a
technical note, the direction of the arrows give our judgements about conditional independence
as could be derived from a standard Bayesian network.
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