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Abstract 21 

Tropical disturbed forests play an important role in global carbon sequestration due to their rapid 22 

post-disturbance biomass accumulation rates. However, the accurate estimation of the carbon 23 

sequestration capacity of disturbed forests is still challenging due to large uncertainties in their 24 

spatial distribution. Using Google Earth Engine (GEE), we developed a novel approach to map 25 

cumulative disturbed forest areas based on the 27-year time-series of Landsat surface reflectance 26 

imagery. This approach integrates single date features with temporal characteristics from six 27 

time-series trajectories (two Landsat shortwave infrared bands and four vegetation indices) using 28 

a random forest machine learning classification algorithm. We demonstrated the feasibility of 29 

this method to map disturbed forests in three different forest ecoregions (seasonal, moist and dry 30 

forest) in Mato Grosso, Brazil, and found that the overall mapping accuracy was high, ranging 31 

from 81.3% for moist forest to 86.1% for seasonal forest. According to our classification, dry 32 

forest ecoregion experienced the most severe disturbances with 41% of forests being disturbed 33 

by 2010, followed by seasonal forest and moist forest ecoregions. We further separated disturbed 34 

forests into degraded old-growth forests and post-deforestation regrowth forests based on an 35 

existing post-deforestation land use map (TerraClass) and found that the area of degraded old-36 

growth forests was up to 62% larger than the extent of post-deforestation regrowth forests, with 37 

18% of old-growth forests actually being degraded. Application of this new classification 38 

approach to other tropical areas will provide a better constraint on the spatial extent of disturbed 39 

forest areas in Tropics and ultimately towards a better understanding of their importance in the 40 

global carbon cycle.  41 
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1. Introduction 42 

As hotspots of global biodiversity and carbon storage, tropical forests play an important role in 43 

biodiversity conservation, climate change mitigation and the provision of multiple other 44 

ecosystem services (Foley et al. 2005). However, millions of hectares of tropical forests have 45 

been lost due to deforestation and degradation disturbances, resulting in estimated net carbon 46 

emissions of 1.4 ± 0.5 Pg yr1 from 1990-2010 (Houghton 2012). These emissions represent the 47 

second largest anthropogenic source of carbon dioxide to the atmosphere after burning of fossil 48 

fuels (van der Werf et al. 2009). In contrast, a significant proportion of previously disturbed 49 

tropical forests are regrowing, trapping some of the carbon we are adding to the atmosphere, and 50 

with the potential to sequester more in the future. The carbon sink due to tropical forest 51 

recovering from deforestation and logging has been reported to be up to 70% greater than that of 52 

intact tropical forests (Pan et al. 2011). However, our ability to accurately assess tropical carbon 53 

sources or sinks is hampered by the lack of precise information on the extent of disturbed forests 54 

in the tropics (Baccini et al. 2017). 55 

Remote sensing has played a key role in identifying forest disturbances and recovery, especially 56 

with the recent proliferation of high-resolution satellite data (Hansen et al. 2013). Several 57 

approaches have previously been used to map disturbed forests in tropical regions, including 58 

optical approaches based on moderate resolution MODIS imagery (Langner et al. 2007), high-59 

resolution Landsat imagery (Lu 2005; Vieira et al. 2003) and very high-resolution SPOT data 60 

(Carreiras et al. 2014; Kimes et al. 1999; Souza et al. 2003) , as well as Synthetic Aperture Radar 61 

(SAR) (Kuplich 2006; Trisasongko 2010) and Lidar-based approaches (Andersen et al. 2014). 62 

However, the majority of these studies have focused on local scales and have been based on 63 

single date images. For example, Vieira et al. (2003) classified forests into young, intermediate, 64 
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advanced and mature forests for one municipality in the state of Pará, using Landsat spectral 65 

information and vegetation indices, and found that combining Landsat shortwave infrared band 66 

(1.55-1.75 ȝm) with NDVI generated a better classification than using any individual band/index. 67 

Carreiras et al. (2017) further demonstrated the use of combined Landsat spectral bands with 68 

ALOS PALSAR backscatter intensity to distinguish secondary regrowth forest and mature forest 69 

in three landscapes in Brazilian Amazon. Such multiple multi-sensor fusion approaches have yet 70 

to be applied over regional scales.  71 

Several regional satellite-based land cover classifications that include secondary regrowth and 72 

forest degradation have become available for Neotropical regions. Two prominent examples are 73 

the TerraClass post-deforestation land use/land cover classification (Almeida et al. 2016)  and 74 

the DEGRAD forest degradation product (INPE 2007-2013) , both of which were developed by 75 

Brazilian National Institute for Space Research (INPE) specifically for the Brazilian Amazon. In 76 

TerraClass, available since 2004, secondary regrowth forest is mapped on previously deforested 77 

areas larger than 6.25 ha using a semi-manual approach (Almeida et al. 2016). The DEGRAD 78 

product is produced mainly by visual interpretation of Landsat and CBERS satellite images from 79 

a single year and is annually available between 2007 and 2013 (INPE 2007-2013). Recently, 80 

another product, MapBiomas, has become available that provides annual national-level land 81 

cover and land use maps for Brazil (MapBiomas 2015). MapBiomas, available from 2000 to 82 

2016, classifies forest land cover as dense forest, open forest, secondary forest, degraded forest, 83 

flooded forest or mangrove, using an empirical decision tree classification algorithm based on 84 

single date spectral mixture analysis. All of those single date imagery based approaches are 85 

limited in the discriminatory power they can provide as they make no use of temporal 86 

degradation/recovery signals which characterise disturbed forests. Thus, none of the existing 87 
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products fully exploits the potential of existing Landsat time-series data spanning multiple 88 

decades to provide reliable maps of both forest regrowth and degradation. Furthermore, none of 89 

these products captures historical (pre-2000) disturbances. There is therefore a clear need for a 90 

product that provides a more comprehensive picture of historical disturbances over tropical 91 

regions.                92 

Methods that exploit temporal information in satellite data (e.g. threshold approaches, trajectory 93 

fitting or segmentation) have been found to be very useful for mapping forest disturbances 94 

(Hermosilla et al. 2015; Hirschmugl et al. 2017; Huang et al. 2010; Kayastha et al. 2012; 95 

Kennedy et al. 2007; Kennedy et al. 2010; White et al. 2017).  However, majority of these time-96 

series based approaches are based on a single time-series trajectory and have mainly been 97 

implemented at local scales in extratropical regions (e.g. Canada, U.S.). For example, the 98 

recently developed LandTrendr (Kennedy et al. 2010), Vegetation Change Tracker (Huang et al. 99 

2010) and patch-based VeRDET (Vegetation Regeneration and Disturbance Estimates through 100 

Time) (Hughes et al. 2017) algorithms have all only been extensively tested in the United States. 101 

A recent inter-comparison of disturbance detection algorithms for US forests found that different 102 

time-series analysis algorithms are sensitive to different disturbance patterns, with little 103 

agreement among these disturbance detection results (Cohen et al. 2017). Thus, when applying 104 

these algorithms elsewhere, local calibration and further secondary classification are needed to 105 

improve the algorithm’s classification performance (Cohen et al. 2018). Machine learning 106 

approaches (i.e. random forest) offer the potential to harness the differential sensitivities of 107 

different time-series once provided with an appropriate training dataset, but have rarely been 108 

coupled with multiple time-series trajectories in Tropics.        109 
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In this study, we develop a novel Landsat multiple time-series based classification methodology 110 

to map cumulative disturbed forest areas in Tropics, which exploits the power of 1) time-series 111 

images relative to single date images, 2) an ensemble of reflectance bands/indices trajectories 112 

relative to single trajectories, and 3) machine learning algorithms which enhances classification 113 

power by harnessing the differential sensitivities of different time-series. The ‘disturbed forests’ 114 

in this study include both degraded old growth forests and post-deforestation regrowth forests. 115 

The former are characterised by a reduction of forest canopy cover (e.g. selective logging, 116 

windfall, fire) but have not been clearfelled and thus have not been included in deforestation 117 

estimates. The latter refer to areas that have been previously deforested (clearfelled) and 118 

converted to other land uses (e.g. pasture, agriculture and mining) but which have subsequently 119 

undergone a recovery process following abandonment. Our approach integrates information from 120 

six different time-series trajectories (Landsat 5/7 short-wave infrared band 5, band 7, NDVI, 121 

SAVI, NDWI2130, NDWI1640), extracting both statistical and temporal characteristics from each 122 

trajectory which then serve as inputs for random forest classification. It not only captures 123 

disturbances occurring within study period (1984-2010), but also areas disturbed prior to 1984 124 

which thereafter have exhibited clear recovery patterns. Here, we apply this method to three 125 

forest ecoregions (seasonal, moist and dry forests) in the Brazilian state of Mato Grosso.  126 

2. Study Area 127 

Our study area (Fig. 1), the state of Mato Grosso, is located in the southern edge of Brazilian 128 

Legal Amazon. Mato Grosso is the third largest state in Brazil, covering a total area of 903,357 129 

km2. According to the Terrestrial Ecoregions of the World (TEOW) from World Wildlife Fund 130 

(WWF), 43% of Mato Grosso area is covered by Cerrado (tropical savanna), 27% by seasonal 131 

forest, 18% by moist forest, 6% by dry forest and 6% by Pantanal (tropical wetlands) (Olson et 132 
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al. 2001). In Mato Grosso, 139,917 km2 have been deforested since 1988 (INPE 2017) 133 

amounting to 26.5 % of the state’s intact forest in that year (Skole and Tucker 1993), most of 134 

which has been converted into pasture and agricultural land use due to demand for beef and soy 135 

beans (Barona et al. 2010). According to TerraClass (Almeida et al. 2016), herbaceous pasture 136 

and shrubby pasture cover 61.4% of the total deforested areas in Mato Grosso while 19.2% of 137 

deforested areas are under secondary regrowth (including secondary vegetation and regeneration 138 

with pasture). The combination of extensive disturbances and significant amount of remaining 139 

intact forest makes Mato Grosso an ideal testbed for the application of our newly developed 140 

disturbed forests mapping approach (see section 3).    141 

As indicated, TerraClass is a project that maps land use/land cover on previous deforested areas 142 

provided by PRODES (Program for Deforestation Monitoring, INPE 2017)  at approximately bi-143 

annual intervals across the Brazilian Legal Amazon (Almeida et al. 2016). TerraClass classifies 144 

previously deforested areas into 12 land use categories including pasture, annual crops, 145 

secondary vegetation and urban areas. It is extensively validated via field campaigns to 146 

determine the accuracy of classification. These have been conducted across different Amazonian 147 

regions, including the state of Mato Grosso. This is the best available information on the 148 

distribution of secondary forests in any region of the Tropics. However, TerraClass involves a 149 

huge effort based largely on visual interpretation and does not map degradation. 150 

The aim of this study is to propose a Landsat multiple time-series based approach in Tropics to 1) 151 

improve the efficiency/cost-effectiveness of mapping disturbed forests vs. intact forests, 152 

facilitating future TerraClass efforts, 2) map degraded old-growth forests (outside of TerraClass), 153 

and 3) eventually enable mapping of disturbed forests over domains for which no reliable data on 154 

forest disturbance exist. Only forest areas are considered in this study. To make sure all non-155 
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forest areas are excluded, we created a forest cover mask by merging TerraClass-2010 old-156 

growth forest, secondary vegetation and pasture with regeneration categories (Fig. 1). The latter 157 

category effectively captures the beginning of the regenerative process containing shrubs and 158 

early successional vegetation (Almeida et al. 2016).             159 

 160 

 

 
Old-growth forest 

 
Secondary vegetation 

 
Pasture with regeneration 

Fig. 1. TerraClass classification map for 2010 (Pasture with regeration in TerraClass is treated as young 161 
secondary vegetation). Later, we merged old-growth forest, secondary vegetation and pasture with 162 
regeneration into the forest cover mask as the forest boundry. The study area encompasses three WWF 163 
forest ecoregions (moist, seasonal and dry forest).  164 

 165 

3. Methodology and dataset 166 

The whole approach was developed in Google Earth Engine (GEE) (Gorelick et al. 2017). GEE 167 

is a cloud-based geospatial processing platform which consists of over 40 years of historical and 168 

current Earth observation imagery, making pixel-based land use and land cover classification 169 
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feasible across large regions through its inbuilt machine learning algorithms. The overall 170 

methodology (Fig. 2) consisted of building Landsat multiple (six) annual time-series trajectories, 171 

calculating trajectory metrics (eleven metrics divided into four groups, Table 2), generating a 172 

training and validation database, applying a machine learning random forest classification 173 

algorithm and validating the disturbed forests vs. intact forests classification map, all of which 174 

were coded and processed in GEE. We subsequently used the post-deforestation regrowth forest 175 

mask generated from TerraClass-2010 to separate the disturbed forests identified through our 176 

classification map into post-deforestation regrowth forests and degraded forests (Table 1). 177 

Finally, we performed a relative important analysis of trajectories and trajectory metrics used in 178 

the random forest classification to evaluate the extent to which the full suite of all 179 

trajectories/metrics enhanced discriminatory power relative to a single trajectory or individual 180 

group of trajectory metrics. To do this, ten separate classifications were performed whereby our 181 

classification procedure was repeated for each individual trajectory separately (but using all four 182 

groups of trajectory metrics), or separately for individual groups of trajectory metrics (but using 183 

all six trajectories).   184 
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 185 

Fig. 2. Classification Methodology for discrimination of disturbed forests and intact forests 186 

Trajectory metrics (x11) (Table 2): 
Min, Max, Range, Mean, Standard 
Deviation, C.V., Skewness, Kurtosis, 
Slope, Max-slope, year-2010 value 

Majority filter: remove isolated 
disturbed pixels  

Classification map of disturbed vs. intact forests 

Time-series trajectories (x6):  
Ź B5 (SWIR1640nm);     Ź B7 (SWIR2130nm); 
ŹNDVI = (NIR – RED) / (NIR + RED) 
ŹNDWI2130 = (NIR – SWIR2130nm) / (NIR + 
SWIR2130nm) 
ŹNDWI1640 = (NIR – SWIR1640nm) / (NIR + 
SWIR1640nm) 
ŹSAVI = 1.5 * ((NIR – RED) / (NIR + 
RED + 0.5)) 

ŹIntact forest:  
Overlay old-growth forest from I, and 
masksC, D, E   
ŹDisturbed forest: 
Overlay secondary vegetation & 
regeneration with pasture fromB, and 
maskC, E 

Training and validation dataset: 
10,000 sampled points (5,000 intact 
/5,000 disturbed) for each forest 
ecoregion  
 

Water mask: JRC yearly water classification 

Mask clouds, shadows  

Random Forest classifier (RF) 

Input data: 11metrics x 6 trajectories  
   = 66 variables 

Random sampling 

B TerraClass-2010 
C USGS global tree cover > 75% 
D Hansen GFC >75% 
˪ GlobeLand30 - Forest 

Landsat 5/7 Surface 
Reflectance 
(1984-2010) 

TerraClass forest mask  

Final classification map (intact forest, post-
deforestation regrowth forest, degraded forest) 

10-fold Cross validation 

Separate disturbed forests into degraded and 
post-deforestation regrowth forests  

TerraClass post-deforestation 
regrowth forest mask (Table 1) 
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Table 1. Classification categories for forested land cover types used in this study. 187 

Categories Description 

Total area Total area of each ecoregion 

Forest cover Forest mask from TerraClass classification for the year of 2010, combining 
TerraClass categories of old-growth forest, secondary vegetation and 
regeneration with pasture. 

Intact forest Forests that have never been experienced any detectable disturbances during 
1984-2010. Classified from this study. 

Disturbed forest Cumulative disturbed forest areas during 1984-2010. Classified from this study. 
Further separated into Post-deforestation regrowth forest & Degraded forest.  

Post-deforestation 
regrowth forest 

Areas that have been previously deforested (clearfelled) and converted to other 
land uses (e.g. pasture, agriculture and mining) but which have subsequently 
undergone a recovery process following abandonment. Secondary vegetaion or 
regeneration with pasture in TerraClass-2010. 

Degraded forest Degraded old-growth forests. Characterised by a reduction of forest canopy 
cover (e.g. selective logging, windfall, fire) but have not been clearfelled and 
thus have not been included in deforestation estimates. 

 188 

3.1 Time-series trajectories 189 

3.1.1 Landsat surface reflectance dataset 190 

We used Landsat atmospherically corrected surface reflectance (SR) products (30 m resolution) 191 

(Masek et al. 2006; USGS 2018) to generate annual time-series trajectories. All Landsat-5 192 

Thematic Mapper (TM) surface reflectance images aquired during the period of 1984-2010 were 193 

used except for 2001 and 2002. In 2001, most images had striping artifacts limiting their use, 194 

while in 2002, images from Landsat 5 only covered 61% of our study area. For these reasons, we 195 

used Landsat-7 Enhanced Thematic Mapper Plus (ETM+) images, which are compatible in their 196 

spectral characteristics (Claverie et al. 2015; Home et al. 2013), for these two years. In terms of 197 

spectral bands, we chose spectral bands 3 (red, 0.52 - 0.60 µm) which is sensitive to the amount 198 

of chlorophyll, 4 (near-infrared, 0.76 - 0.90 µm) which is related to leaf cellular structure, 5 199 

(shortwave-infrared, 1.55 - 1.75 µm) and 7 (shortwave-infrared, 2.08 - 2.35 µm) which relate to 200 
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leaf water content (Nelson et al. 2000). To minimize the influence of variable extent of rivers on 201 

the classification, we excluded water bodies in our analysis using the Joint Research Center (JRC) 202 

Yearly Water Classification History v1.0 product. This dataset contains maps of the location and 203 

temporal distribution of surface water from 1984 to 2015 at annual resolution, generated using 204 

more than three million scenes from Landsat 5, 7 and 8 (Pekel et al. 2016). 205 

3.1.2 Generating time-series trajectories 206 

We processed 11,483 images in total for our entire study period (1984-2010), ranging from 257 207 

to 715 annual images depending on data availablity, with annual spatial coverage of 99% of our 208 

study area (see Table S1 in supplementary information). Five steps were involved to process the 209 

Landsat SR data and produce time-series image stacks for 1984-2010. First, areas covered by 210 

clouds and cloud shadows were removed based on the pixel quality and radiometric saturation 211 

attributes of the Landsat surface reflectance product. Second, original surface reflectance (16-bit 212 

signed integer) values were converted to 0-1 range values by multiplying by the scale factor of 213 

0.0001. Third, four vegetation indices (VIs) were calculated including the Normalized Difference 214 

Vegetation Index (NDVI), Normalized Difference Water Index (NDWI2130  , NDWI1640 ) (Chen et 215 

al. 2005) and Soil-Adjusted Vegetation Index (SAVI) (Huete 1988). Fourth, to minimise the 216 

influence of cloud contamination and improve the quality of input data, we selected the 217 

maximum value of individual VIs for each year (Maxwell and Sylvester 2012). For time-series 218 

of reflectance from spectral bands 5 and 7, median values were calculated for each year. In the 219 

final step, we used the JRC Yearly Water Classification History v1.0 product to mask water 220 

areas (Pekel et al. 2016). After processing, annual time-series trajectories (1984-2010) of 221 

Landsat SR spectral band 5 (1.55 - 1.75 µm), band 7 (2.08 - 2.35 µm), NDVI, NDWI2130, 222 

NDWI1640 and SAVI were used for the classification of disturbed forests and intact forests.  223 
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3.2 Trajectory metrics 224 

We calculated eleven metrics divided into four groups (Table 2) for each of the six spectral 225 

trajectories to act as inputs for random forest algorithm (see section 3.4), based on a priori 226 

expectations of divergence between intact and disturbed forests. Each of these 11 metrics may 227 

capture information that is linked to a particular disturbance type. For example, the coefficient of 228 

variation (C.V.) shows the extent of variability in relation to the mean. Forests which have 229 

experienced large disturbances would be expected to have higher C.V. than undisturbed intact 230 

forests. We further hypothesized that time-series trajectories of intact forest would follow a 231 

normal distribution, while those of disturbed forest would tend not to and be much more likely to 232 

exhibit greater skewness and kurtosis. Finally, trends (based on linear regressions) were also 233 

estimated from the time-series trajectories. We hypothesized that disturbance events would likely 234 

result in either decreasing (deforestation/degradation) or increasing (regrowth) trends over time, 235 

and thus expected that the regression slopes of disturbed pixels would be much smaller/greater 236 

than undisturbed pixels where we expected that the slope value is close to zero. It has been found 237 

that regrowth secondary forests in Amazonia are cut and burned on average every 5 years 238 

(Aguiar et al. 2016). Thus, we also considered the maximum absolute regression slopes derived 239 

from individual 5-year windows within the 1984-2010 study period. 240 

Fig. 3 demonstrates differences in trajectories and trajectory metrics between intact and disturbed 241 

forest pixels. For intact forests (undisturbed during 1984-2010), we expected trajectories to 242 

fluctuate, but to follow a normal distribution pattern, while trajectories of disturbed forests were 243 

expected to exhibit more pronounced decrease and increase patterns. Trajectories of disturbed 244 

forest pixels’ can follow various patterns, depending on whether they have been disturbed once 245 

(Fig. 3 Disturbed B) or multiple times (Fig. 3 Disturbed A) within the study period (1984-2010) 246 
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or disturbed before 1984 but following a clear recovery pattern within study period (Fig. 3 247 

Disturbed C).  248 

Table 2. Metrics for each time-series trajectory and related main GEE algorithms. The metrics were 249 
divided into location, scale, temporal and single year groups which were further used for metric important 250 
analysis (see section 4.4).    251 

Group Name Description Main GEE algorithm 

Location 
metrics 

Min  Minimum of time-series ee.Reducer.min() 

Max Maximum of time-series ee.Reducer.max() 

Range The range between maximum and 
minimum of time-series 

Code equation ‘max-min’ 

Mean The mean of time-series ee.Reducer.mean() 

Scale 
metrics 

StdDev Standard deviation of time-series ee.Reducer.stdDev() 

C.V. Coefficient of variation of time-series Code equation ‘mean/stdDev’ 

Kurtosis Dispersion measure related to the tails of 
Normality distribution test (D'Agostino 
1970, see methods) 

Code equations based on the 
reference  

Skewness Symmetry measure related to Normality 
distribution test (D'Agostino 1970, see 
methods) 

Code equations based on the 
reference 

Temporal 
metrics  

Slope Linear regression slope of total time-
series 

ee.Reducer.linearFit() 

Max-slope Maximum linear regression slope of every 
5-year window 

Function of 5-year window; 
ee.Reducer.linearFit(); 
ee.Reducer.max() 

Single year  Year-2010 Time-series trajectory value at year 2010  ‘FilterMetadata’ equals 2010 

 252 

 253 
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 254 
 255 

 256 
Fig. 3. Examples (NDWI2130) of time-series trajectories for illustrative intact forest pixel and disturbed 257 
forest pixels. Values of trajectory scale and temporal metrics extracted from each trajectory (Table 2) are 258 
shown to the right of the graph. Metrics of max, min and year-2010 value are shown on the trajectory 259 
with the mean marked on y axis. 260 

 261 

3.3 Sampling design 262 

We used GEE random sampling to generate a set of spatially representative points of disturbed 263 

and intact forests for classification training and validation based on TerraClass-2010 map of old-264 

growth forest, secondary vegetation and pasture with regeneration, USGS (United States 265 

Geological Survey) 30 m Global Tree Cover 2010 (Hansen et al. 2013), the Hansen Global 266 

Forest Change (GFC) product (Hansen et al. 2013), and 30 m Global Land Cover 2010 267 

(GlobeLand30-2010) produced by National Geomatics Centre of China (Chen et al. 2015). Since 268 

TerraClass uses deforestation vector data from PRODES (INPE 2017) as input data to map 269 
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subsequent land use/covers (Almeida et al. 2016), it inherited PRODES historical misalignment 270 

issues. To better align TerraClass with GFC products, we registered the TerraClass-2010 271 

classification map using the GEE image displacement algorithm by calculating the displacement 272 

between TerraClass-2010 forest mask and GFC forest mask (Hansen et al. 2013).  273 

For intact forests, points were randomly sampled from areas that met the following conditions: i) 274 

classified as old-growth forest in TerraClass-2010; ii) tree canopy cover > 75% in GFC in 2000 275 

and no forest loss during 2000-2010; iii) tree cover >75% in USGS 30 m Global Tree Cover 276 

2010; and, iv) classified as forest in GlobeLand30-2010. Similarly, disturbed forest pixels were 277 

sampled from areas that satisfied the following conditions: i) classified as secondary vegetation 278 

or regeneration with pasture in TerraClass-2010; ii) tree cover > 75% in USGS 30 m Global Tree 279 

Cover 2010; iii) classified as forest in GlobeLand30-2010. To reduce the influence of unwanted 280 

positional errors among these land cover products and avoid edge effects, we required that both 281 

intact forest and disturbed forest sampled points were located at least 100m away from the patch 282 

boundary. For each forest ecoregion (moist/seasonal/dry forest), 10000 points (5000 intact and 283 

5000 disturbed) were randomly sampled, respectively. In total, we sampled 30000 intact and 284 

disturbed points across the study area as the training and validation database.    285 

3.4 Random forest classifier  286 

Mapping of disturbed forests was performed by using the GEE Random Forest classifier 287 

algorithm, which has been recently successfully applied to cropland mapping (Shelestov et al. 288 

2017; Xiong et al. 2017), oil palm plantation detection (Lee et al. 2016), mapping urban 289 

settlement and population (Patel et al. 2015) and soil mapping (Padarian et al. 2015). Random 290 

Forest (RF) classification is a relatively well-known supervised machine leaning algorithm that 291 

iteratively produces an ensemble of decision tree classifications by using corresponding 292 
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randomly selected subsets of the training dataset (Breiman 2001). It grows classification trees by 293 

splitting each node using a random selection subset of input variables, which reduces overfitting 294 

and yields a more robust classification compared to other classifiers (Breiman 2001). RF uses a 295 

voting system to classify data and the final classification category for each pixel is determined by 296 

the plurality vote of all trees generated to build the forest.  297 

We used 66 variables comprising 11 metrics (Table 2) for each of the six time-series trajectories 298 

as input predictors for the RF classification. RF classifications were applied in moist, seasonal 299 

and dry forest ecoregions, respectively. All classifications were based on the outputs of 500 300 

decision trees (See Fig. S1 in supplementary information). Each tree split was based on eight 301 

variables randomly selected from all 66 input variables, which was the default configuration for 302 

the GEE random forest classifier. After constructing our disturbed forest classification, we 303 

performed a post-classification filtering to reduce noise and remove spurious classification 304 

artefacts by applying a 90m x 90m majority filter.  305 

3.5 Classification validation 306 

To evaluate how well our classification performed, we used ten-fold cross-validation (Kohavi 307 

1995; Schaffer 1993) based on above randomly sampled database (See section 3.3, i.e. 10000 308 

points for each forest ecoregion), which randomly partitions our sampled database into ten equal 309 

sized subsets. Of the ten subsets, a single subset (1000 points) was retained as the validation data 310 

for testing the classification algorithm, and the remaining nine subsets (9000 points) were used 311 

as training data for RF classifier. The cross-validation process was  repeated ten times. The final 312 

accuracy estimation was determined by the average of ten-fold results. The accuracy matrix 313 

included overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA) and Kappa 314 

statistic (Kohavi 1995).  315 
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For an additional independent confirmation for our Landsat optical sensor based classification of 316 

disturbed forests vs. intact forests, we used another microwave radar based satellite product, 317 

ALOS/PALSAR 25 m spatial resolution mosaic imagery, as visual interpretation. ALOS 318 

PALSAR imagery consists of dual polarization HH (transmission of horizontal wave and 319 

reception of horizontal component) and HV (horizontal transmission and vertical reception), but 320 

it has been shown that the polarization mode HV is more effective in deforestation detection than 321 

HH polarization (Motohka et al. 2014), which corresponds with findings of close relations 322 

between HV backscatter and vegetation structural properties (e.g. forest height, forest cover) 323 

(Joshi et al. 2015). Thus, we visually compared the 2007-2010 ALOS/PALSAR HV backscatter 324 

change with our final classification results.  325 

SAR data are stored as digital number (DN) in unsigned 16 bit and typified by a high degree of 326 

speckles in the image (random ‘salt and pepper’ noise). To reduce noise and improve image 327 

interpretability, a multi -temporal speckle filter (7×7) (Lee 1980; Lopes et al. 1990) was 328 

implemented in GEE and applied to 2007-2010 PALSAR images, without significant loss of 329 

spatial resolution. Filtered ALOS/PALSAR HV backscatter DN values were converted to sigma-330 

naught (ߪ଴) in decibel (dB) units using the following equation:  331 

଴ߪ ൌ ͳͲ כ ଶሻܰܦଵ଴ሺ݃݋݈ െ ͺ͵                                 (1)  332 

଴ߪ is generally negative and can vary from -35 dB in very low backscatter areas 333 

(degraded/deforested area), up to 0 dB for extremely high backscatter (dense forest area). For 334 

visual interpretation, we expected a decrease or an increase in  ߪ଴ in forest areas that have been 335 

recently disturbed or are recovering from past disturbances (Joshi et al. 2015). However, we also 336 

expected that many disturbed areas in our classification would not be captured by PALSAR due 337 

to its short time period (2007-2010).  338 
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4. Results 339 

4.1 Classification results 340 

As represented in Fig. 2, the new developed disturbed forests vs. intact forests classification 341 

approach was applied to three different ecoregions in Mato Grosso. The final classification map 342 

(Fig. 4) was generated by training the random forest classifier individually for each ecoregion on 343 

the entire sampled database. Our classification results representative of the year 2010 show that 344 

disturbed forests (both post-deforestation regrowth forests and degraded forests) were widely 345 

spread across Mato Grosso, but were most prevalent along rivers and next to non-forest areas 346 

(Fig. 4). Forests in Mato Grosso covered a total area of 295,383 km2 in 2010 (Table 3), 347 

accounting for about 63% of the total study area. Our results show that, until 2010, 25% of the 348 

total forested area was disturbed (Table 3). Forest cover percentage varied considerably across 349 

ecoregions, ranging from 37% in dry forest to 74% in moist forest (Table 3). Dry forest 350 

experienced the most severe disturbances with 41% of forest cover classified as disturbed, 351 

followed by seasonal forest and moist forest where disturbed forests accounted for 28% and 20% 352 

of forest cover, respectively (Table 3). 353 

We further separated disturbed forests identified through our classification map into post-354 

deforestation regrowth forests and degraded forests. It shows that the area of degraded forests 355 

was up to 62% larger than the area of post-deforestation regrowth forests across ecoregions, with 356 

degraded forests and post-deforestation regrowth forests covering a total area of 47,039 km2 and 357 

28,246 km2, respectively (Table 4). By comparing degraded forests and old-growth forests 358 

classified in TerraClass for the year of 2010, we found that 18% of areas identified as old-growth 359 

forests in TerraClass were actually degraded forests, ranging from 15% to 27% across various 360 

ecoregions (Table 4).  361 
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 362 

Fig. 4. Classification map of intact forest, post-deforestation regrowth and degraded forest representative 363 
of the year 2010. Non-forest areas include areas under anthropogenic use or natural savannahs/wetlands. 364 
Small areas 1 to 3 represent three focal regions within individual ecoregions, for which subsequent fine-365 
scale visual interpretation confirmation were performed (Fig. 5-7). 366 
 367 

 368 

 369 

 370 

 371 
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Table 3. Areal extent (in km2) of intact forest and historically disturbed forest representative of 2010. 372 

 Moist forest Seasonal forest Dry forest Total 

Total area 170,154 245,514 54,454 470,122 

Forest cover  

(% of total area) 

125,474 

(73.74%) 

149,571 

(60.92%) 

20,338 

(37.35%) 
295,383 

(62.83%) 

     

Intact forest  

(% of forest cover) 

100,050 

(79.74%) 

107,991 

(72.20%) 

12,058 

(59.29%) 
220,099 

(74.51%) 

Disturbed forest  

(% of forest cover) 

25,424 
(20.26%) 

41,581   
(27.80%) 

8,280    
(40.71%) 

75,285   
(25.49%) 

 373 

Table 4. Areal extent (km2) of post-deforestation regrowth forest and degraded forest representative of 374 
2010.  375 

 Moist forest Seasonal forest Dry forest Total 

Post-deforestation regrowth 

(% of disturbed forest) 
8,188 

(32.21%) 

15,950 

(38.36%) 

4,108 

(49.62%) 

28,246 
(37.52%) 

Degraded forest  

(% of disturbed forest) 

17,236 

(67.79%) 

25,631 

(61.64%) 

4,171 

(50.38%) 
47,039 

(62.48%) 

     

TerraClass old-growth forest       116,226 131,703 15,622  263, 551 

% of degraded forest within  

TerraClass 

14.83% 19.46% 26.70% 17.85% 

 376 

4.2 Ten-fold cross validation 377 

Ten-fold cross validation was used as the main validation of our disturbed forests and intact 378 

forests classification map, with accuracy matrices provided in Table 5. Overall, all the 379 

classification accuracies were above 80% with Kappa agreements above 62%. Across ecoregions, 380 

the overall accuracy was the highest in seasonal forest at 86.1%, with a producer’s accuracy of 381 

88.9% for intact forests and 83.3% for disturbed forests. In moist forest and dry forest regions, 382 

the overall accuracies were lower at 81.3% and 82.6%, respectively.  383 



  22  
 

Table 5. Ten-fold cross validation accuracy based on sampled points from our study.  384 

Regions Overall accuracy  Producer’s accuracy User’s accuracy Kappa 
statistic 

  Intact 
forest 

Disturbed 
forest 

Intact 
forest 

Disturbed 
forest 

 

Moist forest 0.813 0.888 0.737 0.772 0.867 0.625 

Seasonal forest 0.861 0.889 0.833 0.842 0.882 0.722 

Dry forest 0.826 0.856 0.797 0.809 0.846 0.653 

 385 

4.3 High-resolution image interpretation  386 

To further validate our classification, we consider in detail one landscape within each biome, 387 

comparing our results to radar and other very high-resolution data. Examples in Fig. 5-7 allow 388 

for visual comparison of our classification in selected focal areas within each forest ecoregion 389 

with corresponding ALOS PALSAR HV backscatter (ߪ଴ ) temporal (2007-2010) change 390 

composite images and very high-resolution (5 m) RapidEye true-colour composite images (Team 391 

2017). Overall, this comparison at local scales shows a very good visual agreement between our 392 

classification and the PALSAR temporal change as well as with RapidEye images across 393 

ecoregions (Fig. 5-7), especially those logging roads shown in Fig. 6. As expected, there were 394 

some mismatches between our classification and the temporal change in PALSAR HV ߪ଴, such 395 

as several disturbed areas from our classification not appearing in PALSAR temporal change 396 

image. This is likely due to PALSAR images only being available from 2007 and thus not 397 

capturing much forests disturbed before 2007.  398 
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Fig. 5. Moist forest focal region (area 1 in Fig. 4). A) Detailed classification map. B) Forest masked 399 
ALOS PALSAR HV ı0 temporal change, pink represents increase of ı0, green represents decrease of ı0 400 
between 2007-2010, grey represents little/no change between 2007-2010, white areas are non-forest. C) 401 
RapidEye true-colour composite image (See Fig. S2 in supplementary information for better 402 
visualization).  403 

 404 

 405 

 406 

 407 
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Fig. 6. Seasonal forest focal region (area 2 in Fig. 4). A) Detailed classification map. B) Forest masked 408 
ALOS PALSAR HV ı0 temporal change, pink represents increase of ı0, green represents decrease of ı0 409 
between 2007-2010, grey represents little/no change between 2007-2010, white areas are non-forest. C) 410 
RapidEye true-colour composite image (See Fig. S3 in supplementary information for better 411 
visualization). 412 

 413 

 414 
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Fig. 7. Dry forest focal region (area 3 in Fig. 4). A) Detailed classification map. B) ALOS PALSAR HV 415 
ı0 temporal change, pink represents increase of ı0, green represents decrease of ı0 between 2007-2010, 416 
grey represents little/no change between 2007-2010, white areas are non-forest. C) RapidEye true-colour 417 
composite image (See Fig. S4 in supplementary information for better visualization). 418 

 419 

 420 

 421 

 422 
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4.4 Importance of individual trajectories and metrics  423 

The relative importance of individual trajectories in our classification was measured by the 424 

percentage of overall accuracy change (% OAC) when running our classification for a single 425 

trajectory (but using all four groups of trajectory metrics) relative to our full suite multi-426 

trajectory classification (Table 5). The larger the overall accuracy change, the less important an 427 

individual trajectory is in distinguishing the differences between disturbed forests and intact 428 

forests. All of the single time-series trajectories based classifications had much lower (3-15% 429 

across ecoregions) overall classification accuracy than our full suite classification (Fig. 8). In 430 

moist forest and dry forest ecoregions, Landsat shortwave spectral band 5 and 7 were the most 431 

important trajectories for distinguishing disturbed forests and intact forests, decreasing %OAC 432 

the least relative to our full suite classification. However, in the seasonal forest ecoregion, NDWI 433 

trajectories were the most important, decreasing the overall accuracy the least, followed by 434 

spectral band 7.  435 

The important of specific groups of trajectory metrics (Table 2) was determined in an analogous 436 

manner to the importance of specific trajectories. Importance patterns for groups of metrics were 437 

similar across ecoregions (Fig. 8B), with location metrics being the most important in 438 

distinguishing disturbed and intact forests, followed by temporal metrics, scale metrics and 439 

single year (2010) values. However, single year (2010) values alone were found to have much 440 

less discriminatory power than other metrics, resulting in much lower (up to 20%) classification 441 

accuracy relative to our full suite classification with all groups of metrics included (Fig. 8B). 442 



  27  
 

 443 
Fig. 8. The percentage of overall accuracy change (% OAC) when running our classification procedure 444 
for individual trajectories separately (but using all four groups of trajectory metrics) or separately for 445 
individual groups of trajectory metrics (but using all six trajectories) relative to our full suite classification 446 
with all trajectories/metrics included (Table 5). The larger the absolute % OAC, the less important the 447 
particular trajectory (or the group of trajectory metrics) is.     448 
 449 

4.5 Comparing with other products 450 

We compared our classification of disturbed forests in Mato Grosso with other relevant products 451 

which have recently become available (Fig. 9Error! Reference source not found.). These 452 

include the MapBiomas land use/cover products (2000-2010) and the Latin American secondary 453 

forest map recently produced by Chazdon et al. (2016). The latter was derived from the map of 454 

Neotropical forest aboveground biomass of Baccini et al. (2012) for 2008. To ensure 455 
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comparability in time, we only compared disturbed forests from our classification against the 456 

area of secondary forests < 24 years old from Chazdon et al. (2016). To compare against 457 

MapBiomas products (2000-2010), we reclassified open forest, degraded forest, secondary forest, 458 

and flooded forest categories from MapBiomas-2010 map into one disturbed forest class. Areas 459 

classified as non-dense forest in 2000-2009 MapBiomass products but classified as dense forest 460 

in 2010 were also considered as disturbed forests. 461 

Our estimate of disturbed forest area in Mato Grosso was three times larger than disturbed 462 

forests from MapBiomas with corresponding spatial distribution shown in Fig. 9 (A&B). The 463 

biggest classification differences was located in moist forest ecoregion, followed by seasonal 464 

forest and dry forest. The difference relative to MapBiomas may be due to the use of different 465 

classification methods (single date based classification) and the limited time period (2000-2010) 466 

for MapBiomas. However, secondary forest area estimates from Chazdon et al. (2016) were 467 

approximately three times greater than the disturbed area from our classification (Fig. 9C), 468 

increasing to four times greater in the dry forest biome. This may be due to the coarse resolution 469 

(500 m) of forest age map, the misclassification of some anthropogenic land use areas as forest 470 

or to errors arising from interpreting the age from the forest biomass map (Chazdon et al. 2016).  471 

The large discrepancies of estimated disturbed forests among those products highlight the 472 

importance of using high-resolution time-series images and the consideration of historical 473 

disturbances when mapping secondary forest regrowth and forest degradation. By excluding pre-474 

2000 historical disturbances and ignoring time-series spectral characteristics, MapBiomas 475 

significantly underestimate the area of disturbed forests (Fig. 9B), and correspondingly may 476 

underestimate the impacts of disturbance on tropical biodiversity and carbon cycles.         477 
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Fig. 9. Comparison of our classification with MapBiomas land use/cover 2000-2010, and Chadzon et al. 478 
2008 secondary forest age map. Values represent the percentage of the area of disturbed forests within 479 
each grid cell (10*10km). White areas (within study area) represent no disturbed pixels were identified 480 
within that grid cell. The disturbed areas are 75285 km2, 24577 km2, 246829 km2 for figure panel A, B, C, 481 
respectively.  482 
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5. Discussion 483 

In this study, we developed a new time-series approach in GEE to map disturbed forests (both 484 

forest degradation and post-deforestation regrowth) and intact forests. This approach 485 

incorporates random forest machine learning algorithm with multiple Landsat time-series 486 

trajectories, which enhances classification power by harnessing differential sensitivities of 487 

different time-series. It is flexible with respect to the disturbance patterns it captures. It detects 488 

three different disturbances trends (Fig. 3): 1) single disturbance – time-series have a decrease 489 

then increase pattern; 2) multiple disturbances – time-series have multiple increase and decrease 490 

signatures pattern; 3) recovery on previous disturbed areas – time-series only have an increase 491 

pattern. For example, in this study, it not only maps areas that disturbed and recovering during 492 

time-series period (1984-2010), but also captures areas that disturbed before 1984 but following 493 

a recovery process after 1984, making our approach more valuable and suitable for 494 

distinguishing disturbed forests and intact forests.  495 

Application of our approach in moist/seasonal/dry ecoregions in Mato Gross resulted in high 496 

overall classification accuracy, ranging from 81.3% to 86.1% across ecoregions. On one hand, 497 

the misclassification of disturbed forests as intact forests may relate to the fast recovery process 498 

of secondary regrowth forests whose structural and spectral characteristics could be similar to 499 

intact forests after 20-40 years recovery (Aide et al. 2000; Poorter et al. 2016). The degraded old-500 

growth forests recover at even faster rates. For example, it has been shown that about 50% of the 501 

canopy opening caused by selective logging becomes closed within one year of regrowth (Asner 502 

et al. 2004), making it harder to capture such quick recovery process from remote sensing 503 

perspectives. On the other hand, the misclassification of intact forests as disturbed might be 504 

because of our sampling of intact forests points which may still include few disturbed old-growth 505 
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forests, as TerraClass does not map degraded forests. Furthermore, the variation of classification 506 

accuracy across ecoregions might be due to the differences of land-use history, land use intensity, 507 

severity of disturbance events, soil fertility and texture (Chazdon 2003) and water availability 508 

(Poorter et al. 2016), which are highly associated with post-disturbance recovery processes and 509 

the structure of regrowth forests. 510 

By separating disturbed forests into post-deforestation regrowth forests and degraded forests, we 511 

found that approximately two-thirds of disturbed forests were degraded forests, highlighting the 512 

importance of effective systems for detecting these. Forest monitoring system should not only 513 

focus on clear-cut forest deforestation and recovery, but also degraded forests which may release 514 

more than double the amount of carbon than released by deforestation (Baccini et al. 2017). 515 

Interestingly, our classification clearly captured straight-line patterns of disturbed forests, which 516 

also present a consistent agreement with both PALSAR HV backscatter intensity change and 517 

RapidEye very high resolution images (Fig. 6). Further development of our methodology may 518 

provide new opportunities to map selective logging activities at a large regional scale.   519 

The methodology developed in this study dramatically exploits the power of multiple long-term 520 

Landsat time-series in the discrimination of disturbed vs. intact forests with support of GEE’s 521 

massive storage and calculation capability. Unlike previously published single time-series 522 

trajectory based approaches (e.g. LandTrendr, VCT, VeRDET) (Cohen et al. 2017), this 523 

approach incorporates six different time-series trajectories which generates a much higher 524 

classification accuracy than single-trajectory based classification (Fig. 8A). Also, this approach 525 

integrates single year features with scale, location and temporal characteristics derived from 526 

time-series trajectories, which significantly enhanced the discriminatory power. Single year 527 

features were found to be the least powerful (up to 20% less) for discriminating disturbed pixels 528 
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compared to the combined use of single year features and other time-series features (Fig. 8B). 529 

Thus, combination of single year and time-series features represents a significant advance on 530 

widespread single-year approaches to map previously disturbed forests. 531 

 532 

6. Conclusion 533 

Our study explored the feasibility of using multiple long time-series Landsat surface reflectance 534 

data to map tropical historically disturbed forests as far back as 1984. Using a case study of Mato 535 

Grosso moist, seasonal and dry forests, we found that this methodology has high potential in 536 

mapping various forested land cover types related to disturbances with an overall accuracy of up 537 

to 86.1%. The classification approach developed in this study is capable of capturing not only 538 

forest regrowth from forest deforestation (clear-cut), but also forest degradation (partially cut) 539 

due to selective logging or other small scale disturbances. Based on TerraClass-2010 forest mask, 540 

until 2010, 41% dry forest in Mato Grosso were disturbed, with 28% and 20% of seasonal forest 541 

and moist forest disturbed, respectively. By comparing classification from this study with 542 

TerraClass-2010 land cover map, we found that up to 18% of area classified as old-growth forest 543 

in TerraClass was actually degraded forests, highlighting the importance of including 544 

degradation monitoring alongside clear felling monitoring .  545 

Our study clearly demonstrates the potential of extensive time-series of satellite imagery to map 546 

historical forest disturbances and recovery processes. More specifically, the discrimination of 547 

disturbed forests (both degraded forest and post-deforestation regrowth forest) vs. intact forests 548 

was enhanced by simultaneously combining a suite of single date features and time-series 549 

characteristics derived from multiple time series of spectral bands and vegetation indices. Our 550 
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approach is readily applicable to other larger tropical areas, making pan-tropical mapping of 551 

forest disturbances and regrowth a highly tangible prospect.  552 

Acknowledgements 553 

This work was carried out with the support of Google Earth Engine Research Award (GZ, DG, 554 

WB). YW acknowledges support from the China Scholarship Council (201506300051) and the 555 

University of Leeds. GZ acknowledges support from ECOPOTENTIAL project funded under 556 

EU’s Horizon 2020 programme grant agreement 641762. DG acknowledges support from the 557 

NERC-funded TREMOR project (NE/N004655/1). SB acknowledges support from NERC 558 

independent research fellowship NE/M019497/1. We thank Dr. Timothy R. Baker from 559 

University of Leeds for contributing to the development of ideas for this paper.   560 

 561 

References 562 

Aguiar, A.P.D., Vieira, I.C.G., Assis, T.O., DallaǦNora, E.L., Toledo, P.M., Oliveira SantosǦ563 
Junior, R.A., Batistella, M., Coelho, A.S., Savaget, E.K., & Aragão, L.E.O.C. (2016). Land use 564 
change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Glob 565 
Chang Biol, 22, 1821-1840 566 

Aide, T.M., Zimmerman, J.K., Pascarella, J.B., Rivera, L., & MarcanoǦVega, H. (2000). Forest 567 
regeneration in a chronosequence of tropical abandoned pastures: implications for restoration 568 
ecology. Restoration ecology, 8, 328-338 569 

Almeida, C.A.d., Coutinho, A.C., Esquerdo, J.C.D.M., Adami, M., Venturieri, A., Diniz, C.G., 570 
Dessay, N., Durieux, L., & Gomes, A.R. (2016). High spatial resolution land use and land cover 571 
mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta 572 
Amazonica, 46, 291-302 573 

Andersen, H.-E., Reutebuch, S.E., McGaughey, R.J., d'Oliveira, M.V., & Keller, M. (2014). 574 
Monitoring selective logging in western Amazonia with repeat lidar flights. Remote Sensing of 575 
Environment, 151, 157-165 576 

Asner, G.P., Keller, M., Pereira Jr, R., Zweede, J.C., & Silva, J.N. (2004). Canopy damage and 577 
recovery after selective logging in Amazonia: field and satellite studies. Ecological Applications, 578 
14, 280-298 579 



  34  
 

Baccini, A., Goetz, S., Walker, W., Laporte, N., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, 580 
P., Dubayah, R., & Friedl, M. (2012). Estimated carbon dioxide emissions from tropical 581 
deforestation improved by carbon-density maps. Nature Climate Change, 2, 182-185 582 

Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., & Houghton, R. (2017). 583 
Tropical forests are a net carbon source based on aboveground measurements of gain and loss. 584 
Science, 358, 230-234 585 

Barona, E., Ramankutty, N., Hyman, G., & Coomes, O.T. (2010). The role of pasture and 586 
soybean in deforestation of the Brazilian Amazon. Environmental Research Letters, 5 587 

Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32 588 

Carreiras, J.M., Jones, J., Lucas, R.M., & Gabriel, C. (2014). Land use and land cover change 589 
dynamics across the Brazilian Amazon: insights from extensive time-series analysis of remote 590 
sensing data. Plos One, 9, e104144 591 

Carreiras, J.M., Jones, J., Lucas, R.M., & Shimabukuro, Y.E. (2017). Mapping major land cover 592 
types and retrieving the age of secondary forests in the Brazilian Amazon by combining single-593 
date optical and radar remote sensing data. Remote Sensing of Environment, 194, 16-32 594 

Chazdon, R.L. (2003). Tropical forest recovery: legacies of human impact and natural 595 
disturbances. Perspectives in Plant Ecology, evolution and systematics, 6, 51-71 596 

Chazdon, R.L., Broadbent, E.N., Rozendaal, D.M., Bongers, F., Zambrano, A.M.A., Aide, T.M., 597 
Balvanera, P., Becknell, J.M., Boukili, V., & Brancalion, P.H. (2016). Carbon sequestration 598 
potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 599 
2, e1501639 600 

Chen, D.Y., Huang, J.F., & Jackson, T.J. (2005). Vegetation water content estimation for corn 601 
and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. 602 
Remote Sensing of Environment, 98, 225-236 603 

Chen, J., Chen, J., Liao, A.P., Cao, X., Chen, L.J., Chen, X.H., He, C.Y., Han, G., Peng, S., Lu, 604 
M., Zhang, W.W., Tong, X.H., & Mills, J. (2015). Global land cover mapping at 30 m 605 
resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote 606 
Sensing, 103, 7-27 607 

Claverie, M., Vermote, E.F., Franch, B., & Masek, J.G. (2015). Evaluation of the Landsat-5 TM 608 
and Landsat-7 ETM+ surface reflectance products. Remote Sensing of Environment, 169, 390-609 
403 610 

Cohen, W.B., Healey, S.P., Yang, Z., Stehman, S.V., Brewer, C.K., Brooks, E.B., Gorelick, N., 611 
Huang, C., Hughes, M.J., & Kennedy, R.E. (2017). How similar are forest disturbance maps 612 
derived from different Landsat time series algorithms? Forests, 8, 98 613 

Cohen, W.B., Yang, Z., Healey, S.P., Kennedy, R.E., & Gorelick, N. (2018). A LandTrendr 614 
multispectral ensemble for forest disturbance detection. Remote Sensing of Environment, 205, 615 
131-140 616 

D'Agostino, R.B. (1970). Transformation to normality of the null distribution of g1. Biometrika, 617 
679-681 618 



  35  
 

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, 619 
M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., 620 
Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., & Snyder, P.K. (2005). Global 621 
consequences of land use. Science, 309, 570-574 622 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google 623 
Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 624 
202, 18-27 625 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, 626 
D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, 627 
C.O., & Townshend, J.R.G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover 628 
Change. Science, 342, 850-853 629 

Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., & Hobart, G.W. (2015). Regional 630 
detection, characterization, and attribution of annual forest change from 1984 to 2012 using 631 
Landsat-derived time-series metrics. Remote Sensing of Environment, 170, 121-132 632 

Hirschmugl, M., Gallaun, H., Dees, M., Datta, P., Deutscher, J., Koutsias, N., & Schardt, M. 633 
(2017). Methods for Mapping Forest Disturbance and Degradation from Optical Earth 634 
Observation Data: a Review. Current Forestry Reports, 3, 32-45 635 

Home, O.D.H.N., List, C.D., NPP, N.P.P., Questions, D.P., Curation, D., Visualizer, S.M., & 636 
Checker, L.-W. (2013). LEDAPS calibration, reflectance, atmospheric correction preprocessing 637 
code, version 2 638 

Houghton, R. (2012). Carbon emissions and the drivers of deforestation and forest degradation in 639 
the tropics. Current Opinion in Environmental Sustainability, 4, 597-603 640 

Huang, C., Goward, S.N., Masek, J.G., Thomas, N., Zhu, Z., & Vogelmann, J.E. (2010). An 641 
automated approach for reconstructing recent forest disturbance history using dense Landsat time 642 
series stacks. Remote Sensing of Environment, 114, 183-198 643 

Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 644 
25, 295-309 645 

Hughes, M.J., Kaylor, S.D., & Hayes, D.J. (2017). Patch-based forest change detection from 646 
Landsat time series. Forests, 8, 166 647 

INPE (2007-2013). Mapping of Forest Degradation in the Brazilian Amazon. 648 
www.obt.inpe.br/degrad/. Brazilian National Institute for Space Research 649 

INPE (2017). Projecto Prodes: Monitoramento de Floresta Amazonica Brasileira por satelite.  650 
http://www.obt.inpe.br/prodes/index.php. Instituto Nacional de Pesquisas Espaciais 651 

Joshi, N.P., Mitchard, E.T.A., Schumacher, J., Johannsen, V.K., Saatchi, S., & Fensholt, R. 652 
(2015). L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at 653 
Multiple Spatial Scales across Denmark. Remote Sensing, 7, 4442-4472 654 

Kayastha, N., Thomas, V., Galbraith, J., & Banskota, A. (2012). Monitoring wetland change 655 
using inter-annual landsat time-series data. Wetlands, 32, 1149-1162 656 

http://www.obt.inpe.br/degrad/
http://www.obt.inpe.br/prodes/index.php


  36  
 

Kennedy, R.E., Cohen, W.B., & Schroeder, T.A. (2007). Trajectory-based change detection for 657 
automated characterization of forest disturbance dynamics. Remote Sensing of Environment, 110, 658 
370-386 659 

Kennedy, R.E., Yang, Z., & Cohen, W.B. (2010). Detecting trends in forest disturbance and 660 
recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. 661 
Remote Sensing of Environment, 114, 2897-2910 662 

Kimes, D.S., Nelson, R.F., Salas, W.A., & Skole, D.L. (1999). Mapping secondary tropical 663 
forest and forest age from SPOT HRV data. International Journal of Remote Sensing, 20, 3625-664 
3640 665 

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model 666 
selection. In, Ijcai (pp. 1137-1145): Montreal, Canada 667 

Kuplich, T.M. (2006). Classifying regenerating forest stages in Amazonia using remotely sensed 668 
images and a neural network. Forest Ecology and Management, 234, 1-9 669 

Langner, A., Miettinen, J., & Siegert, F. (2007). Land cover change 2002–2005 in Borneo and 670 
the role of fire derived from MODIS imagery. Glob Chang Biol, 13, 2329-2340 671 

Lee, J.S. (1980). Digital Image-Enhancement and Noise Filtering by Use of Local Statistics. Ieee 672 
Transactions on Pattern Analysis and Machine Intelligence, 2, 165-168 673 

Lee, J.S.H., Wich, S., Widayati, A., & Koh, L.P. (2016). Detecting industrial oil palm plantations 674 
on Landsat images with Google Earth Engine. Remote Sensing Applications: Society and 675 
Environment, 4, 219-224 676 

Lopes, A., Touzi, R., & Nezry, E. (1990). Adaptive Speckle Filters and Scene Heterogeneity. 677 
Ieee Transactions on Geoscience and Remote Sensing, 28, 992-1000 678 

Lu, D. (2005). Integration of vegetation inventory data and Landsat TM image for vegetation 679 
classification in the western Brazilian Amazon. Forest Ecology and Management, 213, 369-383 680 

MapBiomas (2015). Project MapBiomas - Collection 2 of Brazilian Land Cover & Use Map 681 
Series, accessed on 15/11/2017 through the link: 682 
http://mapbiomas.org/pages/database/mapbiomas_collection 683 

Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., 684 
Kutler, J., & Lim, T.-K. (2006). A Landsat surface reflectance dataset for North America, 1990-685 
2000. IEEE Geoscience and Remote Sensing Letters, 3, 68-72 686 

Maxwell, S.K., & Sylvester, K.M. (2012). Identification of “ever-cropped” land (1984–2010) 687 
using Landsat annual maximum NDVI image composites: Southwestern Kansas case study. 688 
Remote Sensing of Environment, 121, 186-195 689 

Motohka, T., Shimada, M., Uryu, Y., & Setiabudi, B. (2014). Using time series PALSAR gamma 690 
nought mosaics for automatic detection of tropical deforestation: A test study in Riau, Indonesia. 691 
Remote Sensing of Environment, 155, 79-88 692 

Nelson, R.F., Kimes, D.S., Salas, W.A., & Routhier, M. (2000). Secondary forest age and 693 
tropical forest biomass estimation using thematic mapper imagery. Bioscience, 50, 419-431 694 

Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, 695 
E.C., D'Amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, 696 

http://mapbiomas.org/pages/database/mapbiomas_collection


  37  
 

T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P., & Kassem, K.R. (2001). Terrestrial 697 
ecoregions of the worlds: A new map of life on Earth. Bioscience, 51, 933-938 698 

Padarian, J., Minasny, B., & McBratney, A.B. (2015). Using Google's cloud-based platform for 699 
digital soil mapping. Computers & Geosciences, 83, 80-88 700 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., 701 
Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, 702 
A.D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink 703 
in the world's forests. Science, 333, 988-993 704 

Patel, N.N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F.R., Tatem, A.J., & 705 
Trianni, G. (2015). Multitemporal settlement and population mapping from Landsat using 706 
Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 707 
35, 199-208 708 

Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A.S. (2016). High-resolution mapping of 709 
global surface water and its long-term changes. Nature, 540, 418 710 

Poorter, L., Bongers, F., Aide, T.M., Zambrano, A.M.A., Balvanera, P., Becknell, J.M., Boukili, 711 
V., Brancalion, P.H., Broadbent, E.N., & Chazdon, R.L. (2016). Biomass resilience of 712 
Neotropical secondary forests. Nature, 530, 211 713 

Schaffer, C. (1993). Selecting a Classification Method by Cross-Validation. Machine Learning, 714 
13, 135-143 715 

Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google 716 
Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite 717 
Imagery for Crop Mapping. Frontiers in Earth Science, 5, 17 718 

Skole, D., & Tucker, C. (1993). Tropical deforestation and habitat fragmentation in the Amazon: 719 
satellite data from 1978 to 1988. Science, 260, 1905-1910 720 

Souza, C., Firestone, L., Silva, L.M., & Roberts, D. (2003). Mapping forest degradation in the 721 
Eastern Amazon from SPOT 4 through spectral mixture models. Remote Sensing of 722 
Environment, 87, 494-506 723 

Team, P. (2017). Planet application program interface: In Space for life on earth. San Francisco, 724 
CA 725 

Trisasongko, B.H. (2010). The use of polarimetric SAR data for forest disturbance monitoring. 726 
Sensing and Imaging: An International Journal, 11, 1-13 727 

USGS (2018). PRODUCT GUIDE. LANDSAT 4-7 SURFACE REFLECTANCE (LEDAPS) 728 
PRODUCT. United States Geographical Survey, Department of the Interior 729 

van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G.J., Kasibhatla, P.S., Jackson, R.B., 730 
Collatz, G.J., & Randerson, J.T. (2009). CO2 emissions from forest loss. Nature Geoscience, 2, 731 
737-738 732 

Vieira, I.C.G., de Almeida, A.S., Davidson, E.A., Stone, T.A., de Carvalho, C.J.R., & Guerrero, 733 
J.B. (2003). Classifying successional forests using Landsat spectral properties and ecological 734 
characteristics in eastern Amazonia. Remote Sensing of Environment, 87, 470-481 735 



  38  
 

White, J.C., Wulder, M.A., Hermosilla, T., Coops, N.C., & Hobart, G.W. (2017). A nationwide 736 
annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat 737 
time series. Remote Sensing of Environment, 194, 303-321 738 

Xiong, J., Thenkabail, P.S., Gumma, M.K., Teluguntla, P., Poehnelt, J., Congalton, R.G., Yadav, 739 
K., & Thau, D. (2017). Automated cropland mapping of continental Africa using Google Earth 740 
Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 126, 225-244 741 

 742 

 743 

 744 

 745 

List of Figure Captions 746 

Fig. 1. TerraClass classification map for 2010 (Pasture with regeration in TerraClass is treated as 747 

young secondary vegetation). Later, we merged old-growth forest, secondary vegetation and 748 

pasture with regeneration into the forest cover mask as the forest boundry. The study area 749 

encompasses three WWF forest ecoregions (moist, seasonal and dry forest). ............................... 8 750 

Fig. 2. Classification Methodology for discrimination of disturbed forests and intact forests ..... 10 751 

Fig. 3. Examples (NDWI2130) of time-series trajectories for illustrative intact forest pixel and 752 

disturbed forest pixels. Values of trajectory scale and temporal metrics extracted from each 753 

trajectory (Table 2) are shown to the right of the graph. Metrics of max, min and year-2010 value 754 

are shown on the trajectory with the mean marked on y axis. ...................................................... 15 755 

Fig. 4. Classification map of intact forest, post-deforestation regrowth and degraded forest 756 

representative of the year 2010. Non-forest areas include areas under anthropogenic use or 757 

natural savannahs/wetlands. Small areas 1 to 3 represent three focal regions within individual 758 



  39  
 

ecoregions, for which subsequent fine-scale visual interpretation confirmation were performed 759 

(Fig. 5-7). ...................................................................................................................................... 20 760 

Fig. 5. Moist forest focal region (area 1 in Fig. 4). A) Detailed classification map. B) Forest 761 

masked ALOS PALSAR HV ı0 temporal change, pink represents increase of ı0, green 762 

represents decrease of ı0 between 2007-2010, grey represents little/no change between 2007-763 

2010, white areas are non-forest. C) RapidEye true-colour composite image (See Fig. S2 in 764 

supplementary information for better visualization). .................................................................... 23 765 

Fig. 6. Seasonal forest focal region (area 2 in Fig. 4). A) Detailed classification map. B) Forest 766 

masked ALOS PALSAR HV ı0 temporal change, pink represents increase of ı0, green 767 

represents decrease of ı0 between 2007-2010, grey represents little/no change between 2007-768 

2010, white areas are non-forest. C) RapidEye true-colour composite image (See Fig. S3 in 769 

supplementary information for better visualization). .................................................................... 24 770 

Fig. 7. Dry forest focal region (area 3 in Fig. 4). A) Detailed classification map. B) ALOS 771 

PALSAR HV ı0 temporal change, pink represents increase of ı0, green represents decrease of ı0 772 

between 2007-2010, grey represents little/no change between 2007-2010, white areas are non-773 

forest. C) RapidEye true-colour composite image (See Fig. S4 in supplementary information for 774 

better visualization). ...................................................................................................................... 25 775 

Fig. 8. The percentage of overall accuracy change (% OAC) when running our classification 776 

procedure for individual trajectories separately (but using all four groups of trajectory metrics) or 777 

separately for individual groups of trajectory metrics (but using all six trajectories) relative to our 778 

full suite classification with all trajectories/metrics included (Table 5). The larger the absolute % 779 

OAC, the less important the particular trajectory (or the group of trajectory metrics) is. ............ 27 780 



  40  
 

Fig. 9. Comparison of our classification with MapBiomas land use/cover 2000-2010, and 781 

Chadzon et al. 2008 secondary forest age map. Values represent the percentage of the area of 782 

disturbed forests within each grid cell (10*10km). White areas (within study area) represent no 783 

disturbed pixels were identified within that grid cell. The disturbed areas are 75285 km2, 24577 784 

km2, 246829 km2 for figure panel A, B, C, respectively. ............................................................. 29 785 

 786 


