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ABSTRACT

In the Bay of Bengal (BoB), surface heat fluxes play a key role in monsoon dynamics and prediction.

The accurate representation of large-scale surface fluxes is dependent on the quality of gridded reanalysis

products. Meteorological and surface flux variables from five reanalysis products are compared and

evaluated against in situ data from the Research Moored Array for African–Asian–Australian Monsoon

Analysis and Prediction (RAMA) in the BoB. The reanalysis products: ERA-Interim (ERA-I),

TropFlux, MERRA-2, JRA-55, and CFSR are assessed for their characterization of air–sea fluxes during

the southwest monsoon season [June–September (JJAS)]. ERA-I captured radiative fluxes best while

TropFlux captured turbulent and net heat fluxes Qnet best, and both products outperformed JRA-55,

MERRA-2, and CFSR, showing highest correlations and smallest biases when compared to the in situ data. In

all five products, the largest errors were in shortwave radiation QSW and latent heat flux QLH, with non-

negligible biases up to approximately 75Wm22. TheQSW andQLH are the largest drivers of the observedQnet

variability, thus highlighting the importance of the results from the buoy comparison. There are also spatially

coherent differences in the mean basinwide fields of surface flux variables from the reanalysis products,

indicating that the biases at the buoy position are not localized. Biases of this magnitude have severe im-

plications on reanalysis products’ ability to capture the variability of monsoon processes. Hence, the repre-

sentation of intraseasonal variability was investigated through the boreal summer intraseasonal oscillation,

and we found that TropFlux and ERA-I perform best at capturing intraseasonal climate variability during the

southwest monsoon season.

1. Introduction

Circulation in the Indian Ocean is governed by mon-

soon variability (Goswami 2012; Weller et al. 2016). In

the Bay of Bengal (BoB), sea surface temperature (SST)
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and heat flux are the key components in southwest (SW)

monsoon behavior (Vecchi andHarrison 2002; Parampil

et al. 2010; Vialard et al. 2012). The mechanism via which

the surface net heat fluxes Qnet impact SST variability is

linked to the BoB barrier layer (Duncan and Han 2009).

During the summer, a combination of increased pre-

cipitation and river runoff in the northern BoB contrib-

utes to the formation of a highly stratified surface barrier

layer that sits above the thermocline and below the mixed

layer base (Vinayachandran et al. 2002). The summer

barrier layer acts to inhibit processes such as entrainment,

vertical advection, and upwelling, which result in surface

Qnet having a greater impact on the intraseasonal SST

variability (Duncan and Han 2009).

The importance of theQnet as a driver of summer SST

variability in the BoB (Duncan and Han 2009; Goswami

2012) is also shown in observations and ocean models,

where summer intraseasonal oscillations (ISOs) of SST

are forced mainly by heat flux variability, with occasional

contributions from vertical mixing and entrainment at the

base of the mixed layer (Schiller and Godfrey 2003;

Waliser 2006; Girishkumar et al. 2017). Both models and

observations indicate that the intraseasonal oscillation of

the northern Indian Ocean SST impacts the large-scale

atmospheric wind field, temperature, humidity, and the

active–break cycle of monsoon convection (Vecchi and

Harrison 2002; Waliser 2006; Yang et al. 2008). Studies

suggest that fluctuations in SST, driven by surface heat

fluxes (Qnet), can be used as an indicator or proxy for the

forecast of active andbreakperiods in themonsoon (Vecchi

andHarrison 2002; Parampil et al. 2010). Consequently, the

accurate measurement and representation of SST andQnet

are critical in understanding and predicting SW monsoon

processes over the BoB (Vialard et al. 2012) and monsoon

variability and dynamics (Vecchi and Harrison 2002).

Several studies have reported significant differences

between flux products and in situ data in the Indian

Ocean (e.g., Yu et al. 2007; McPhaden et al. 2009; Kumar

et al. 2012; Goswami et al. 2014; Weller et al. 2016).

McPhaden et al. (2009) found that then-current numeri-

cal weather prediction (NWP) products underestimated

Qnet by 40–60Wm22 compared with in situ estimates

from a moored buoy near 08, 80.58E. Their results sug-
gested that the accumulation of these deficiencies in heat

flux over time could result in 28C errors in SST. Kumar

et al. (2012) compared reanalysis products with moored

buoy data in the global tropical oceans to create a blended

flux product, TropFlux, which is based on fields from

the best-performing product: the European Centre for

Medium-Range Weather Forecasts (ECMWF) ERA-

Interim (ERA-I) (Dee et al. 2011). They found that

older reanalyses had larger biases and rms differences

than ERA-I when compared to the in situ data. Yu et al.

(2007) comparedNWP, reanalysis, and blendedproducts for

annual, seasonal, and interannual time scales in the Indian

Ocean and found differences between 53 and 108Wm22 for

daily averagedmeasurements.Goswami et al. (2014) showed

that the coupled Climate Forecast System Reanalysis

(CFSR) product does not accurately simulate monsoon in-

traseasonal variability. These studies highlight significant

shortcomings with reanalysis fields in the Indian Ocean and

suggest that the accumulated errors found in reanalysis and

blendedproducts could lead to significantdeficiencies in their

representation of Indian Ocean processes.

To determine whether any reanalysis product gives a

robust representation of monsoon processes, particularly

in the BoB, it is important to understand their individual

performances in representing air–sea fluxes and related

meteorological parameters, such as SST, surface wind

speed V, air temperature Ta, and specific humidity qa. The

products examined in this work include the atmospheric

global reanalysis products: ERA-I (Dee et al. 2011); the

National Aeronautics and Space Administration (NASA)

Modern-Era Retrospective Analysis for Research and

Applications, version 2 (MERRA-2) (Rienecker et al.

2011); the Japan Meteorological Agency (JMA) Japanese

55-year Reanalysis (JRA-55) (Kobayashi et al. 2015); the

National Centers for Environmental Prediction (NCEP)

CFSR (Saha et al. 2010); and the air–sea flux product fo-

cused on the tropical oceans, TropFlux (Kumar et al.

2012). The products are assessed using in situ data from the

Research Moored Array for African–Asian–Australian

Monsoon Analysis and Prediction (RAMA) (McPhaden

et al. 2009). TheBoB is a region wheremonsoon processes

are still not fully understood (Weller et al. 2016) and in situ

data are sparse (Vinayachandran et al. 2018), making

gridded reanalysis products hard to verify.

Section 2 gives a brief overview of the datasets used in

this paper, including four reanalysis products, a blended

product, and in situ data. The analysis and discussion of

air–sea fluxes in the BoB for the SW monsoon season

[June–September (JJAS)] is presented in sections 3, 4,

and 5. There is a comparison of reanalysis products with

in situ data from RAMA buoys in the BoB for in-

terannual variability (section 3), an in-depth analysis of

individual flux components (section 4), and an evalua-

tion of the reanalysis products’ characterization of ba-

sinwide air–sea fluxes and the associated intraseasonal

variability from the boreal summer intraseasonal oscil-

lation (section 5). A summary is given in section 6.

2. Data and methods

The characterization of air–sea fluxes in the BoB from

flux products is investigated using meteorological (SST,

V, Ta, and qa) and flux parameters [shortwave radiation
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QSW, longwave radiation QLW, sensible heat flux QSH,

latent heat flux QLH, and Qnet] from four reanalysis

products, one blended product, and in situ data from the

RAMA. The surface fluxes from the reanalysis products

are model fluxes; turbulent fluxes for RAMA and

TropFlux are calculated from meteorological parame-

ters following Fairall et al. (2003); and radiative fluxes

are measured by RAMA and derived as described in

Kumar et al. (2012) for TropFlux. In all reanalysis (and

blended) datasets, Ta and qa are provided at 2-m height

above sea level, and V is provided at 10m. The in situ

buoy data measure Ta and qa at 3m and V at 4m, which

are adjusted to 2 and 10m, respectively, using the

COARE, version 3.0, algorithm (Fairall et al. 2003).

Note, qa is not available from ERA-I or at the RAMA

sites. Instead, we use dewpoint temperature from ERA-

I and relative humidity in the case of RAMA, from

which we derive the vapor pressure e and thus calculate

qa, as per Bolton (1980),

q
a
5

�
«

e

p2 e(12 «)

�
3 1000, (1)

wherep is surface pressure, and «5 0.622 is the ratio of the

molecular masses of water vapor and dry air. Similarly the

specific humidity at the sea surface qs is computed from

SST as per Eq. (1), where the saturation specific humidity

is assumed to be at 98% saturation at the SST.

Data were obtained at the temporal resolutions de-

scribed in section 2a for JJAS from 2007 to 2015 and

then daily averaged, as daily resolution is adequate for

resolving intraseasonal variability, which is the primary

mode of variability for monsoonal processes. In the

following sections, both meteorological and flux vari-

ables from the reanalysis data have been regridded to

18 3 18, by linear interpolation, where necessary. The

data products used in this paper are briefly described

here and in Table 1.

a. Reanalysis and blended products

ERA-I is a global atmospheric reanalysis product

from the ECMWF (Dee et al. 2011). The data assimi-

lation system for ERA-I uses four-dimensional varia-

tional (4D Var) analysis, with an improved hydrological

cycle and quality control compared with the previous

ECMWF reanalysis product, ERA-40 (Berrisford et al.

2011). The mean state variables used here are from the

analysis field (step 0) at 6-hourly time intervals and the

flux variables are from the forecast field (step 12) at

3-hourly time intervals. All variables are obtained on a

18 3 18 horizontal grid.
TropFlux is a blended (reanalysis based) product of

air–sea fluxes and associated meteorological variables

over the global tropical oceans, from 308S to 308N
(Kumar et al. 2012, hereinafter KP12). TropFlux uses

satellite cloud data from ISCCP (Zhang et al. 2004) to

computeQSW and bias-adjusted ERA-I (Dee and Uppala

2009) data to compute SST, V, Ta, qa, and QLW as

C
tf
(x, y, t)5 a[C(x, y, t)2C(x, y)]1b(x, y)1C(x, y),

(2)

where Ctf is the corrected ERA-I variable C, and the

long-term mean is C. The amplitude a and bias b ad-

justments of the TropFlux variables are based on a

comparison between the reanalysis product and in situ

data from the Global Tropical Moored Buoy Array

(McPhaden et al. 2010). The turbulent fluxes were

computed using the COARE, version 3.0 (COARE3.0),

algorithm (Fairall et al. 2003) on the corrected daily

averaged input variables and, since TropFlux computes

TABLE 1. Summary of reanalysis, blended (marked with an asterisk), and in situ products used in this study.

Product Input SST Resolution Period Reference Flux method

ERA-Interim See Dee et al. (2011) Subdaily (3 and 6 hourly),

0.758 3 0.758
1979–present Dee et al. (2011) Model

TropFlux* Bias-corrected ERA-I Daily, 1.08 3 1.08 1979–present Kumar et al. (2012) COARE3.0

JRA-55 Centennial Observation-

Based Estimates

(COBE) SST (Ishii

et al. 2005)

Subdaily (3 and 6 hourly),

0.568 3 0.568
1979–present Kobayashi et al.

(2015)

Model

MERRA-2 See Bosilovich et al.

(2015)

Subdaily (1 hourly),

0.58 3 0.6258
1980–present Bosilovich et al.

(2015)

Model

CFSR See Saha et al. (2011) Subdaily (6 hourly),

0.58 3 0.58
1979–2011 Saha et al. (2010) Model

CFSv2: 2011–present Saha et al. (2011)

RAMA Observed Subdaily (1-hourly fluxes;

2-min radiation data;

and 10-min surface

meteorological data)

2007–present McPhaden et al.

(2009)

COARE3.0
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heat fluxes from daily averaged data, a gustiness cor-

rection is applied to the surface wind speed parameter to

compensate for the higher-frequency (,1 day) fluctua-

tions in wind speed, which result in underestimations in

the flux variability based on results of Cronin et al.

(2006). The cool skin and warm layer calculations in

COARE, version 3.0, are switched off (KP12). The

gustiness correction is applied to the surface wind speed

parameter only for the computation of turbulent heat

fluxes. The TropFlux data are served as daily means on a

18 3 18 horizontal grid. The spatially homogeneous

amplitude adjustment a acts to increase the variance of

all the parameters in ERA-I around their long-term

values. We note that TropFlux adjusts ERA-I meteo-

rological parameters based on measurements from the

Global Tropical Moored Buoy Array, however, only

data to the end of 2009 were available at the time

TropFlux was produced. At this time RAMA had only

recently been established: Measurements at mooring

b28 started in November 2006, with moorings b26

and b27 being added a year later. The observational

constraints will therefore be dominated by the longer-

established moorings in the Pacific, and to a lesser ex-

tent, in the Atlantic.

JRA-55 is the second global atmospheric reanalysis

product produced by the JMA (Kobayashi et al. 2015),

built to improve upon JRA-25 (Onogi et al. 2007). JRA-

55 has a new longwave radiation scheme, increased

spatial resolution, and uses variational bias correction

(VarBC) and 4D Var analysis. The data used here are

on a 0.568 3 0.568 grid, using analysis fields for the mean

state variables and 3-hourly averages for the flux

variables.

MERRA-2 is a global atmospheric reanalysis of the

satellite period produced by NASA (Bosilovich et al.

2015), and updated from the original MERRA product

(Rienecker et al. 2011). MERRA-2 uses an updated

atmospheric data assimilation system: the Goddard

Earth Observing System Model, version 5 (GEOS-5),

with a three-dimensional variational (3D Var) analysis

algorithm. Important updates to MERRA-2 since the

original MERRA product also include an updated ob-

serving system with more satellite observations and an

aerosol analysis (Bosilovich et al. 2015). TheMERRA-2

data have a spatial resolution of 0.58 latitude by 0.6258
longitude on 72 levels. Here, the mean state variables

are at 1-hourly, instantaneous, single-level diagnostics

and the flux variables are 1-hourly, time-averaged, ra-

diation diagnostics.

CFSR is a coupled ocean–atmosphere reanalysis

product created by NCEP (Saha et al. 2010). The Cli-

mate Forecast System model that CFSR uses includes a

spectral atmospheric model and the Modular Ocean

Model from the Geophysical Fluid Dynamics Labora-

tory. The atmospheric model has a spatial resolution of

0.58 3 0.58 on 37 vertical levels, and the ocean model

has a resolution of 0.58 on 40 vertical levels. CFSR was

completed for the period 1979–2009 and was later ex-

tended to 2011. In 2011, CFSv2 was implemented as a

continuation of CFSR (Saha et al. 2011). As CFSv2 uses

the same model as CFSR, the CFSv2 product is treated

as an extension of CFSR, andCFSv2 is hereafter implied

in any mention of CFSR. The data were available at 6-h

forecast field for mean state variables and at 6-h aver-

aged field for flux variables.

All reanalysis products assimilate ocean observations

from fixed mooring arrays, including the Global Tropi-

cal Moored Buoy Array (McPhaden et al. 2010).

b. In situ data: The RAMA

RAMA is an array of moored buoys in the Indian

Ocean that provide atmospheric and oceanographic

data for the study of ocean circulation, air–sea in-

teractions, and monsoon dynamics (McPhaden et al.

2009). The types of moored buoys relevant for this study

within the RAMA network are the surface and en-

hanced surface moorings. The enhanced surface moor-

ings are Autonomous Temperature Line Acquisition

System (ATLAS) moorings with additional sensors for

pressure and longwave radiation measurements de-

signed for measuring complete air–sea interactions and

are denominated flux reference sites. In the BoB, there

are two surface moorings located at 88N, 908E (desig-

nated b26) and 128N, 908E (b27), and one enhanced

surface mooring at 158N, 908E (b28).

Meteorological variables used include SST (measured

at 1m below sea surface), V (measured at 4m above

sea surface and converted to 10-m height by the data

providers), Ta (measured at 3m above sea surface and

adjusted to 2m), and relative humidity (measured

at 3m above sea surface and adjusted to 2m), and qa
is computed from Ta and pressure as in Eq. (1). All

height adjustments use the COARE3.0 algorithm as

per Fairall et al. (2003). Table 2 shows the uncertainties

for the meteorological variables (SST, V, Ta, and

humidity), which correspond to the Next Generation

ATLAS Mooring Sensors accuracies listed on the

NOAA/PMEL website (https://www.pmel.noaa.gov/gtmba/

sensor-specifications). These accuracies are based on

calibrations for predeployment and postrecovery. DT
and Dq uncertainties are calculated using quadrature

(Table 2).

The air–sea flux variables are computed using the

COARE, version 3.0b, algorithm (Fairall et al. 2003;

Cronin et al. 2006) by data providers. Net radiative

fluxes, also calculated by providers, were calculated from
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measured downwelling components following Cronin

et al. (2006) such that

Q
SW

5 (12a)SWR and (3)

Q
LW

5 «(bT4
s 2LWR), (4)

where a is a constant albedo (0.055), SWR is the incoming

downwelling radiation, « is the emissivity (0.97), b is

the Stefan–Boltzman constant (5.67 3 1028Wm22K24),

Ts is the skin temperature (K), and LWR is the in-

coming downwelling longwave radiation. For the turbu-

lent fluxes, biases from daily resolved wind speed in the

RAMA fluxes (computed using COARE3.0) are mini-

mized by applying a gustiness correction in the wind

speeds prior to their use in the bulk flux calculations as per

Cronin et al. (2006). We estimated the turbulent flux un-

certainties (Table 2) from the standard deviation of dif-

ferences between RAMA turbulent fluxes (calculated

using hourly data input for the COARE3.0 algorithm,

including cool skin and warm layer effects) and turbulent

fluxes estimated from RAMA meteorological variables

perturbed with the instrument uncertainties [input data

were daily averaged in the COARE3.0 algorithm, and as

per Cronin et al. (2006) cool skin and warm layer effects

were turned off]. We note that there is a mean difference

of 0.13 and 2.25Wm22 for QSH and QLH, respectively,

when comparing turbulent fluxes estimated from hourly

averaged data (cool skin and warm layer effects turned

on) and daily averaged data (cool skin and warm layer

turned off). Subsets of RAMA data can be obtained

from the TAO Project Office of NOAA/PMEL, where

meteorological and flux variables are available at high

(up to 10min) resolution. All meteorological and flux

variables are presented in this paper averaged to give

daily resolution.

The RAMA moorings in the BoB have been opera-

tional since 2007; however, issues in buoy maintenance

affect data return, resulting in intermittent data cover-

age (McPhaden et al. 2010). Figure 1 shows the avail-

ability of parameters used in this study at b28. As b27

and b26 are not flux reference sites, pressure (hence qa)

and QLW are not available at these buoy locations (not

shown here). The most comprehensive coverage occurs

at site b28, with almost complete data return in SST.

Noticeable gaps for the remaining variables occur

mostly during 2007, 2008, 2011, 2012, and (for V and

turbulent fluxes only) 2013. Because of the data limita-

tion at sites b27 and b26, the following time series

analysis using reanalysis products and the RAMAbuoys

will focus only on data from site b28.

3. Evaluation of meteorological and flux variables

In this section, the five data products are evaluated

against in situ data from the RAMA buoy b28 in the

BoB for JJAS from 2007 to 2015. We evaluate the me-

teorological parameters important for calculation of

turbulent fluxes: SST,V,Ta, and qa, as well as the air–sea

temperature difference DT, the air–sea humidity dif-

ference Dq, the turbulent fluxes QSH and QLH, the ra-

diative fluxes QSW and QLW, and the Qnet. In the

following section, meteorological variables are further

investigated to understand their impact on the turbulent

fluxes in this region and the causes for disparities in the

products’ ability to represent surface fluxes.

Individual daily values of the surface fluxes and as-

sociated variables for each of the products are compared

to RAMA buoy b28 using four metrics. First the dif-

ferences (product minus b28) and their 95% confidence

intervals (calculated using a t test implemented in R

using function t.test; R Core Team 2015) are presented

(Fig. 2a). Second, the Pearson product moment corre-

lation coefficients for each product with b28 and their

95% confidence intervals (calculated in R using function

cor.test) are presented (Fig. 2b). Figure 2c shows the

variance ratio of the parameters with their 95% confi-

dence interval (calculated using an F test implemented

TABLE 2. Summary of documented (SST, V, Ta, and qa) un-

certainties (McPhaden et al. 2009) and calculated (DT, Dq, QSH,

and QLH) uncertainties from the RAMA buoy instruments.

Measurement Uncertainty

SST 60.028C
V 60.2m s21

Ta 60.28C
qa 60.2 g kg21

DT 60.28C
Dq 60.28 g kg21

QSH 62.5Wm22

QLH 67.3Wm22

FIG. 1. Availability of data at buoy site b28 (158N, 908E) for
meteorological and flux parameters used in this study.
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in R using function var.test). Figure 2d combines these

metrics to give skill scores for each product and variable

(Wallcraft et al. 2009). Skill scores are an established

way to assess the quality of numerical weather forecasts

(Murphy 1988) and are based on the correlation be-

tween the product being assessed and a reference stan-

dard, penalized for disagreement in mean values and

variance ratio. Thus, if we denote xi (where i5 1, . . . , n)

FIG. 2. (a) Difference (product minus RAMA), (b) correlation, (c) variance ratio, and (d) skill score for re-

analysis products (ERA-I, TropFlux, JRA-55, MERRA-2, and CFSR) against data from RAMA buoy b28. The

95% confidence intervals are shown in the difference, correlation, and variance ratio metrics. The variables

evaluated are themeteorological parameters SST (8C),V (m s21),Ta (8C), qa (g kg
21),DT (8C), andDq (g kg21) and

fluxesQSW (Wm22),QLW (Wm22),QSH (Wm22),QLH (Wm22), andQnet (Wm22), for JJAS from 2007 to 2015.

Uncertainties as per Table 2 are shown in (a), indicated by the horizontal dashed lines, and a split scale to dif-

ferentiate between meteorological and flux parameters.
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as the observations and yi (where i5 1, . . . , n) as a data

product for a sample of n, we can define the linear cor-

relation R and skill score SS, between xi and yi as per

Murphy (1988),

R5
1

n
�
n

i51

(x
i
2 x)(y

i
2 y)

s
x
s
y

and (5)

SS5R2 2

�
R2

s
y

s
x

�2

2

�
y2 x

s
x

�2

, (6)

where x, y and sx, sy are the sample mean and standard

deviation of xi and yi, respectively. Skill scores of 1 dem-

onstrate perfect agreement between the data products

and the observed data. Perfectly correlated data with a

25%underestimate of variance and a bias ofmagnitude of

25% of the variance would have a skill score of 0.5.

Negative skill scores typically arose in our comparison

resulting from substantial underestimates of variance

combined with large mean differences, although there

were also some low correlation values.

a. Sea surface temperature

For SST, all reanalysis products show fairly strong cor-

relations with RAMA buoy b28 (Fig. 2b). ERA-I shows

the largest offset (20.378C), followed by MERRA-2

(20.208C), both underestimating the in situ SST (Fig. 2a).

Both these reanalyses use the Operational SST and Sea

Ice Analysis (OSTIA) foundation SST product (Donlon

et al. 2012) in the period of our analysis, so are expected to

have colder SSTs than a standard near-surface estimate.

MERRA-2 uses OSTIA after 2006 and ERA-I from

February 2009. The reason for the difference between the

SST for these products is therefore not clear; their

agreement improves from 2009 but remains 0.28C (not

shown). JRA-55 SST agrees well with b28, with the

smallest bias and highest correlation (0.90; Fig. 2b), giving

the highest skill in reproducing the b28 SST (Fig. 2d),

despite an underestimate of the variance (Fig. 2c). The

coupled product CFSR also shows a good representation

of the observed SST. We note that the CFSR SST is

constrained through a relaxation coefficient at the sea

surface (i.e., model SST is nudged toward observed SST),

which counteracts any drift in the model related to error

in the surface fluxes (Xue et al. 2011). On the other hand,

JRA-55, MERRA-2, and ERA-I are atmosphere-only

reanalysis products with prescribed SST fields (Table 1).

b. Surface wind speed

The parameterV shows the highest correlation ($0.9)

across all products with V from RAMA buoy b28.

TropFlux andMERRA-2V are closest to that from b28.

ERA-I and JRA-55underestimate andCFSRoverestimates

the observed V (Fig. 2a). Variance ratios are around 1,

apart from CFSR, which shows significantly greater var-

iance inV than b28 (Fig. 2c); V shows the best skill scores

across the variables with ERA-I, TropFlux, and JRA all

having skill scores of about 0.9 (Fig. 2d).

c. Air temperature

The highest Ta correlations are observed with ERA-I,

TropFlux, and JRA-55 ($0.83) and the lowest correla-

tion with MERRA-2 (0.62) (Fig. 2b). ERA-I has the

largest offset (20.388C), the other products are within

0.18C of b28 (Fig. 2a). TropFlux significantly over-

estimates the variance, and MERRA-2 and CFSR sig-

nificantly underestimate the variance (Fig. 2c). Overall

JRA-55 shows the best skill, followed by TropFlux

(Fig. 2d).

d. Specific humidity

The products all struggle with reproducing the ob-

served qa. KP12 found that ERA-I underestimated qa
and attributed more than half of that estimate to a cold

bias in Ta and the remainder to an underestimate in the

relative humidity. However their adjustment to qa for

ERA-I for TropFlux results in an overestimate at b28.

Skill scores are all less than 0.2, resulting from a com-

bination of modest correlations (,0.8), large mean

biases (.0.3 g kg21), and a large underestimate of the

variance. Our results show a CFSR dry bias also pre-

viously observed in theMaritime Continent and western

Pacific by Wang et al. (2011) and overall dry bias found

in ERA-I when compared to research vessel data

(Brunke et al. 2011).

e. Air–sea temperature difference

For all products except ERA-I, the skill scores for DT
are much lower than those for either SST or Ta (Fig. 2d).

JRA-55 performs best, combining a small bias (Fig. 2a)

with the strongest correlation (Fig. 2b) and is the only

product to make a reasonable estimate of the variance

(Fig. 2c).

f. Air–sea humidity difference

The skill scores for Dq for ERA-I, JRA-55, and

MERRA-2 are larger than their respective skill scores

for qa, but the best skill score is only 0.5 for MERRA-2

(Fig. 2d). Modest correlations combined with large

biases for most products (Fig. 2a) and a very signifi-

cant underestimate of variance (Fig. 2c) give poor skill

overall.

g. Shortwave radiation

For all products apart from TropFlux, biases in QSW

(and QLW) are directly linked to its radiation schemes,
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spatial distribution, and aerosol properties (Dee et al.

2011). TropFlux QSW uses observed cloudiness data

from ISCCP up until the end of 2007 (when it was last

available) and the ISCCP mean seasonal cycle and ad-

justed using NOAA outgoing longwave radiation

(OLR) thereafter (KP12). TropFlux and ERA-I show

the highest correlations (;0.7) with the observed QSW

(Fig. 2b) and the highest overall skill (Fig. 2d). All of the

products underestimate QSW apart from CFSR, which

overestimates by more than 70Wm22. MERRA-2 and

CFSR show the lowest correlations (Fig. 2b) and highest

biases (Fig. 2a). Positive bias in CFSRQSW in the tropics

has been previously catalogued by Wang et al. (2011)

caused by an underestimate of cloudiness. MERRA-2’s

underestimation of QSW has been similarly linked to its

cloud scheme (general difficulties capturing irradiance

variability) in a study by Boilley andWald (2015). All of

the products significantly underestimate the variability

of QSW (Fig. 2c).

h. Longwave radiation

The skill scores forQLW are very low, with only ERA-

I achieving a positive score (Fig. 2d). All products un-

derestimate the variance (Fig. 2c) and for all of the

products other than ERA-I the biases are large relative

to the variability resulting in low skill.

i. Sensible heat flux

TropFlux has the most skill due to a relatively high

correlation of 0.79 and a small bias of slightly over

1Wm22, but overestimates the variance. ERA-I and

JRA-55 have negative skill scores due to large biases

and overestimates of variance. The poor skill in JRA-55

is hard to understand as it performed best at reproducing

DT and showed high skill for V.

j. Latent heat flux

TropFlux is the only product to have a positive skill

score forQLH. This is surprising as it had relatively poor

skill for Dq (Fig. 2d). TropFlux underestimates Dq but

shows only a small underestimate in QLH, which may

indicate that the gustiness parameter used by TropFlux

in the transfer coefficients may be acting to compensate

for low Dq with an enhanced wind effect in the flux

calculation. MERRA-2’s large overestimation of QLH

can be attributed to the fact that MERRA-2 has hu-

midity (dry) bias problems related to forecast model

spinup and spindown (Kobayashi et al. 2015). The large

QLH bias apparent in CFSR has been observed on a

global scale (larger evaporative cooling in general) and

is linked to the dry bias over the equatorial Indian

Ocean (Wang et al. 2011) and the erroneously strong

winds (Fig. 2a).

k. Net heat flux

TropFlux has the highest skill in reproducing Qnet.

CFSR does better than expected, despite having nega-

tive skill scores for three of the four flux components,

and ERA-I is the only other product to have a positive

skill score (Fig. 2d). ERA-I, JRA-55, andMERRA-2 all

have too much heat loss from the ocean. TropFlux and

CFSR all show a mean net heat gain by the ocean of

30–35Wm22 over JJAS of 2007–15, whereas ERA-I,

JRA-55, and MERRA-2 all show a net heat loss of

between220 and250Wm22 (not shown here). We note

that biases in turbulent and radiative fluxes cancel out in

theQnet from CFSR and (to a smaller degree) TropFlux.

However, biases (mostly) in QSW and QLH carry over

considerably in the Qnet biases estimated from ERA-I,

JRA-55, and MERRA-2. Thus the blended product,

TropFlux, captures the observed Qnet with greater skill

than the reanalysis products.

Similar results are found between the reanalysis

products and in situ data at other BoB RAMA buoy

locations: 128N, 908E (b27; Fig. S1 in the supplemental

material) and 88N, 908E (b26; Fig. S2 in the supple-

mental material). Based on the four metrics presented

here, SST and V perform consistently well at all three

locations; Ta struggles showing lower correlations and

poorer skill scores at b27 and b26 (more so than at b28)

and as a result DT and QSH are similarly poorly repre-

sented across most products. For QLH, results are con-

sistently poor and only TropFlux shows a skill score

greater than zero. Last,QSW performs similarly between

products for all three buoys, that is, ERA-I and TropFlux

are able to reasonably reproduce QSW while remaining

products perform poorly based on mean differences,

correlations, variance ratio, and skill score.

Based on the four metrics presented here, we find that

ERA-I captures radiative fluxes best, while TropFlux is

better at capturing the turbulent and net heat fluxes. In

general, however, QSW and QLH (and Qnet by associa-

tion) are the variables that are the hardest to capture

across all products. This is evident in the low correla-

tions, large biases, and low skill scores. Since errors in

Qnet can cause large errors in SST in the BoB and affect

the accurate representation of monsoon processes from

reanalysis products, the next section investigates the flux

components in more depth.

4. Surface fluxes at RAMA flux reference site b28

SST variability in the BoB is mainly driven by surface

heat fluxes (Sengupta and Ravichandan 2001). Accurate

representation of meteorological variables and the asso-

ciated fluxes in reanalysis products is therefore crucial for
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the correct representation of monsoon-related variability.

The individual components of surface heat fluxes are

further investigated here.

Figure 3 shows scatterplots of theQnet versus each flux

component from RAMA buoy b28, ERA-I, TropFlux,

JRA-55, MERRA-2, and CFSR. Individual daily means

are plotted as points and contours enclose 10% and 50%

of the points in each joint distribution (calculated with

R function HPDregionplot in the emdbook package;

Bolker 2008). Figure 3a shows the relationship between

QSW and Qnet at b28. QSW is the main driver of Qnet

with a strong positive correlation (r 5 0.93). QLW is

anticorrelated withQnet (r520.58; Fig. 3b) as increased

cloud cover reduces the heat gain by the ocean by QSW

and reduces the heat loss by the ocean by QLW. Both

QLH and QSH are positively correlated with Qnet (r 5
0.68 and 0.63, respectively; Figs. 3c,d) but QLH is an

order of magnitude larger.

ERA-I shows similar correlations to b28; the corre-

lations for the radiative components (QSW and QLW)

being slightly less correlated with Qnet than for b28 and

the turbulent components (QLH and QSH) more corre-

lated. The underestimate of variability inQSW andQLW

by ERA-I is clear in Figs. 3e and 3f, and the over-

estimate ofQLH and resulting bias inQnet in Fig. 3g. The

adjustments applied to ERA-I to produce TropFlux

improve performance for the TropFlux turbulent fluxes

(Figs. 3k,l) to give better alignment of the distributions

in addition to reducing biases. However the radiative

estimates from TropFlux are worse than ERA-I. Trop-

Flux QSW is constructed from ISCCP until 2007 and

bias-corrected ISCCP mean seasonal cycle and NOAA

OLR to present; hence, TropFlux QSW biases are likely

linked to the algorithm used in KP12. TropFlux QSW

shows improved (i.e., higher) variability, but shifts the

peak of the distribution to even lower values than ERA-I

(cf. Figs. 3e and 3i). The adjustments applied to ERA-I

QLW to produce TropFlux worsen its performance com-

pared with b28 (Figs. 3f,j).

The remaining three products (JRA-55, MERRA-2,

and CRSR; Figs. 3m–x) all show poor agreement with

the relationships between the flux components andQnet,

as expected from the skill scores presented in Fig. 2. The

exception is the good agreement shown for CFSR QSH

(Fig. 3x), but only because of the compensating biases in

CFSR Qnet.

Deconstructing turbulent fluxes into their meteoro-

logical components provides further insight into differ-

ences among products and helps determine if errors and

biases in QSH (QLH) at the buoy location (Fig. 2a)

originate from errors in the wind field or air–sea con-

trasts in temperature (humidity). Figures 4a–f show

scatterplots ofQLH versus the individual components of

QLH: Dq and V. The largest contributing factor to QLH

variability across all products is V, where increases in V

are linked with increases in QLH (Fig. 4d). The corre-

lation between Dq and QLH is lower (Fig. 4a) as Dq and

V are anticorrelated (Fig. 4g). This anticorrelation is

well captured by ERA-I (Fig. 4h) with a slight over-

estimate of Dq. The TropFlux corrections result in an

underestimation of Dq, but despite this the QLH agrees

reasonably with b28, perhaps because of the gustiness

adjustment to wind in the flux calculation.

The parameter DT is the strongest control on QSH

(Fig. 4j) with V contributing little to the variability

(Fig. 4m) ofQSH. This is consistent with the finding that

QSH variability is particularly sensitive to SST fluctu-

ations (cf. QLH) in the tropical Indian Ocean at in-

traseasonal time scales (DeMott et al. 2014). Both

ERA-I (Fig. 4k) and TropFlux (Fig. 4l) overestimate

the variability in DT. ERA-I is biased toward unstable

atmospheric conditions (DT positive) and TropFlux

overrepresents stable conditions. The TropFlux QSH is

strongly skewed compared to b28, but the representa-

tion of QSH is overall better than ERA-I (Fig. 2d). The

relationship between the radiative flux components at

b28 (Fig. 4s) is better captured by ERA-I (Fig. 4t) than

TropFlux (Fig. 4u).

In general,Qnet is largely driven byQSW andQLH;QLH

variability is driven by V and (to a lesser extent) Dq, and
QSH variability is mostly driven by DT. Results here

suggest errors/biases inQLH originate from both the wind

field and theDq and, asQSH shows negligible dependence

onV, the biases from the observedQSH aremore likely to

be linked with errors in the DT. The parametersQSW and

QLH are the variables the reanalysis and blended products

have the most difficulty reproducing (section 3).

5. Air–sea fluxes across the Bay of Bengal

a. Mean fields

In this section, air–sea fluxes at all points in the BoB

from the reanalysis products are compared to determine

how much of the variability observed at the RAMA

buoy sites is localized.

Figure 5 shows turbulent fluxes from five data prod-

ucts averaged over the JJASmonsoon season, from 2007

to 2015, across the BoB. The QSH values from JRA-55

and (to a lesser extent) ERA-I show higher negative

(upward) flux values, indicating greater heat loss from

ocean to atmosphere, than the other three products.

This is consistent with biases seen in section 3 (Fig. 2a),

where JRA-55 and ERA-I overestimated the observed

QSH. Differences in spatial gradients between products

occur near b28 (black square, Fig. 5), where TropFlux,
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FIG. 3. Scatterplots for Qnet vs each of QSW, QLW, QSH, and QLH (Wm22) from (a)–(d) RAMA buoy ob-

servations, (e)–(h) ERA-I, (i)–(l) TropFlux, (m)–(p) JRA-55, (q)–(t) MERRA-2, and (u)–(x) CFSR at site b28

(88N, 908E). Contours enclose 10%and 50%of the points in each joint distribution. RAMAcontours (black) are

repeated for comparison in (e)–(x).
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FIG. 4. Scatterplots of (a)–(c) QLH (Wm22) vs Dq (g kg21), (d)–(f) QLH (Wm22) vs V (m s21), (g)–(i) Dq (g kg21) vs V (m s21),

(j)–(l) QSH (Wm22) vs DT (8C), (m)–(o) QSH (Wm22) vs V (m s21), (p)–(r) DT (8C) vs V (m s21), and (s)–(u) QLW (Wm22) vs

QSW (Wm22) from (left) RAMAbuoy observations, (center) ERA-I, and (right) TropFlux at site b28 (88N, 908E). Contours enclose 10%
and 50% of the points in each joint distribution. RAMAcontours (black) are repeated for comparison in the ERA-I and TropFlux panels.
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FIG. 5. (a)–(e) Mean QSH (Wm22) and (f)–(j) QLH (Wm22) for (a),(f) ERA-I,

(b),(g) TropFlux, (c),(h) JRA-55, (d),(i) MERRA-2, and (e),(j) CFSR. All fields are

averaged for the SW monsoon season (JJAS) from 2007 to 2015. The black square

indicates the location of the RAMA buoy b28, in the BoB.
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ERA-I, and CFSR show a larger gradient decreasing

from east to west across the buoy, and MERRA-2 and

JRA-55 show almost no gradient. Other spatial differ-

ences are apparent in the patterns across coastal waters

of the BoB, such as the region around Sri Lanka and the

east coast of India, where only TropFlux and CFSR

show regions of positive QSH (i.e., heat gain to the

ocean). (We note the smaller contour range in QSH

values from 220 to 20Wm22, cf. QLH from 2200 to

0Wm22). For the mean QLH field, all products show a

region of strong QLH centered on the southern part of

the BoB, sandwiched between the equator and 108N,

covering the zonal extent of the basin. This pool of el-

evated QLH in the southern BoB appears largest and

strongest in JRA-55 and CFSR, and in TropFlux the

pool is shifted farther south and is considerably weaker

compared to the remaining reanalysis products. Near

b28 most products show a strong gradient in QLH de-

creasing from south to north, although in JRA-55 this

gradient is slightly more sloped in the southwest–

northeast direction. These patterns are consistent with

the mean and standard deviation of the QSH and QLH

from all products (Fig. S3 in the supplemental material).

Combining these results with the biases and skill scores

from section 3, where it was shown that QLH from

TropFlux underestimates the observed QLH at b28 and

the reanalysis products all overestimate the observed

QLH by a wide margin on the order of 50–75Wm22,

suggests TropFlux captures turbulent fluxes best, and

the erroneously enhanced QLH seen at the b28 location

in ERA-I, JRA-55, MERRA-2, and CFSR shows large-

scale coherence across the BoB.

In section 3, QSW was shown to have some of the

largest biases in the reanalysis products when compared

with the in situ QSW from RAMA buoy b28 data. It

follows that in Fig. 6, the meanQSW fields over the BoB

show a wide range in QSW values (;100–250Wm22),

differing quite substantially between products: CFSR

and MERRA-2 show higher and lower values, re-

spectively, ofQSW when compared to ERA-I, TropFlux,

and JRA-55. ThemeanQSW field across the BoB depicts

regions of high QSW in the vicinity of Sri Lanka and

southwest of the southernmost tip of India in TropFlux

and JRA-55, from the equator to 58N in ERA-I, but not

in theMERRA-2 or CFSR products, consistent with the

dry slot in the rain shadow of Sri Lanka (Puvaneswaran

and Smithson 1991). Since the smallest biases (which

are negative) were observed in JRA-55 and ERA-I in

section 3 (Fig. 2a), these results suggest TropFlux and

(to a greater degree) MERRA-2 values are under-

estimating the observedQSWacross the basin,whileCFSR

is overestimating them across the basin on an order of

70Wm22. CFSR also shows the greatest departure from

the spatial patterns across the BoB than any of the other

products, failing to capture the region of high QSW

around Sri Lanka and southeastern India (Fig. S3). The

difference in the range ofQLW values across products is

considerably smaller, consistent with section 3, where it

was shown that theQLW had some of the smallest biases

among the flux components (Fig. 2a). The mean field for

QLW appears to show a more consistent pattern in spa-

tial gradients from all products across the BoB, com-

pared toQSW (Figs. 6f–j). In general, there is a high–low

(south–north) gradient in QLW across the BoB.

The parameterQnet for ERA-I, JRA-55, andMERRA-2

depicts large heat loss in the central and southern re-

gions of the BoB (Fig. S4 in the supplemental material),

which is consistent with the results shown in section 3

(Fig. 2). TropFlux andCFSR, on the other hand, depict a

net heat gain by the ocean all across the basin and

strongest in the southwest and northern parts of the

basin. In particular, values for Qnet in CFSR are the

product of errors in the QLH and QSW components

canceling out. Since the patterns of variability are gen-

erally similar across the basin for all products (Fig. 6),

results from section 3 wherein TropFlux underestimates

observed QLW and all remaining products overestimate

the observed QLW at RAMA buoy b28 (Fig. 2a) are

taken to be representative of the basinwide biases in

the BoB.

b. Monsoon variability: The boreal summer
intraseasonal oscillation

In the previous sections, the performance of the re-

analysis products in simulating the day-to-day variability

at a point location in the BoB (sections 3 and 4) and the

time-mean spatial patterns over the BoB (section 5a)

was assessed. Another necessary capability of a re-

analysis product is that it should be able to simulate the

main spatial and temporal patterns of variability

within a given region, as these modes are the likely

sources of potential predictability in a forecast system

that uses reanalysis products as a forcing input. The

boreal summer intraseasonal oscillation (BSISO) is one

of the primary modes of variability associated with the

Asian summer monsoon (Webster et al. 1998; Lee et al.

2013). The BSISO is also known as the monsoon intra-

seasonal oscillation (MISO) (Suhas et al. 2013), and was

first identified as northward-propagating 30–60-day

bands of clouds and convection over India by, for ex-

ample, Sikka andGadgil (1980). It is often recognized as

the northern summer counterpart to theMadden–Julian

oscillation (MJO) (Madden and Julian 1994). Here the

BSISO index from Lee et al. (2013) is used to assess the

representation of boreal summer intraseasonal vari-

ability from the reanalysis products.
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FIG. 6. As in Fig. 5 but for QSW and QLW.
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Similar to the MJO (Wheeler and Hendon 2004), the

BSISO indices are constructed from multivariate em-

pirical orthogonal function analysis of satellite OLR

and the 850-hPa zonal wind fields from NCEP–DOE

AMIP-II reanalysis in the region of the Asian summer

monsoon (Lee et al. 2013). The first two principal

components (PCs) of the BSISO form the BSISO1,

which corresponds to the northward propagating com-

ponent of the summer monsoon and has a 30–60-day

period (Wang et al. 2005). The third and fourth PC of the

BSISO form the BSISO2, which is the northward or

northwestward component of the monsoon, usually as-

sociated with the premonsoon and monsoon onset pe-

riods, and has a period of 10–20 days (Kikuchi andWang

2010). Here we focus on the 30–60-day northward

propagating BSISO, that is, the BSISO1.

The BSISO1 mode is divided into eight phases, each

phase covering one-eighth of the cycle (Lee et al. 2013).

During phase 1, a zonally elongated band of enhanced

atmospheric convection lies over the equatorial Indian

Ocean, while a band of suppressed convection extends

from India southeastward across the BoB, Southeast

Asia, and into the equatorial western Pacific (Fig. 7).

Over phases 2, 3, and 4, the band of enhanced convection

moves northward and eastward, while the suppressed

convection retreats to the northeast and contracts. A

second band of suppressed convection then starts to de-

velop over the equatorial Indian Ocean, such that the

anomalies at phase 5 are approximately the opposite sign

to those at phase 1 (a half-cycle earlier). The new band of

suppressed convection then propagates northeastward

during phases 6, 7, and 8. Finally, enhanced convection

reestablishes itself over the equatorial IndianOcean again

in phase 1, and the next cycle begins.

The BSISO1 composites here are constructed using an

index of BSISO1 phases 1–8 based on satellite OLR and

850-hPa zonal wind fields as described in Lee et al.

(2013) [available through the Asian–Pacific Economic

Cooperation (APEC)Climate Center data portal; http://

www.apcc21.net/ser/casts.do?lang5en]. For each vari-

able V, wind direction, QSW, QLH, and Qnet, daily

anomalies were computed from the monthly mean for

JJAS 2007–15. Then, each day during the study period

was allocated to one of the eight BSISO1 phases or was

discarded if the overall BSISO1 amplitude was weak

[i.e., (PC12 1 PC22)1/2 , 1]. Data from each product

were averaged over the days in each phase to obtain the

eight phase composites of the life cycle.

The BSISO1 representations in each reanalysis prod-

uct are first validated against the in situ data at the

RAMA buoy b28 location. Figure 8 shows the median,

interquartile range, 95% confidence intervals, and out-

liers for V, wind direction,QSW,QLH, andQnet from the

in situ data and the ERA-I, TropFlux, and CFSR prod-

ucts at each phase of the BSISO1 life cycle. During phase

1 (phase 2) all products overestimate (underestimate)

the observed BSISO1V and, in general, all do a rea-

sonable job of capturing the observed V during BSISO1

phases 3–8 (Figs. 8a–d). The prevailing surface winds

remain approximately from the southwest during JJAS,

as measured by the buoy and in all the products at

the buoy location (Figs. 8e–h). The change in surface

wind direction through the cycle is less well represented

in the products. During phases 1–3, the buoy shows

winds becoming more southerly, whereas all of the

products show a change to more westerly winds during

these phases.

The RAMA QSW measurements show high median

values in phases 1–3 (Fig. 8i), during the convectively

suppressed part of the BSISO1 cycle in the northern

BoB (Fig. 7). As the enhanced convection moves into

the BoB, cloud cover increases and the QSW values de-

crease during phases 4, 5, and 7. Although the reanalysis

products do reproduce this qualitative pattern, they all

underestimate the amplitude of the QSW variability as-

sociated with the BSISO1 (Figs. 8j–l). In particular,

ERA-I and TropFlux tend to underestimate (over-

estimate) highs (lows) in the observed QSW within a

range of 645Wm22; meanwhile, although CFSR also

generally underestimates the amplitude of the variabil-

ity, it grossly overestimatesQSW values (associated with

BSISO1) in comparison with the observedQSW, with up

to values of 75Wm22. These results are consistent with

section 3, where it was shown that ERA-I and (to a lesser

degree) TropFlux reasonably estimated the observed

QSW based on skill score; and CFSR showed large pos-

itive biases, low correlation, and poor skill score for

QSW. Hence, in an ocean model forced by one of these

products, the heating of the ocean surface by QSW dur-

ing the suppressed convective phase and the cooling

during the active convective phase of the BSISO1 would

both be severely misrepresented.

The systematic error apparent inQSW is compensated

to a certain degree by a systematic error in QLH of

similar magnitude (Figs. 8n–p). TheQLH at the RAMA

buoy b28 location shows low median QLH values in

phases 1–3, indicating reduced cooling of the ocean

surface, and higher QLH values from phases 5–7, indi-

cating increased cooling of the ocean surface (Fig. 8m).

The TropFlux product does best at capturing the QLH

BSISO1 variability and magnitude. The other data

products appear to generally capture the observed var-

iability correctly; however, both ERA-I and (to a

greater extent) CFSR largely overestimate the median

values of the observedQLH, indicating erroneously high

cooling of the ocean surface. The significantly reduced
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bias in Qnet from CFSR throughout all phases (Fig. 8t)

indicates the systemic error in QSW is being largely

compensated for by the systemic error in QLH. Hence,

in the case of CFSR and (to a much smaller extent)

TropFlux, the erroneous strong cooling of the ocean

surface from high QLH values offsets the erroneous

high heating of the ocean surface from the QSW values.

ERA-I generally captures the observed BSISO1 Qnet

variability; however, the QSW and QLH offsets add up

and yield a Qnet with a sign opposite to the observed,

consistent with Fig. 2.

ERA-I has a similar pattern of QSW and QLH biases,

but the magnitude of errors is smaller in comparison to

CFSR. The blended product, TropFlux, shows similar

FIG. 7. BSISO1 life-cycle composite of NOAA OLR anomalies (shaded; Wm22) and NCEP–DOE 850-hPa wind

anomalies (vectors; m s21).
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FIG. 8.Median, interquartile range, 95%confidence interval, and outliers forV (m s21), wind direction (8),QSW (Wm22),QLH (Wm22),

andQnet (Wm22) vs BSISO1 phases 1–8 from (a),(e),(i),(m),(q) RAMA buoy b28; (b),(f),(j),(n),(r) ERA-I; (c),(g),(k),(o),(s) TropFlux;

and (d),(h),(l),(p),(t) CFSR. The red line is the RAMA buoy b28 median line repeated for comparison in the ERA-I, TropFlux, and

CFSR panels.
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offsets in the QSW; however, its QLH and Qnet are more

realistic and appear to capture best of the observed

BSISO1 QSW and QLH variability. These results are

consistent with section 3, where it was showed that in

general ERA-I does better at capturing radiative fluxes

and TropFlux captures turbulent and net heat fluxes

best. To calculate QSW, TropFlux uses observed cloud-

iness data from ISCCP up until 2009 (when it was last

available) and the ISCCP mean seasonal cycle and

NOAA OLR thereafter (KP12), whereas the four re-

analysis products use their internally generated cloud

fields, which are dependent on their convective and

microphysical parameterization schemes. This high-

lights the well-known major errors in these schemes

(e.g., Boilley and Wald 2015). These errors clearly im-

pact intraseasonal variability as well as the mean fields.

Figure 9 shows composites of daily anomalies from

the monthly mean for JJAS from 2007 to 2015 for

QSW, QLH, V, and qa during the most extreme phases

(phases 2 and 5) of the BSISO1 life cycle over the BoB

from TropFlux (shaded) and ERA-I (contours). During

phase 2, both products depict large positive QSW

anomalies in the northern BoB, and negativeQLH andV

anomalies in the eastern BoB (Figs. 9a–c), indicating

clear skies and suppressed convection in that region. In

phase 5, the anomalies have flipped sign, and there is an

elongated zonal band of negative QSW anomalies and

positive QLH and V anomalies across the BoB, in-

dicating enhanced convection, in agreement with the

BSISO1 life cycle from NOAA OLR and NCEP–DOE

wind fields (Fig. 7) and the BSISO1 life cycle at the

RAMA buoy b28 location (Fig. 8). Generally, both

TropFlux and ERA-I consistently capture the correct

patterns of variability associated with the BSISO1 at

phases 2 and 5 (see Fig. 7). However, ERA-I shows

weaker QSW anomalies and stronger QLH anomalies

than TropFlux, consistent with results observed at the

RAMAbuoy b28 location that suggest TropFlux is more

accurate at this location (Fig. 8).

In contrast, the BSISO1 life cycles ofQSW andQLH in

JRA-55, MERRA-2, and CFSR are shown to be noisier

(Fig. 10) than their counterparts in TropFlux and ERA-

I, especially during phase 5. During phase 5, usually

characterized by a zonal band of enhanced convection in

the northern BoB, JRA-55 only captures a weakened

band of negative QSW anomalies in the northernmost

and easternmost parts of the BoB (Fig. 10d). In

MERRA-2, the BSISO1 signal is barely perceptible

from theQSW, and in CFSR the band ofQSW variability

is weakened and shifted south (Figs. 10e,f). CFSR fur-

ther shows exaggeratedly high positive QLH anomalies

that compensate for the QSW bias. The diminished QSW

variability in MERRA-2 can likely be attributed to the

MERRA-2 negative bias, low correlation, and poor skill

score in QSW (Fig. 2). The difficulties of MERRA-2,

JRA-55, and CFSR in capturing the BSISO1 signal

across the basin is consistent with their difficulties cap-

turing the BSISO1 variability at RAMA buoy b28

(Fig. 8) and can be directly attributed to the products’

difficulties in representing surface fluxes, as seen in the

previous sections (i.e., sections 3 and 4). In general,

TropFlux and ERA-I captured the observed BSISO1

QSW best, and TropFlux captured the observed BSISO1

QLH and Qnet best; both products depicted a life-cycle

composite that was encouragingly similar to the Lee

et al. (2013) OLR life cycle (Fig. 8).

Finally, we note that with low wind speeds and high

radiation, the effectiveness of the radiation shields on

the Ta and humidity sensor decreases (Anderson and

Baumgartner 1998). Anderson and Baumgartner (1998)

estimated that for naturally ventilated sensors, errors of

up to 3.48C in the mean daytime temperature could lead

to biases of 22Wm22 in the turbulent fluxes. Here theTa

and humidity sensor aboard the ATLAS moorings used

multiplate radiation shields and are naturally ventilated,

hence high radiation and low wind speeds may result in

less effective shielding (Freitag et al. 2001). Specifically,

manufacturer estimates that for radiation above

1080Wm22 and winds at or below 3ms21, the temper-

ature bias can increase from 0.28 to 0.48C (Freitag et al.

2001). During phase 1 of the BSISO1, when wind speeds

drop to 3ms21 and the solar radiation is quite high as a

result of suppressed convection, there are greater

chances ofTa errors occurring because of poor shielding.

However, careful examination of the Ta anomalies per

phase (not shown here) suggests there are no significant

Ta errors. The high wind speed during the majority of

the phases (2–8) decreases the chances of radiation

shields contributing to the overall error.

6. Summary and conclusions

In this study, five data products are analyzed and

compared with in situ data from a moored array in the

BoB to determine how well the reanalysis products

characterize air–sea fluxes and intraseasonal variability

during the SW monsoon season. Specifically, meteoro-

logical parameters, SST, V, Ta, and qa, air–sea temper-

ature differenceDT, air–sea humidity differenceDq, and
fluxes, QSW, QLW, QSH, QLH, and Qnet from ERA-I,

TropFlux, JRA-55, MERRA-2, and CFSR were evalu-

ated for JJAS from 2007–15, and compared with in situ

data from theRAMA surface flux reference site at 158N,

908E, denoted b28. In general, most products did rea-

sonably well at representing the meteorological vari-

ables, although qa had the lowest correlations, highest
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FIG. 9. Composite of phases (a)–(d) 2 and (e)–(h) 5 of the BSISO1 life cycle. TropFlux (shaded) and ERA-I

(contours) of QSW anomalies at phase 2 in (a) and 5 in (e); QLH anomalies at phase 2 in (b) and 5 in (f); V

anomalies at phase 2 in (c) and 5 in (g); and qa anomalies at phase 2 in (d) and 5 in (h). ERA-IQSW contours

range from240 to 40Wm22 andQLH contours range from230 to 30Wm22, with 5Wm22 contour interval.

ERA-IV contours range from23 to 3ms21, with 0.5ms21 contour interval. ERA-I qa contours range from21

to 1 gkg21, with 0.2 gkg21 contour interval. The black square indicates the location of the RAMA buoy b28.
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biases, and lowest skill scores across all products (Fig. 2).

TropFlux and ERA-I performed best, while the coupled

product, CFSR, exhibited some of the largest biases.

From the flux variables,QSW andQLH were shown to be

the main drivers of the observed Qnet variability, but

were also the two variables the products had the most

difficulty capturing. Correlations were lowest for the

radiative fluxes and QSH, and there were nonnegligible

biases in the range of 50Wm22 in QSW. For QLH, all

products other than TropFlux overestimated the ob-

served QLH by at least 40Wm22, while the TropFlux

bias was approximately 10Wm22. In general, based on

mean biases, correlations, and skill scores, ERA-I was

shown to capture radiative fluxes best, while TropFlux

better captured turbulent and latent heat fluxes. Skill

scores indicated poor performance for QLH and the ra-

diative fluxes inMERRA-2 and CFSR, and we note that

for the coupled ocean–atmosphere product CFSR, these

biases canceled each other out in the Qnet.

The temporal-mean fields for the fluxes across the

BoB were investigated in section 5a, where various

discrepancies were observed in the spatial patterns

FIG. 10. Phases (a)–(c) 2 and (d)–(f) 5 of theQSW (shaded) andQLH (contours) anomalies

(Wm22) from (a),(d) JRA-55, (b),(e) MERRA-2, and (c),(f) CFSR based on the BSISO1

phases. TheQLH contours range from240 to 40Wm22, with 5Wm22 contour interval. The

black square indicates the location of the RAMA buoy b28.
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among the products. For QSH, the patterns were con-

sistent across ERA-I, TropFlux, and CFSR, although

JRA-55 and ERA-I had large negative biases, indicating

erroneously high heat loss to the atmosphere and

therefore erroneous cooling of the sea surface. Patterns

of QLH variability were generally consistent across all

products (i.e., a region of high QLH in the southwest

corner of the BoB), although values ranged on the order

of 40Wm22 between the reanalysis products. For QSW,

ERA-I outperformed the other three products by a wide

margin (CFSR, in particular, showed much higher

values and different spatial gradients than the other

products). Differences inQLH andQSW in the reanalysis

products were generally attributed to differences or is-

sues with the internally generated cloud fields and/or

schemes (e.g., Wang et al. 2011; Boilley andWald 2015).

ForQLW, even though spatial gradients were consistent,

correlations high, and biases small, skill scores were low

(except for ERA-I) across all products. In general, re-

sults from the temporal-mean field indicate that the re-

sults at the b28 location are not localized, and biases of

similar magnitude to those seen at b28 will be wide-

spread across the BoB. Further, the biases in the fluxes

implied by the meteorological parameters at b28 are

likely representative of the magnitude of biases ob-

served in other regions in the basin in the temporally

averaged fields.

The BSISO1 index, representative of the northward

propagating component of the summer monsoon (with a

30–60-day periodicity), was used to test the ability of the

different products to represent the principal mode of

atmospheric variability in the BoB in this season, in

particular in the representation of QSW and QLH in

ERA-I, TropFlux, and CFSR. Comparison with RAMA

buoy b28 suggested TropFlux and ERA-I most reliably

captured surface flux variability compared with the ob-

served BSISO1 QSW cycle at 158N, 908E; however,

TropFlux captured the variability and magnitude of the

observed QLH and Qnet best. The analysis of the mean

fields, the comparison with BSISO1 at b28, and com-

parison with Lee et al. (2013) satellite OLRmaps allows

us to extend this confidence over the entire BoB. Thus,

both TropFlux and ERA-I appear to best represent the

variability of the surface fluxes at RAMA buoy b28 and

across the entire BoB basin. Conversely, MERRA-2,

CFSR, and JRA-55 struggled to capture the climatic

variability associated with the BSISO1, with weak QSW

variability at the location of RAMA buoy b28 suggest-

ing that the convective signal is poorly represented in

these products, while the overestimation of QLH vari-

ability suggests erroneous surface wind and humidity

fields. Hence, we infer inability to accurately capture or

reproduce the surface fluxes at b28 or at mean field

levels shows that the MERRA-2, CFSR, and JRA-55

products will similarly struggle to capture variability

associated with the boreal summer monsoon.

As air–sea fluxes have been shown to be key players in

monsoon variability (Vecchi and Harrison 2002), cau-

tion is advised when selecting a data product to repre-

sent monsoonal processes. This study has highlighted

significant and critical deficiencies in reanalysis flux

products from the accumulated errors observed in the

meteorological parameters and surface fluxes specific to

the southwest monsoon time period and have yet to be

verified for the entire seasonal cycle. In general, ERA-I

and TropFlux were shown to outperform MERRA-2,

JRA-55, and CFSR; ERA-I represented radiative fluxes

best, while TropFlux better captured turbulent and net

heat fluxes. Based on findings shown here, this analysis

recommends TropFlux and ERA-I as the best available

products for the study of air–sea fluxes and intraseasonal

variability over the BoB during the SWmonsoon, or for

the forcing of oceanmodels during boreal summer in the

tropical Indian Ocean.
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