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Abstract
The presence of outliers in the data has implications for stochastic frontier analysis, and indeed any performance
analysis methodology, because they may lead to imprecise parameter estimates and, crucially, lead to an exaggerated
spread of efficiency predictions. In this paper we replace the normal distribution for the noise term in the standard
stochastic frontier model with a Student’s t distribution, which generalises the normal distribution by adding a shape
parameter governing the degree of kurtosis. This has the advantages of introducing flexibility in the heaviness of the
tails, which can be determined by the data, as well as containing the normal distribution as a limiting case, and we
outline how to test against the standard model. Monte Carlo simulation results for the maximum simulated likelihood
estimator confirm that the model recovers appropriate frontier and distributional parameter estimates under various
values of the true shape parameter. The simulation results also indicate the influence of a phenomenon we term ‘wrong
kurtosis’ in the case of small samples, which is analogous to the issue of ‘wrong skewness’ previously identified in the
literature. We apply a Student’s t-half normal cost frontier to data for highways authorities in England, and this
formulation is found to be preferred by statistical testing to the comparator normal-half normal cost frontier model. The
model yields a significantly narrower range of efficiency predictions, which are non-monotonic at the tails of the
residual distribution.
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1 Introduction

Frontier analysis is concerned with the measurement of
efficiency relative to an estimated production or cost fron-
tier. The presence of noise in the sample is potentially
problematic in two ways: it affects the position of each
decision making unit (DMU) relative to the frontier, and it
affects the precision of the estimates of the shape of the
frontier itself. The magnitudes of these effects vary from

one method to another: deterministic methods, such as data
envelopment analysis (DEA) (Charnes et al. 1978) and
corrected ordinary least squares (COLS) are particularly
sensitive, given that they make no allowance for noise. In
contrast, Stochastic Frontier (SF) Analysis explicitly con-
trols for noise, mitigating its impact on the estimated
frontier and on individual efficiency scores.

The range of efficiency scores may still be very large in
the presence of data with outlying observations. In terms
of empirical motivation for this paper, this paper is in
response to the authors’ finding of an implausibly wide
range of efficiency scores in our work studying cost dri-
vers and cost efficiency in the highways maintenance
operations of local authorities in England, which utilises
detailed data on operating and capital expenditure pro-
vided by each authority. This can be narrowly explained
as being due to a combination of under-reporting and
over-reporting of expenditure, unobserved investment
cycle effects, and extreme weather events. However we
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also came across this issue in a number of other datasets,
across numerous sectors including hotels in Taiwan (Chen
2007), container ports (Cullinane et al. 2006), regional
iron and steel production in China (Lin and Wang 2014),
crop farms in Poland (Latruffe et al. 2004), French
insurance companies (Fecher et al. 1993), Belgian muni-
cipalities (De Borger and Kerstens 1996), US banks
(Bauer et al. 1998), and police forces in England and
Wales (Drake and Simper 2003). In general, as observed
by Gupta and Nguyen (2010), financial data are often
heavy tailed. For example Berger and Humphrey (1991)
observe heavy tailed distribution of costs in banking, an
industry to which efficiency analysis is often applied. As
such the issue in this paper has broad applicability across
the performance literature.

In this paper we outline and discuss the merits and
empirical application of a new stochastic frontier model
which accommodates the influence of outlying observa-
tions. This is the stochastic frontier model with a Stu-
dent’s t distribution for the noise term. The advantages of
this model over previous proposals lie in its flexibility,
since the degree of kurtosis is no longer fixed but allowed
to vary with the degrees of freedom parameter. In fact,
the Student’s t distribution nests (or more precisely,
contains as a limiting case) the normal distribution as the
degrees of freedom parameter approaches infinity. For
any given distribution of ui, our model encompasses the
standard SF model. This enables testing down against the
standard model, in contrast to previous proposals which
utilise non-nested specifications, and lets the data deter-
mine the extent to which outlying observations influence
the kurtosis of the noise error term. Thus our model is an
original and significant contribution to the literature, not
just in being able to better accommodate outlying
observations in efficiency analysis relative to the standard
SF model, but it is the first contribution to contain as a
testable limiting case the standard SF model. As such our
model provides a natural extension to the tools of prac-
titioners in the field.

The structure of this paper is as follows: Section 2
reviews existing methods available in the literature to han-
dle a large number of outliers in frontier analysis. Section 3
introduces a t-truncated normal stochastic frontier model for
dealing with heavy-tailed noise and discusses efficiency
prediction. Testing of the normal distribution hypothesis is
considered in Section 4. Section 5 presents Monte Carlo
evidence on the performance of the maximum simulated
likelihood estimator of the model. Section 6 applies the
Student’s t-half normal model to data on highways main-
tenance costs in England and compares the results to those
obtained from normal-half normal model, and Section 7
gives our summary and conclusions. Some technical results
appear in the Appendices.

2 Approaches to outliers in stochastic
frontier analysis

The standard SF model, as developed by Aigner et al.
(1977) and Meeusen and van Den Broeck (1977), is as
follows:

yi ¼ f xi; βð Þ þ εi; εi ¼ vi � sui ð1Þ
Where the subscript i denotes the observation, yi is the
dependent variable, xi is a vector of independent variables,
and εi is an error term with two components. The noise
component, vi, follows a symmetric distribution centred at
zero, and the inefficiency component, ui, is drawn from a
one-sided distribution. In the production case s= 1, while in
the cost case s=−1. Many alternative distributions have
been proposed for u, for example the half normal or
exponential (Aigner et al. 1977), truncated normal (Ste-
venson 1980), or gamma (Greene 2003) distributions. In
comparison, vi is almost always assumed to follow a normal
distribution, although both distributional assumptions are
crucial with regards to the both the robustness of the
parameter estimates to outliers and the decomposition of the
estimated residual into noise and inefficiency.

Concerning robustness to outliers, it is worth pointing
out that one of the original motivations behind SF analysis
as an alternative to ordinary least squares (OLS)—which
after all yields unbiased estimates of the frontier parameters
apart from the intercept—was to obtain estimates that are
more robust to skewness of the residuals implied by inef-
ficiency. It was not until the Jondrow et al. (1982) paper that
a method of obtaining observation-specific predictions of
efficiency was introduced. On the decomposition of the
residuals, obtaining these observation-specific efficiency
scores proceeds by making some prediction of ui based on
the conditional distribution of ui|εi Dropping the subscript i
from here on, this is given by

fujε ujεð Þ ¼ fv εþ suð Þfu uð Þ
fε εð Þ ð2Þ

where fv and fu are the probability density functions of v and
u respectively, and fε is the probability density function of
the composed error derived as the convolution of the two
error components. The usual approach to efficiency
prediction is to use the mean of this distribution according
to exp[−E(u|ε)] (Jondrow et al. 1982) or exp[E(−u|ε)]
(Battese and Coelli 1988). Clearly, any efficiency prediction
derived in this way will depend upon the distribution not
only of u but also of v: Wang and Schmidt (2009) derive the
distribution of E(u|ε) in the normal-half normal case, and
show that E(u|ε)→u only as VAR(v)→ 0, while E(u|ε)→E(u)
as VAR(v)→∞. The conditional mean predictor is therefore
a shrinkage of u towards its mean with the degree of
shrinkage depending upon the distribution of v.
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Given that the presence of outliers, where these are
attributed to noise rather than inefficiency, implies a lep-
tokurtic1 noise distribution, the normal distribution usually
assumed for v is inadequate since it is mesokurtic for any
given parameter values. Intuitively, we may therefore
expect outliers in the data to result in an exaggerated spread
of efficiency scores for two reasons: first, because of an
inflated estimate of the scale of the distribution of u, and
second because of insufficient shrinkage of u towards its
mean, especially at the extremes. That is to say, if lepto-
kurtosis in the noise term due to outliers is not taken into
account, residuals will be attributed disproportionately to
inefficiency rather than noise, particularly in outlying
observations. This motivates the development of alternative
SF models that can accommodate outliers.

A review of the literature in this area provided by Stead
et al. (2018) covers several different approaches to outliers:
the use of alternative efficiency predictors, thick frontier
analysis, heteroskedastic SF models, and the use of alter-
native noise distributions. Other possible approaches
include right truncation of the inefficiency distribution to
restrict the range of possible efficiency predictions, and
detecting and removing outliers.

The detection and removal (or reweighting) of outliers is
a common approach to dealing with outliers in regression
analysis, with outliers identified on the basis of the extent to
which an observation has a disproportionate effect on
parameter estimates, captured by Cook’s distance (Cook
1977), Mahalanobis distance (Mahalanobis 1936), and
similar measures. However, existing methods may not be
appropriate in the case of skewness of the composed error.
For example, Cook’s Distance explicitly assumes normally
distributed errors, while in SF analysis the composed error
has a skew normal distribution (Azzalini 1985), and in the
normal-exponential case it follows what is known as an
exponentially modified Gaussian distribution (Grushka
1972). One approach to outliers could be to derive measures
of influence and leverage appropriate for SF models,
although these would depend upon the particular specifi-
cation used.

Finally, we can account for outliers by assuming an
appropriate distribution for v. In principle, any distribution
that is symmetric, centred around zero and unimodal is an
appropriate candidate for the distribution of v. Although far
more attention has been paid in the literature to the dis-
tribution of u, several such alternatives have been sug-
gested. Outside of the SF literature, Lange et al. (1989)
suggest the use of the Student’s t distribution for the error

terms as a robust alternative to OLS. Lange and Sinsheimer
(1993) discuss estimation when errors are drawn from the
logistic, slash, t, and contaminated normal distributions.
Note that the latter is simply the mixture of two normal
distributions with the same mean but differing variances.
All of these distributions have heavier tails than the normal
distribution, and therefore offer greater robustness to out-
liers. Reviews of the SF literature by Greene (2008) and
Parmeter and Kumbhakar (2014) include some discussion
of alternative noise distributions.

In the context of SF analysis, Tancredi (2002) proposes a
model in which v is drawn from a Student’s t distribution
and u from a half t distribution. Tchumtchoua and Dey
(2007) study the Student’s t-half t model in a Bayesian
setting. Griffin and Steel (2007) and Hajargasht and Grif-
fiths (2018) also discuss estimation of Bayesian SF models
with Student’s t noise using Markov Chain Monte Carlo
(MCMC) and variational Bayes methods, respectively.
Nguyen (2010) introduces two additional alternative heavy
tailed distributions for v: the Laplace distribution and the
Cauchy distribution – note that the latter is a Student’s t
distribution with degrees of freedom equal to one – and
derive formulae for Cauchy-truncated Cauchy and Cauchy-
half Cauchy SF models. Applications are shown in Gupta
and Nguyen (2010). Horrace and Parmeter (2018) study
Laplace-truncated Laplace and Laplace-exponential2 SF
models. Noting that the Laplace distribution is ordinary
smooth, in contrast to the normal distribution, which is
supersmooth, they conjecture that the Laplace distribution
may be advantageous with respect to the deconvolution of ε
into v and u, since optimal convergence rates for decon-
volution problems decrease with the smoothness of the
noise distribution, being in particular much slower when the
noise distribution is supersmooth rather than ordinary
smooth (Fan 1991; 1992).

The performance of these models in the presence of
outliers is interesting, but under-explored. Following the
previous discussion, given the use of heavy-tailed distribu-
tions for v, we might expect these models to be more robust
to outliers in terms of parameter estimation, and in terms of
yielding less extreme efficiency predictions for outlying
observations. Indeed, Tancredi (2002) shows that as sεi→∞,
fu|ε (u|ε) becomes completely flat in the Student’s t-half t
model, in contrast to how fu|ε (u|ε) becomes a degenerate
distribution at zero as sε→∞ in the normal-half normal
model. Similarly, Horrace and Parmeter (2018) show that fu|ε
(u|ε) – and hence E(u|ε) – is constant for positive values of
sε in the Laplace-exponential case. Focusing more explicitly
on outliers, Stead et al. (2018) propose a model in which v
follows a logistic distribution and u follows a half normal

1 The terms leptokurtic, mesokurtic, and platykurtic are used to denote
distributions with positive, zero, and negative excess kurtosis. That is,
kurtosis greater than, equal to, or less than that of the normal
distribution.

2 Note that the left truncation of a Laplace distribution at or above
zero results in an exponential distribution.
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distribution, and show that the model results in a smaller
estimate for VAR(u) and yields a considerably narrower
spread of efficiency scores than the normal-half normal
model, with little change in exp[E(−u|ε)] for large |sε|. Each
of these cases suggest that the choice of a heavy tailed
distribution for v significantly affects the prediction of effi-
ciency, and the uncertainty in prediction, at one or both tails,
producing less extreme efficiency predictions.

3 The Student’s t-truncated normal SF model

In this section, we propose a robust SF model in which v
follows a Student’s t distribution and u follows a truncated
normal distribution. The Student’s t distribution is for v has a
number of attractive properties in the present context. First,
it is a heavy tailed distribution, and thus more robust to the
presence of outliers. Second, it avoids the arbitrary
assumptions on the degree of kurtosis in v embedded in
existing models—the normal, logistic, and Laplace dis-
tributions have excess kurtosis of 0, 1.2, and 3, respectively,
regardless of parameter values. Ultimately, the kurtosis of v
is an empirical question, and therefore we should ideally use
a distribution for v for which kurtosis is flexible. The kur-
tosis of the Student’s t distribution depends upon the degrees
of freedom parameter. Third, the Student’s t distribution
nests the Cauchy distribution when the degrees of freedom
parameter is equal to one and the normal distribution as it
approaches infinity. Therefore an SF model with a Student’s
t distribution for v encompasses a model in which v follows
a Cauchy or normal distribution for any given distribution of
u. This enables testing against these alternatives. In the latter
case, we are testing against the standard SF model, which
could be interpreted as a test of robustness to outliers.

Below, we derive simulated log likelihood functions and
efficiency predictors for the Student’s t-truncated normal SF
model, and discuss estimation and hypothesis testing.
Results for the Student’s t-half normal and Student’s t-
exponential models can be obtained via some simple
modifications. Extensions to other distributions of u are
straightforward if the quantile function of that distribution
has a closed form, while in many other cases—as with the
Student’s t-gamma—the simulated log likelihood function
becomes slightly more complex.

3.1 Formulation and estimation

In SF models, the error ε (noting again that we drop the
subscript i for notational simplicity) is composed of a
symmetric noise component v and an inefficiency compo-
nent u which is drawn from a one-sided distribution:

ε ¼ v� su ð3Þ

In this study, we assume that v is drawn from a non-
standardized Student’s t distribution—which includes a
scale parameter σv—and that u follows a truncated normal
distribution, so that the probability density functions fv and
fu are given by

fv vð Þ ¼ Γ aþ 1
2

� �
Γ a

2

� � ffiffiffiffiffi
πa

p
σv

1 þ 1
a

v

σv

� �2
" #�aþ 1

2

ð4Þ

fu uð Þ ¼
1
σu
ϕ u� μ

σu

� �
Φ μ

σu

� � ; u>; 0

0; u � 0

8>><>>: ð5Þ

where μ and σu are the mean and standard deviation of the
pre-truncation distribution of u, respectively, a is a shape
parameter that determines the kurtosis of the Student’s t
distribution, and Γ is the gamma function. If μ is set to
zero, then the model reduces to a Student’s t-half normal
model as applied to our data in Section 6. As noted
previously, as a→ ∞ the Student’s t distribution
approaches the normal distribution. Thus, our model
encompasses as a limiting case the normal-truncated
normal model. Similarly, when a= 1 we have a Cauchy
distributed noise component.

The joint density of ε and u is given by

fu; ε u; εð Þ ¼
Γ aþ1

2ð Þ
Γ a

2ð Þ ffiffiffiffiπap
σv

1þ 1
a

εþsu
σv

� �2	 
�aþ1
2 1

σu
ϕ u�μ

σuð Þ
Φ μ

σuð Þ ; u gt; 0

0; u � 0

8><>:
ð6Þ

and the marginal density of ε is given by the convolution

fε εð Þ ¼
Z 1

0

Γ aþ1
2

� �
Γ a

2

� � ffiffiffiffiffi
πa

p
σv

1þ 1
a

εþ su

σv

� �2
" #�aþ1

2 1
σu
ϕ u�μ

σu

� �
Φ μ

σu

� � du

ð7Þ

which lacks a convenient closed form, hindering ML
estimation. As an alternative, we may use simulation to
approximate the integral and arrive at a simulated log
likelihood function—see Train (2009) for an introduction to
maximum simulated likelihood—as proposed by Greene
(2003) for the normal-gamma model and Stead et al. (2018)
for the logistic-half normal model. We begin by noting that
(7) is the expectation of fv(ε+ su), where u is drawn from a
truncated-normal distribution,

h uð Þ ¼ E fv εþ suð Þju � 0½ �; u�N μ; σuð Þ ð8Þ
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that can be estimated by

bh ¼ 1
Q

XQ

q¼1
fv εþ suq
� � ð9Þ

where uq is a draw from a truncated normal distribution3.
This gives us the simulated probability density function for
ε

dfε εð Þ ¼ 1
Q

Γ aþ1
2

� �
Γ a

2

� � ffiffiffiffiffi
πa

p
σv

XQ
q¼1

1þ 1
a

εþ suq
σv

� �2
" #�aþ1

2

ð10Þ

and the simulated log-likelihood function is

ln SL ¼ �N lnQþ N ln Γ aþ1
2

� �� �� N ln Γ a
2

� �� �
� N

2 ln π þ ln að Þ � N ln σv þ
PN

i¼1 ln
PQ

q¼1 1þ 1
a

εþsuq
σv

� �2	 
�aþ1
2

ð11Þ

This may be maximised like any conventional log-
likelihood function, provided we have our draws from the
truncated normal distribution. From Geweke et al. (1997)
and Greene (2003), we have the quantile function of a
truncated normal random variable:

uq ¼ μþ σuΦ�1 Φ
tr � μ

σu

� �
�Φ

tl � μ

σu

� �	 

Fq þΦ

tl � μ

σu

� �
 �
ð12Þ

Where tl and tr are the left and right truncation points,
respectively, and Fq is draw q from the standard uniform
distribution. Since we know that tl= 0, tr=∞, this
simplifies to

uq ¼ μþ σuΦ�1 1þΦ
μ

σu

� �
Fq � 1
� �	 


ð13Þ

In order to modify the model so that the one-sided error
follows some other distribution, we need only change uq
such that we instead obtain draws from the chosen dis-
tribution. The most obvious choices are the exponential and
gamma distributions. For the t-exponential case, we have
the quantile function

uq ¼ �σu lnFq ð14Þ

And by substituting (13) or (14) into (11), we have the
simulated log-likelihood function for the Student’s t-trun-
cated-normal and Student’s t-exponential models respec-
tively. Other proposed distributions for u, such as the
Weibull (Tsionas 2007) and Rayleigh (Hajargasht 2015)
distributions also have closed form quantile functions.
However, even in cases in which the quantile distribution
has no analytical expression, such as the gamma distribu-
tion, forming the simulated log-likelihood is possible—see
Greene (2003).

Proceeding with the Student’s t-truncated normal variant
of the model, (11) and (13) give the simulated log-
likelihood function. First order conditions for maximisa-
tion are given in Appendix B. One remaining issue is the
method of taking random draws: we prefer to use Halton
draws, which aim for good coverage of the unit interval
rather than randomness: this significantly reduces the
number of draws needed to approximate the integral (see
Greene (2003) for a fuller discussion).

Recalling the discussion of Horrace and Parmeter (2018)
around convergence rates and the smoothness property of
the noise distribution in deconvolution problems, a further
attraction of the Student’s t distribution is the potential
advantage in terms of estimating fu. Fan (1991) discusses
the smoothness properties of several distributions. The
normal distribution is supersmooth of order 2, while the
Cauchy distribution is supersmooth of order 1. The
smoothness of the Student’s t distribution is not explicitly
discussed, but may be determined as follows. From Fan
(1991), the distribution of a random variable is said to be
supersmooth of order β if its characteristic function, φ(t),
satisfies

d0 tj jβ0exp � tj jβ
γ

 !
� φ tð Þ � d1 tj jβ1exp � tj jβ

γ

 !
; t ! 1

ð15Þ

where d0, d1, β, and γ are positive constants, and β0 and
β1 are constants. Expression 4.8 in Hurst (1995) gives the
following result

φv tð Þ ffi
ffiffiffi
π

p

Γ a
2

� �
2

a�1
2

ffiffiffi
a

p
tj j� �a�1

2 exp � ffiffiffi
a

p
tj j� �

; t ! 1 ð16Þ

where φv(t) denotes the characteristic function of a Student's
t distribution with degrees of freedom parameter a.
Substituting (16) into (15), we see that the Student’s t
distribution is supersmooth of order 1 when a is finite—
which encompasses the Cauchy case where a= 1. From the
results of Fan (1991), this implies that optimal convergence
rates are faster when noise is Student’s t distributed than
when noise is normally distributed. It should be noted
however that ordinary smooth distributions, such as the

3 An alternative approach is to note that the Student’s t distribution is
a scale mixture of normal distributions where the mixing distribution is
inverse gamma distributed. To estimate a Student’s t-half normal SF
model, we could approximate a scale mixture of skew normal dis-
tributions with draws from an inverse gamma distribution. It is unclear
if this approach has any advantage over that used in this paper,
however it is slightly less convenient in terms of implementation,
particularly when it comes to changing the distribution of u.
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Laplace distribution, have convergence rates that are faster
still, being polynomial functions of N, as opposed to
logarithmic functions of N as in the case supersmooth
distributions (Fan 1992). For more discussion of the
differences between smooth and supersmooth noise dis-
tributions in stochastic frontier analysis, see Horrace and
Parmeter (2011; 2018).

3.2 Parameter identification

To demonstrate that the model parameters are identified, we
show that consistent method of moments estimators exist.
For the sake of tractability, we restrict attention to the case
where μ= 0. As in the standard SF model, the OLS esti-
mator bβ is a consistent estimate of β, with the exception thatbβ0 yields a consistent estimator of β0−sE(u). Since v and u
are independent, the first four moments of ε are given by

E εð Þ ¼ E vð Þ � sE uð Þ ¼ �sσu
ffiffiffiffiffiffiffiffi
2=π

p
; a>; 1 ð17Þ

E ε2
� � ¼ E v2

� �þ E u2
� � ¼ σ2v

a

a� 2
þ σ2u

π � 2
π

; a> 2

ð18Þ

E ε3
� � ¼ E v3

� �� sE u3
� � ¼ �s

ffiffiffiffiffiffiffiffi
2=π

p 4� πð Þ
π

σ3u; a>3

ð19Þ

E ε4ð Þ ¼ E v4ð Þ þ E u4ð Þ þ 6E v2ð ÞE u2ð Þ ¼
6

a�4 þ 3þ 3π2�4π�12
π2

σ4u þ 6σ2v
a

a�2 σ
2
u
π�2
π
; a> 4

ð20Þ

Setting these equal to the corresponding raw sample
moments μ2, μ3, and μ4 then rearranging gives the following
method of moments estimators—note the correction to the
estimated intercept.

eσu ¼ �sμ3
ffiffiffiffiffiffiffiffi
π=2

p π

4� πð Þ
	 
1

3

; a>3 ð21Þ

ea ¼ 6

μ4 � 3� eσ4u 20π�3π2�36
π2

� 6μ2eσ2u π�2
π

þ 4; a> 4

ð22Þ

eσv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 � eσ2u π � 2

π

� �ea� 2ea
s

; a> 2 ð23Þ

eβ0 ¼ bβ0 � seσu ffiffiffiffiffiffiffiffi
2=π

p
; eβj ¼ bβj; j ¼ 1; ¼ ; k; a> 1

ð24Þ

Note that since the moments of the Student’s t distribu-
tion are variously undefined or infinite for small a, this is
also the case for moments of ε, so these estimators exist
only when a is sufficiently large. Further, just as the method

of moments approach to estimation of the standard SF
model breaks down when μ3 ≤ 0, μ4 must be sufficiently
large that the denominator in (22) is positive for method of
moments to be used in this case.4In Section 5, we undertake
Monte Carlo simulations to analyse the performance of the
model for a variety of values of α= 2, a= 4, a= 5, a= 10,
and a→∞, the latter corresponding to v ~ N(0,1).

Well-known results from Waldman (1982) show that the
OLS estimator is a stable stationary point of the log-
likelihood function for the standard model, and that the
identification of the σu parameter hinges on the skewness of
the OLS residuals. Horrace and Parmeter (2018) show that,
while these results do not apply to the SF model with
Laplace noise since OLS is not the limiting estimator as Var
(u)→ 0, an analogous result applies: the least absolute
deviations (LAD) estimator is a stationary point of the log-
likelihood5. It is trivial to show that a similar result applies
to our model, i.e. that the ML estimator of a regression
model with Student’s t errors is a stationary point in our log-
likelihood function. Horrace and Wright (forthcoming)
show that such a stationary point exists under very weak
distributional assumptions about v and u. This suggests that
identification of σu in our model depends upon the skewness
of the residuals from the Student’s t regression model.
However, while Horrace and Parmeter (2018) point out that
in the Laplace case the LAD stationary point is not stable
due to non-differentiability of the log-likelihood function in
the limiting case, this does not appear to apply in the Stu-
dent’s t case, in which the log-likelihood function is
everywhere differentiable.

3.3 Efficiency prediction

As discussed in previous sections, the usual approach to
generating observation-specific efficiency scores is to pre-
dict values based on the distribution of u|ε, which is given
by:

fujε ujεð Þ ¼ fv εþ suð Þfu uð Þ
fε εð Þ ð25Þ

The most widely used predictors are the mean of this
conditional distribution according to exp[−E(u|ε)]:

exp �E ujεð Þ½ � ¼ exp �
Z 1

0
u
fv εþ suð Þfu uð Þ

fε εð Þ du

	 

ð26Þ

4 Note also that the estimator (21) is substituted into (22) and (23), and
(22) into (23), in place of the unknown true values. However, if 2 <
a ≤ 4, the method of moments estimator for eσv exists but depends on a,
for which the method of moments estimator does not exist. An alter-
native approach could be to treat a as a fixed tuning parameter, and
substitute its value into (23) for eσv.
5 It is well known that, just as OLS is the ML estimator for a
regression model with normal errors, LAD is the ML estimator for a
regression model with Laplace errors.
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Or, E[exp(−u|ε)]:

E exp �ujεð Þ½ � ¼
Z 1

0
exp �uð Þ fv εþ suð Þfu uð Þ

fε εð Þ du ð27Þ

Note that in both cases, since fε(ε) is not a function of
u, it can be moved outside the integral. Bearing in mind that
fε(ε) is the convolution of fv(ε+su) and fu(u), we therefore
have

exp �E ujεð Þ½ � ¼ exp �
R1
0 ufv εþ suð Þfu uð ÞduR1
0 fv εþ suð Þfu uð Þdu

" #
ð28Þ

And

E exp �ujεð Þ½ � ¼
R1
0 exp �uð Þfv εþ suð Þfu uð ÞduR1

0 fv εþ suð Þfu uð Þdu ð29Þ

For the model we are considering, none of these integrals
have closed form solutions, so we approximate them via
simulation. The simulated integral in the denominators
of both formulae are given by (10), and the integrals in
the numerators are the expectations of ufv(ε+su) and
exp(−u)fv(ε+su) given that u is a random variable with the
probability density function fu(u). We therefore have, with
some simplifying and rearranging:

exp �bE ujεð Þ
h i

¼ exp �
PQ

q¼1 uq 1þ 1
a

εþsuq
σv

� �2	 
�aþ1
2

PQ
q¼1 1þ 1

a
εþsuq
σv

� �2	 
�aþ1
2

8>>><>>>:
9>>>=>>>;
ð30Þ

bE exp �ujεð Þ½ � ¼
PQ

q¼1 exp �uq
� �

1þ 1
a

εþsuq
σv

� �2	 
�aþ1
2

PQ
q¼1 1þ 1

a
εþsuq
σv

� �2	 
�aþ1
2

ð31Þ
Where uq is given by (13) in the Student’s t-truncated
normal and (14) in the Student’s t-exponential models, for
example.

4 Hypothesis testing concerning the noise
distribution

As discussed previously, an attraction of the Student’s
t distribution in the current context is that the normal dis-
tribution is the limiting case as a→∞. Therefore a sto-
chastic frontier model in which v follows a Student’s
t distribution encompasses a model in which v follows a
normal distribution. This allows us to test down from a

model with Student’s t noise to a standard SF model, which
could be interpreted as a testing for heavy tails—or the
significance of outliers in the data—and used for model
selection. For this purpose, the likelihood ratio test statistic
is an obvious choice. This is defined as

LR ¼ �2 ln LA � ln L0ð Þ ð32Þ
Where lnLA is the simulated log-likelihood from the
Student’s t model and lnL0 is the log-likelihood from the
null model with normally distributed v. The standard result
that this statistic has a limiting χ2 distribution with degrees
of freedom equal to the difference in dimensionality
between the alternative and null models does not apply,
since under the null hypothesis the degrees of freedom
parameter a lies on the boundary of the parameter space.
Case 5 in Self and Liang (1987)—see also Case 2 in Chen
and Liang (2010)—shows that the likelihood ratio statistic
follows an asymptotic 50:50 mixture of χ20 and χ21
distributions, denoted χ21:0. Economou (2011) applies this
result to an analogous problem in survival analysis of
testing down from a three parameter Burr XII distribution to
a two parameter Weibull distribution. A further analogue in
stochastic frontier analysis is testing for the presence of an
upper bound on u, since an SF model with a tail truncated
distribution for u nests the standard SF model as the tail
truncation point B→∞.

We present simulation evidence regarding the distribu-
tion of the LR, under the null hypothesis that v is normally
distributed, in Appendix C. We do this to verify that the
results of Chen and Liang (2010) do apply in this case. Note
that we could reparameterise the model to include an
inverse degrees of freedom parameter, 1/a, in which case
the standard model is the limiting case as 1/a→ 0; however,
this boundary remains an open boundary. In particular, we
note that in this setting, and the two other examples
appearing in the literature discussed above (Weibull and
upper truncation point in the inefficiency distribution), the
null hypothesis corresponds to a parameter value at an open
(and not closed) boundary. Chen and Liang (2010) state that
their result still holds when the boundary is an open
boundary, but we wish to verify this. The evidence
presented in Appendix B lends support to the idea that
LR � χ21:0 under the null hypothesis. We therefore consider
this test to be appropriate for this purpose.

5 Monte Carlo simulations

In this section, we examine the performance of the Stu-
dent’s t-half normal model under various data generating
processes (DGPs). We are primarily interested in how the
model performs in two different scenarios: when v is Stu-
dent’s t distributed, and when v is normally distributed. In
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Table 1 Normal-half normal vs. Student's t-half normal model under various data generating processes—1000 replications

N= 100 N= 200

Normal-half normal Student’s t-half normal Normal-half normal Student’s t-half normal

DGP 1 Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

β0 1 0.765 1.429 1.641 1.241 1.427 0.589 0.824 1.528 1.876 1.237 1.239 0.514

β1 1 1.001 0.983 0.547 0.991 0.993 0.166 0.974 0.991 0.547 0.994 0.998 0.116

σv 1 2.243 1.974 2.209 0.995 1.032 0.295 2.537 2.209 2.207 1.025 1.053 0.219

σu 1 1.326 0.004 2.948 0.847 0.433 4.397 1.211 0.004 2.795 0.922 0.718 4.936

a 2 ∞ ∞ – 4.1E+04 2.073 7.0E+05 ∞ ∞ – 2.233 2.118 0.689

DGP 2 Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

β0 1 1.132 1.057 0.636 1.246 1.484 0.583 1.156 0.983 0.577 1.260 1.377 0.522

β1 1 0.996 0.999 0.163 0.997 1.000 0.146 0.997 1.001 0.110 0.998 1.000 0.098

σv 1 1.301 1.316 0.307 1.008 1.056 0.262 1.339 1.353 0.242 1.032 1.066 0.207

σu 1 0.831 0.990 0.839 0.706 0.333 0.755 0.810 1.057 0.771 0.687 0.578 0.674

a 4 ∞ ∞ – 3.3E+07 4.545 8.3E+08 ∞ ∞ – 8.4E+05 4.473 2.6E+07

DGP 3 Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

β0 1 1.143 1.010 0.603 1.221 1.383 0.595 1.174 0.985 0.534 1.229 1.197 0.527

β1 1 1.005 1.008 0.150 1.004 1.004 0.137 1.006 1.008 0.100 1.004 1.004 0.094

σv 1 1.203 1.218 0.265 0.982 1.027 0.263 1.247 1.250 0.194 1.023 1.057 0.205

σu 1 0.829 1.010 0.779 0.749 0.580 0.759 0.784 1.030 0.700 0.723 0.764 0.680

a 5 ∞ ∞ – 2.8E+08 5.759 4.6E+09 ∞ ∞ – 3.0E+07 5.652 8.3E+08

DGP 4 Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

β0 1 1.120 0.987 0.519 1.158 1.078 0.571 1.155 1.005 0.464 1.166 1.016 0.509

β1 1 0.999 1.001 0.121 1.001 1.000 0.122 1.002 1.003 0.092 1.003 1.004 0.092

σv 1 1.060 1.082 0.215 0.936 0.985 0.249 1.096 1.095 0.161 0.983 1.001 0.191

σu 1 0.856 1.050 0.660 0.821 0.957 0.730 0.814 1.017 0.592 0.808 1.027 0.652

a 10 ∞ ∞ – 2.9E+08 10.983 2.6E+09 ∞ ∞ – 2.1E+08 11.015 2.4E+09

DGP 5 Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

β0 1 1.075 0.959 0.478 1.067 0.897 0.546 1.078 0.955 0.404 1.041 0.892 0.453

β1 1 1.000 0.997 0.124 1.000 0.996 0.127 1.003 1.001 0.084 1.004 1.001 0.085

σv 1 0.936 0.944 0.178 0.864 0.889 0.218 0.973 0.972 0.137 0.914 0.914 0.165

σu 1 0.902 1.062 0.593 0.923 1.159 0.682 0.900 1.047 0.501 0.956 1.156 0.568

a ∞ ∞ ∞ – 5.9E+08 361.929 7.6E+09 ∞ ∞ – 2.8E+08 152.462 2.2E+09

N= 1000

Normal-half normal Student’s t-half normal

DGP 1 Mean Median St. Dev. Mean Median St. Dev.

β0 1 1.157 1.706 2.206 1.220 1.091 0.400

β1 1 0.988 0.997 0.491 0.999 0.998 0.049

σv 1 3.115 2.607 3.412 1.047 1.052 0.125

σu 1 0.759 0.003 2.733 0.724 0.876 0.517

a 2 ∞ ∞ – 2.118 2.107 0.274

DGP 2 Mean Median St. Dev. Mean Median St. Dev.

β0 1 1.183 0.941 0.497 1.188 1.043 0.401

β1 1 1.000 1.000 0.049 0.999 1.001 0.045

σv 1 1.390 1.378 0.146 1.033 1.032 0.130

σu 1 0.774 1.084 0.645 0.772 0.957 0.519

a 4 ∞ ∞ – 4.359 4.222 0.971
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the former case, we wish to see how the model performs for
various values of a, the degrees of freedom parameter. In
the Student’s t case, the model should be able to estimate
the parameters of the DGP with a reasonable degree of
accuracy for a range of values of a, and the model should
also be able to approximate the case where v is normally
distributed. The DGP in each case is as follows:

y ¼ 1þ xþ vþ u;

x � N 0; 1ð Þ; u ¼ wj j; w � N 0; 1ð Þ ð33Þ

And v is a standard Student’s t random variable with
degrees of freedom parameter a= 2, a= 5, a= 10, and
a→∞, respectively. Note that in the latter case, v is nor-
mally distributed, so we draw from the standard normal
distribution. For each of these DGPs, we then vary the
number of observations used in each replication. We con-
sider the cases N= 100, N= 200, and N= 1000. This will
give some insight into the small sample performance of the
model.

We estimate a Student’s t-half normal stochastic cost
frontier model using the simulated data generated for each
of one thousand replications per DGP. As a point of com-
parison, we also estimate a normal-half normal stochastic
cost frontier model using the data from each replication.
The comparison between the results from the two models
helps to put the results from our model into context,
allowing us to judge its performance relative to that of the

standard model. When comparing the results from the two
models, it should be kept in mind that the interpretation of
the σv parameter differs. In the normal-half normal model,
σ2v is the variance of the noise term v, while in the Student’s
t-half normal model, the variance of v also depends on the
degrees of freedom parameter, a. Specifically, the variance
of v in our model is given by

Var vð Þ ¼ σ2v
a

a� 2
; a> 2 ð34Þ

And is undefined for a ≤ 2. It is therefore to be expected
that, when the true DGP involves a Student’s t distributed v,
the estimated σv parameter from the normal-half normal
model will tend to be greater than the value used in the
DGP. Table 1 summarises the results from each simulation.
The mean, median, and standard deviation of the estimates
for each parameter across the 1000 replications are shown
from both the normal-half normal and Student’s t-half
normal models. The first two columns show the parameters
and corresponding values in each DGP.

Across each of the four DGPs, and regardless of the
number of observations, the mean parameter estimates from
the Student’s t-half normal model are similar to those from
the normal-half normal model, and both tend to be rea-
sonably close to the true values. An exception to this is that
in the N= 100 and N= 200 cases for the DGPs with finite
a, the mean estimates of the degrees of freedom parameter
are many times greater than the true values from the DGP.

Table 1 (continued)

N= 1000

Normal-half normal Student’s t-half normal

DGP 3 Mean Median St. Dev. Mean Median St. Dev.

β0 1 1.160 0.946 0.455 1.191 1.044 0.408

β1 1 1.000 0.998 0.044 1.000 0.999 0.042

σv 1 1.281 1.264 0.122 1.031 1.024 0.132

σu 1 0.805 1.087 0.588 0.771 0.966 0.531

a 5 ∞ ∞ – 5.582 5.262 1.692

DGP 4 Mean Median St. Dev. Mean Median St. Dev.

β0 1 1.099 1.002 0.326 1.070 0.953 0.352

β1 1 1.000 0.998 0.040 1.000 0.998 0.040

σv 1 1.120 1.112 0.090 0.999 0.990 0.118

σu 1 0.878 1.005 0.414 0.925 1.074 0.450

a 10 ∞ ∞ – 3.7E+04 10.266 5.4E+05

DGP 5 Mean Median St. Dev. Mean Median St. Dev.

β0 1 1.034 0.990 0.213 0.971 0.922 0.232

β1 1 1.000 0.999 0.036 1.000 0.999 0.036

σv 1 0.999 0.996 0.071 0.959 0.952 0.084

σu 1 0.954 1.008 0.264 1.046 1.104 0.292

a ∞ ∞ ∞ – 6.1E+08 124.929 1. 3E+10
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However, the median estimates of a are much closer to
the true values. The reason for the large difference between
the mean and median estimates of a is that the distributions
of the estimates are skewed by a small number extremely
large values. We find that these very large values occur in
repetitions in which the kurtosis of the OLS residuals is low,
and specifically where the excess kurtosis— i.e. kurtosis
over and above that of the normal distribution—is near to or
less than zero. This is significant since, as with the dis-
cussion in Section 3.23.2, it further suggests a link between
excess kurtosis and identification of the degrees of freedom
parameter a, analogous to the link between skewness and
identification of the σu parameter in the standard model.

In the N= 1000 repetitions, this ‘wrong kurtosis’ issue
does not arise in the a= 4 or a= 5 cases, but does in the a
= 10 case. In the α= 2 case, ‘wrong kurtosis’ does not arise
in either the N= 200 or N= 1000 repetitions. Intuitively,
this is due to the fact that the Student’s t distribution with a
= 10 already closely resembles the normal distribution, and
further increases in a yield relatively small changes to the
shape of the distribution. Just as the probability of ‘wrong
skew’ arising in the standard model decreases as the number

of observations or the signal to noise ratio, or both, increase
(Simar and Wilson 2010), it appears that the probability of
‘wrong kurtosis’ is negatively related to sample size and
positively related to the degrees of freedom parameter.

Finally, on the subject of ‘wrong kurtosis’, it is important
to note that whilst this phenomenon is similar to the ‘wrong
skew’ problem in terms of potentially arising due to the luck
of small sample draws from a ‘correct kurtosis’ distribution,
the practical implications of this occurrence are not as
severe as in the wrong skew case. In the wrong kurtosis
case, the estimation of the Student’s t-half normal stochastic
frontier models recovers the normal-half normal model
estimates, whilst under ‘wrong skew’ the estimate of the
variance of the inefficiency distribution approaches zero,
indicating no evidence of inefficiency.

Estimates of σv from the normal-half normal model for
DGPs 1–4 tend to be greater than 1, as expected. For DGPs
2–4, in which VAR(v) is defined, the standard deviations of
v are 1.414, 1.291, and 1.118, respectively. Interestingly,
the mean estimates of σv from the normal-half normal model
correspond closely to these values. This suggests that,
although the normal-half normal model cannot capture the

Table 2 Summary of within-
replication differences in
parameter estimates

N= 100 N= 200 N= 1000

Mean St. Dev. Mean St. Dev. Mean St. Dev.

DGP 1 (a= 2) β0 0.477 1.634 0.413 1.854 0.062 2.185

β1 −0.010 0.524 0.021 0.534 0.011 0.488

σv −1.248 2.263 −1.512 2.262 −2.068 3.432

σu −0.479 5.254 −0.289 5.659 −0.035 2.710ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var vð Þp

– – – – – –

DGP 2 (a= 4) β0 0.114 0.599 0.105 0.550 0.004 0.500

β1 0.001 0.086 0.001 0.053 0.000 0.022

σv −0.293 0.321 −0.307 0.256 −0.357 0.169

σu −0.125 0.798 −0.124 0.724 −0.002 0.649ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var vð Þp

0.199 0.685 0.131 0.343 0.051 0.127

DGP 3 (a= 5) β0 0.078 0.515 0.055 0.483 0.031 0.420

β1 −0.001 0.061 −0.001 0.035 0.000 0.015

σv −0.221 0.273 −0.224 0.197 −0.249 0.135

σu −0.080 0.678 −0.061 0.632 −0.034 0.544ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var vð Þp

0.111 0.341 0.067 0.211 0.037 0.103

DGP 4 (a= 10) β0 0.038 0.370 0.012 0.284 −0.029 0.237

β1 0.002 0.031 0.001 0.020 0.000 0.007

σv −0.123 0.172 −0.113 0.126 −0.121 0.088

σu −0.036 0.484 −0.005 0.366 0.047 0.307ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var vð Þp

0.033 0.164 0.011 0.094 −0.002 0.063

DGP 5 (a→∞) β0 −0.009 0.249 −0.037 0.186 −0.064 0.075

β1 0.000 0.022 0.001 0.010 0.000 0.002

σv −0.072 0.110 −0.059 0.084 −0.040 0.033

σu 0.021 0.322 0.057 0.240 0.092 0.096ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var vð Þp

−0.003 0.104 −0.013 0.066 −0.018 0.026
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kurtosis of v, it approximates the variance of the noise term
relatively well.

Looking at the standard deviations of the parameter
estimates from our model, we can see that the sampling
variation is generally less than that from the normal-half
normal for the a= 2, a= 4 and a= 5 cases. This reflects the
greater sensitivity of the standard model to outlying
observations, and suggests that our model is indeed more
robust to the presence of heavy tails. For the a= 10 and v ~
N(0,1) cases, the estimates from the normal-half normal
model generally have lower standard deviations than those
from our model.

The final DGP corresponds to a model in which
v ~N(0,1). In this case, our model performs well when the
true DGP is the normal-half normal model, as evidenced by
the very large mean and median estimates of a across all
sample sizes, and by the similarity between the frontier and
scale parameter estimates produced by the model and those
produced by the normal-half normal model. In this case, we
are also interested in how the results typically differ from
those of the normal-half normal model. Table 2 summarises
the within-replication differences between the estimates of
β0, β1, σv, and σu from the Student’s t-half normal and
normal-half normal models, respectively, showing the mean
difference and the standard deviation of the differences. A
positive (negative) mean indicates that the Student’s t-half
normal model tended to produce a higher (lower) estimate
of a given parameter than the normal-half normal model.

From the above, we can see that, as expected following
the discussion in Section 2, the Student’s t-half normal
model tends to produce lower estimates of σu for a given
replication. This holds for DGPs 1, 2, and 3, in which the
kurtosis of v is greatest. Also, for DGPs 1–3, we see that
the normal-half normal model yields higher estimates of
σv; however, given the discussion around the differing
interpretations of σv in the two models, we have also looked
at the differences in

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var vð Þp

directly. Table 2 shows that,
while the Student’s t-half normal model tends to yield lower
estimates of σv when a is small, its estimates of the standard
deviation of v in fact tend to be higher. This supports the
expectation, following the discussion in Section 2 and in
Stead et al. (2018), that a model with a heavy-tailed dis-
tribution in v should attribute more of the overall error
variance to noise than to inefficiency.

6 Application to highways maintenance
costs in England

In this section, we apply a Student’s t-half normal model to
the dataset on highway maintenance costs in England used
by Stead et al. (2018). In England, responsibility for road
maintenance is divided between Highways England—until

2015 the Highways Agency—a publicly-owned company
responsible for the strategic ‘trunk road network’, and the
county councils and unitary authorities, who maintain the
non-trunk roads within their boundaries. Our data are from
the CQC Efficiency Network6 and consist of costs and cost
drivers associated with local authorities’ highway main-
tenance activities.

The majority of previous studies of road maintenance
costs have focussed on the issue of marginal costs, and their
implications for road pricing, rather than relative efficiency.
These use data on motorways and canton roads in Swit-
zerland (Schreyer et al. 2002), motorways in Austria
(Sedlacek and Herry 2002), roads in Sweden (Haraldsson
2006; Jonsson and Haraldsson 2008), trunk roads in Poland
(Bak et al. 2006; Bak and Borkowski 2009), and motorways
and federal roads in Germany (Link 2006; 2009; 2014).

With respect to efficiency studies, Wheat (2017) under-
takes the first study of local road maintenance costs in
Britain and utilised a forerunner of the dataset under con-
sideration in this paper. The author considered the optimal
scale of operation as well as evidence for the cost efficiency
of local highway authorities. A normal-half normal sto-
chastic frontier model was used. A further study relating to
efficiency in road maintenance is that of Fallah-Fini et al.
(2009), which applies DEA to data on eight counties of the
US state of Virginia, with expenditure, traffic and equiva-
lent single axle loads as inputs, road area and quality
indicators as outputs, and climate factors as non-
discretionary variables.

We used an unbalanced panel consisting of data on the
70 English unitary authorities and county councils that were
members of the CQC Efficiency Network in 2015–16 and
supplied data for at least one year from 2009–10 to that
year; this gives us 327 observations in total. Cost data were
supplied to the network by each authority according to
definitions agreed by a working group of network members,
and relate to carriageway maintenance activities only, i.e.
they exclude costs associated with related activities such as
winter service and footway maintenance. The dataset is
updated annually for a new round of analysis. In this study
we use the dataset from the 2015–16 round, which was the
first year that the network ran. We observe large differences
in unit costs, with a large number of extreme outliers in both
directions, which are clearly the result of reporting errors.
As a result, standard SF models yield a wide range of
efficiency predictions, motivating the development of
robust SF methods.

In line with the previous literature mentioned above—see
Link (2014) for a summary—we use road length and traffic
variables as output variables. Detailed breakdowns of local
authorities’ total road lengths into urban and rural and by

6 See http://www.nhtnetwork.org/
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classification are publicly available from the Department for
Transport (DfT). Roads in the UK are classified as: M
(motorways), A, B, classified unnumbered, or unclassified;
we hereafter refer to the latter two as C and U, respectively.
The trunk road network, maintained in England by High-
ways England, consists of motorways and trunk A roads,
leaving non-trunk A roads and all B, C, and U roads as the
responsibility of local authorities. Our road length data
therefore exclude motorways and trunk A roads, and like-
wise we use traffic data supplied by DfT which relate only
to local authority maintained roads.

We separate total network length into urban and rural
road lengths, URL and RRL, and also include a set of pro-
portion variables relating to each road classification. To
control for network quality, we include three road condition
indicators, also available from the DfT: RDCA, RDCBC,
and RDCU relating to the proportion of A roads, B and C
roads, and U roads respectively where maintenance should
be considered; we weight these by the corresponding share

of their road classifications in total network length. Our
input price variables are: WAGE, the median hourly wage in
civil engineering by NUTS1 region from the Annual Survey
of Hours and Earnings (ASHE), published by the Office for
National Statistics (ONS), and a national index of materials
prices in road construction that were published by the
Department of Business, Innovation and Skills (BIS),
ROCOSM. We use a modified Cobb-Douglas functional
form including second-order terms relating to urban and
rural road length. We estimate the following cost frontier:

ln TOTEX ¼ β0 þ β1 lnURLþ β2 lnRRLþ β3 lnURL
2

þβ4 lnRRL
2 þ β5 lnURL lnRRL

þβ6 ln TRAFFIC þ β7RDCA

þβ8RDCBC þ β9RDCU þ β10PROPUA

þβ11PROPUB þ β12PROPUC þ β13PROPUU

þβ14PROPRA þ β15PROPRB þ β16PROPRC

þβ17YEARþ β18 lnWAGE þ β19 lnROCOSM þ ε

ð35Þ

Where TOTEX is total expenditure, PROPUA through to
PROPRC are urban A roads, urban B roads, etc. as
proportions of the total network length, with the proportion
of rural unclassified roads omitted, and YEAR is a time
trend. All variables are mean-centred, and linear homo-
geneity in input prices is imposed.

Table 3 compares results from the Student’s t-half nor-
mal and normal-half normal models, showing parameter
estimates, standard errors and significance levels. The Stu-
dent’s t-half normal model was estimated using a devel-
oper’s version of LIMDEP, along with formulae for
efficiency predictions as discussed in the previous section,
and the model was estimated based upon 100 Halton draws.

We can see from Table 3 that both models result in
generally similar parameter estimates; the main difference is
in the standard errors of these estimates, which are
approximately a third smaller in the t-half normal model
than in the normal-half normal model. While the σu para-
meters are comparable between the two models, as dis-
cussed in Section 5 the σv parameters are not. The variances
of u is given in both cases by:

VAR uð Þ ¼ π � 2
π

σ2u ð36Þ

Table 3 Outputs from the Student’s t-half normal and normal-half
normal models

Student’s t-half normal Normal-half normal

Estimate s.e. Sig Estimate s.e. Sig

β0 16.058 0.092 *** 16.035 0.145 ***

β1 (ln URL) 0.149 0.107 0.127 0.171

β2 (ln RRL) 0.895 0.113 *** 0.917 0.179 ***

β3 (ln URL2) 0.236 0.043 *** 0.241 0.063 ***

β4 (ln RRL2) 0.082 0.010 *** 0.085 0.016 ***

β5 (ln URL lnRRL) −0.064 0.028 ** −0.081 0.044 *

β6 (ln TRAFFIC) 0.366 0.099 *** 0.415 0.154 ***

β7 (RDCA) 0.432 0.094 *** 0.464 0.144 ***

β8 (RDCBC) −0.071 0.026 *** −0.071 0.039 *

β9 (RDCU) −0.004 0.003 −0.005 0.005

β10 (PROPUA) 8.690 1.941 *** 7.810 3.241 **

β11 (PROPUB) 1.642 2.279 0.662 3.869

β12 (PROPUC) 0.273 1.196 0.448 2.054

β13 (PROPUU) 0.969 0.547 * 1.090 0.835

β14 (PROPRA) 2.612 1.045 ** 2.120 1.571

β15 (PROPRB) 2.417 1.056 ** 2.678 1.544 *

β16 (PROPRC) 1.015 0.641 0.983 0.988

β17 (YEAR) 0.038 0.011 *** 0.045 0.017 ***

β18 (lnWAGE) 0.779 0.223 *** 0.891 0.340 ***

(1−β18) (ln
ROCOSM)

0.221 – – 0.109 – –

σu 0.535 0.046 – 0.568 0.015 –

σv 0.233 0.016 – 0.276 0.030 –

a 5.198 1.510 – ∞ – –

Log Likelihood −187.06 – – −189.14 – –

Statistical significance at the: * 10% level, ** 5% level, *** 1% level

Table 4 Estimated error variances

Student’s t-half normal Normal-half normal

VAR (u) 0.104 0.117

VAR(v) 0.088 0.076

VAR(ε) 0.192 0.194
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while VAR(v) is given by σ2v in the normal-half normal
case, and by (34) in the Student’s t-half normal case. The
estimates of these are compared in Table 4.

Table 4 shows that, in line with our expectations, and the
findings of Stead et al. (2018) relating to the logistic-half
normal model, that the Student’s t-half normal model results
in a lower estimated variance in inefficiency than the
normal-half normal model, and that more of the total error
variance is attributed to v. The overall error variance is also
slightly lower, likewise mirroring the results from the
logistic-half normal model. Following from this we expect
to find a considerably narrower distribution of efficiency
predictions from the Student’s t-half normal model owing to
both the lower estimated VAR(u) and the greater shrinkage

towards the mean resulting from the higher estimated
VAR(v).

Table 5 compares the mean, minimum and maximum
efficiency scores from the Student’s t-half normal and
normal-half normal models obtained via exp[−E(u|ε)]. As
expected, the minimum efficiency estimate is considerably
higher, and the maximum also significantly lower, in the
t-half normal model, and therefore the range of efficiency
scores is remarkably smaller. In this case less than half. A
more complete description is given by Fig. 1, which com-
pares the kernel density estimates for the two sets of effi-
ciency scores.

As well as the distribution of efficiency predictions, we
are also particularly interested in predictions at the tails.
Figure 2 compares the relationships between the estimated
residuals and efficiency predictions from the Student’s
t-half normal and normal-half normal models.

Given the similarity of the frontier parameter estimates,
as shown in Table 3, the residuals from the Student’s t-half
normal and normal-half normal models are highly corre-
lated. However the relationships between the residuals and
efficiency predictions is shown by Fig. 2 to be substantially
different between the two models: for values of residuals
between around −0.5 and 1.5, the slope of the function is
considerably flatter in the Student’s t-half normal case, so
that a change in ε results in a much smaller change in
exp[−E(u|ε)]. However, the most striking difference is that
the relationship is non-monotonic in the Student’s t-half
normal case, with exp[−E(u|ε)] beginning to decrease
slightly for the smallest values of ε and increase very
considerably for the largest values of ε. This is in contrast to
the standard SF model, and also the logistic-half normal
model as shown by Stead et al. (2018), in which the rela-
tionship is monotonic.

The explanation for the large reduction in the range of
the efficiency predictions relative to those from the standard
model is therefore twofold. First, the use of a heavy-tailed
distribution for v results in greater shrinkage of efficiency
predictions at the tails, as is the case in the normal-logistic
model (Stead et al. 2018). Second, the non-monotonicity in
E(u|ε) means that the highest and lowest efficiency scores
belong not to the most outlying observations in either
direction, as in the standard model, but to observations with
less extreme estimated residuals.

The intuitive explanation for this non-monotonicity in
the Student’s t-half normal case is that for outlying obser-
vations, the uncertainty associated with exp[−E(u|ε)]
increases, and further increases in |ε| are attributed to v to
such an extent that there is a reduction in exp[−E(u|ε)].
More formally, we know that the monotonicity of E(u|ε) is
linked to the log-concavity property of the distribution of v:
specifically, E(u|ε) is a weakly (strictly) monotonic function
of ε for any weakly (strictly) log-concave fv (Ondrich and

Table 5 Summary of efficiency scores

Student’s t-half normal Normal-half normal

Mean 0.721 0.660

Minimum 0.527 0.225

Maximum 0.855 0.918

Fig. 1 Kernel densities of cost efficiency scores

Fig. 2 Scatterplot of cost efficiency scores vs residuals
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Ruggiero 2001). Goldberger (1983) discusses the log-
concavity of the (standard) normal, logistic, Laplace and
Student’s t distributions, and these results are easily
extended to the nonstandardised cases with scaling σv. It is
notable that each of these distributions are log-concave
everywhere, with the sole exception of the Student’s t dis-
tribution, which is log-concave where v � ffiffiffi

α
p

σv but log-
convex where v � ffiffiffi

α
p

σv, i.e. at the tails
7. This explains why

E(u|ε) can be non-monotonic, changing direction at the tails,
when v follows a Student’s t distribution, whereas E(u|ε)
has been noted to be either weakly or strictly monotonic
everywhere when v follows a normal, logistic, or Laplace
distribution.

Generalising slightly outside this particular empirical
application, the finding of non-monotonicity in efficiency
predictions with respect to residuals is useful for applica-
tions in economic regulation (RPI-X regulation). This
model has interesting incentive properties which may help
overcome informational asymmetries in economic regula-
tion between the regulated firms and the regulator. In par-
ticular the non-monotonicity property should help
discourage firms from trying to game the process by sub-
mitting over-favourable data e.g. under reporting costs in
the case of cost benchmarking.

As discussed in Section 4, we are interested in testing
whether v is normally distributed, in which case the Stu-
dent’s t-half normal contains as a limiting case the normal-
half normal model. In addition to this hypothesis we are
also interested in testing the null hypothesis of no ineffi-
ciency. The likelihood ratio follows a χ21:0 distribution in
both cases. Log-likelihoods are given in Table 3, and are
used to calculate the likelihood ratio statistic as shown in
(32). For the first null hypothesis, this gives a likelihood
ratio of 4.155 and a corresponding p-value of 0.021. For our
second null hypothesis, the Student’s t-half normal model
reduces to a regression model with Student’s t errors: we do
not report the results of this regression, except the log-
likelihood, which is −189.140. Therefore the corresponding
likelihood ratio statistic is 4.150 and the p-value is 0.021.
We therefore reject the null hypotheses of normally dis-
tributed v and zero inefficiency, indicating that this model
performs better than either the standard SF model or the
Student’s t regression model for this data.

Overall our empirical application demonstrates that the t-
half normal SF model is indeed supported by our data
relative to the more standard normal-half normal SF model.

Further the frontier parameter estimates are plausible and
very similar in both models. In terms of the efficiency pre-
dictions, the Student’s t-half normal SF model yields a much
more plausible spread of efficiency predictions at the tails.

7 Summary and Conclusions

This paper proposes a new stochastic frontier model as a
means to account for outlying observations in the context of
stochastic frontier analysis. A failure to account for outliers
in the standard stochastic frontier model can lead to an
exaggerated wide range of efficiency predictions, with the
efficiency predictions relating to the least efficient firms
being implausibly low. This problem is apparent in our
application to highway maintenance departments in Eng-
land, and also in several other applications we identify in
the literature, across a range of countries and industries.

We propose a model combining a Student’s t distribution
for noise, v, with a half normal distribution for inefficiency,
u. Our model is an original and significant contribution to
the literature, not just in being able to better accommodate
outlying observations in efficiency analysis relative to the
standard normal-half normal stochastic frontier (SF) model,
but it is the first contribution to contain as a testable limiting
case the standard SF model. As such our model provides a
natural extension to the tools of practitioners in the field.
The advantages of this distribution are that the kurtosis of v
is determined by a degrees of freedom parameter which is
freely estimated, and that it encompasses as a limiting case
the normal distribution as this parameter approaches infi-
nity. This means that the heaviness of the tails of v,
reflecting the prevalence of outliers in the data, is flexible,
and that testing down to the standard SF model is possible.
We derive the log-likelihood and efficiency predictors for
the t-truncated normal SF model, and discuss extension to
other distributions for u, which is straightforward.

We consider how to test the null hypothesis of normally
distributed noise against the alternative of a heavier tailed
distribution. We show that the associated LR test statistic is
distributed as a mixture chi-squared through appealing to
results in Chen and Liang (2010), and provide simulation
evidence that the test statistic does follow the proposed
distribution under the null in large samples.

Simulation evidence is provided for the maximum
simulated likelihood estimator of our model. As well as
showing that the estimator performs well in recovering the
true parameters of our DGP for small values of the Stu-
dent’s t shape (degrees of freedom) parameter, the simula-
tions indicate that in the case of the true DGP being the
standard SF (normal-half normal) model, the Student’s t SF
model recovers very similar estimates to the standard SF
model. The combination of this finding, coupled with the

7 Note that as α→∞, i.e. the distribution of v approaches normality,
we would therefore expect the non-monotonicity seen in Fig. 2 to
become less prominent. Simulation evidence, not included here for
brevity’s sake, indicates that this is the case: the larger a is, the more
closely E(u|ε) corresponds to the normal-half normal case. For suffi-
ciently large a, the relationship may be monotonic within the range of
the estimated residuals.
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ability to test the hypothesis of a normally distributed noise
error against a heavier tailed distribution using the LR test
statistic, provides reassurance as to the robustness of a
modelling approach based on starting with the Student’s t
SF model and testing to see if a standard SF model is an
appropriate simplify restriction.

The simulation results also highlight the possibility of
‘wrong kurtosis’, specifically where the excess kurtosis of
the OLS residual distribution is less than zero. In this case
the maximum simulated likelihood estimates approach
those from the normal/half-normal model and as such
‘wrong kurtosis’ is similar to ‘wrong skew’ previously
identified in the literature. Just as the probability of ‘wrong
skew’ arising in the standard model decreases as the number
of observations or the signal to noise ratio, or both, increase
(Simar and Wilson 2010), it appears that the probability of
‘wrong kurtosis’ is negatively related to sample size and
positively related to the degrees of freedom parameter. It is
important to note that the practical implications of this
‘wrong kurtosis’ are not as severe as in the wrong skew
case. In the wrong kurtosis case, the estimation of the
Student’s t-half normal stochastic frontier models recovers
the normal-half normal model estimates, whilst under
‘wrong skew’ the estimate of the variance of the ineffi-
ciency distribution approaches zero, indicating no evidence
of inefficiency.

We apply a Student’s t-half normal model to estimate a
cost frontier using a dataset on English local authorities’
highway maintenance costs, and compare the model’s out-
puts with those from the normal-half normal model. We find
similar frontier parameter estimates from the two models,
though with reduced standard errors in the t-half normal
model. We implement testing against the standard SF
model, and find that we are able to reject the null hypothesis
of normally distributed v. This implies that it is important to
account for heavy tails in our data.

The main empirical differences between the two models
are firstly, a reduced estimate of VAR(u) and an increased
estimate of VAR(v) and secondly a reduced range of effi-
ciency predictions according to exp[−E(u|ε)]. Thirdly, we
find a non-monotonic relationship between residuals and
exp[−E(u|ε)], in contrast to the standard SF model. This
could be a very an important feature of the model in prac-
tical applications, for example in regulatory settings, where
this could incentivise correct reporting of data by regulated
firms, as the alternative ‘gaming’ behaviour of under
reporting, say, costs, many actually reduce the firm’s effi-
ciency prediction.

Finally, we have integrated our model into the LIMDEP/
NLOGIT econometric software (Greene 2016), and have

also written a Stata package enabling estimation of the
model8, which means that it is ready for use by practi-
tioners. An interesting avenue for future research would be
to consider the impact of Student’s t noise in the context of
the various panel data SF specifications, for example
models accounting for unobserved heterogeneity.
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8 Appendix A

First order conditions (reintroducing i subscripts for com-
pleteness) for maximisation in the t-truncated normal case
are

∂ ln SL
∂a

¼ N

2
ψ

aþ 1
2

� �
� ψ

a

2

� �
� 1
a

	 

þ
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XN
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� � ¼ 0 ð40Þ
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q¼1 gi uiq
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8 The package rfrontier, which can be found at www.its.leeds.ac.uk/
bear, enables estimation of stochastic frontier models in which v fol-
lows a Student’s t, Cauchy, or logisitic distribution.
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The expressions needed to complete the first order con-
ditions above are as follows
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9 Appendix B

In order to avoid the complications presented by ‘wrong
skew’ and simulation chatter, not to mention the large
amount of time that would be needed to estimate the full
model via MSL for thousands of repetitions, we restrict our
attention to the case where σu= 0, so that the model reduces
to a regression with Student’s t errors. That is, true data
generating process is

yi ¼ 1þ vi ð49Þ
where vi is drawn from a standard normal distribution. We
then estimate two regression models: one assuming a
normally distributed error term and estimated via OLS, and
the other assuming a Student’s t error term and estimated
via ML. The LR statistic is then calculated as in (32), where
lnL0 and lnLA are the resulting log-likelihoods from the
former and latter models, respectively. We use a sample size
of 5000 for each of 50,000 repetitions. Table 6 below
compares the mean, variance, and percentiles of the χ21:0

distribution to those of the sampling distribution of the LR
statistic from our Monte Carlo replications.

Comparing the two columns, the evidence from our
Monte Carlo simulations seems to support the idea that
Case 5 of Self and Liang (1987) applies in this case, i.e. that
the LR statistic follows a χ21:0 distribution.
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