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Abstract. This paper presents an investigation of the influence of various tribological 

parameters on surface initiated damage through Rolling Sliding Tests (RSTs) using bearing 

steel specimens. The RSTs were conducted on a benchtop twin-disc machine, consisting of a 

tribometer and a rolling contact fatigue testing system. The parameters investigated were 

contact pressure, slipping ratio, rotational speed, lubricant viscosity and load sequence, with 

each of them varying between two values. The first step was an investigation of the Coefficient 

of Traction (COT) under different testing conditions, followed by a set of RSTs to investigate 

surface damage initiation. It was found that the COT increased significantly under certain 

conditions of opposite rotational direction. The RST results showed that cracks and spalls on 

the surface were severer when higher slip ratio, higher contact pressure and higher rotational 

speed were applied first than that when lower levels of these parameters were applied first. 

1.  Introduction 

Premature bearing failures have been frequently observed in Wind Turbine Gearboxes (WTGs) which  

makes the improvement of their reliability a top priority among other components [1]. The most 

common premature failure was due to White Etching Cracks (WECs) which caused flaking of material 

from the surface termed as White Structure Flaking (WSF) [2][3]. The root causes of the premature 

failure for WTG bearings are not fully understood, and further investigation is necessary in order to 

achieve the design life in field operation. Bearing failures may initiate either on the surface or under 

the surface of contact in the bearing raceways. The surface initiation hypothesis suggested that cracks 

could be caused by surface flaws which became worsened under loading conditions [4][5]. Another 

cause of the premature failure was material defects such as non-metallic inclusions which could serve 

as WEC initiators by forming butterflies in subsurface of the contact according to the sub-surface 

damage initiation hypothesis [6][7].  

Premature bearing failure had been investigated experimentally in previous studies with different 

machines under various test parameters. Most of these earlier studies were carried out using discs 

tested on bench-top machines to represent the non-conformal contact between the inner or outer 

raceways and the rollers in the bearings. Since the WSF was considered as the premature failure mode 

of WTG bearings, most of the tests focused on replicating this failure mode and the related damage to 

WECs and WEAs, observed in the form of butterflies. Others investigated micro-pitting and the 

surface initiation of spalling. Both surface and sub-surface initiated damage were important, since they 

were both observed in the examined bearings retrieved from the field [6]. High numbers of cycles 
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were commonly applied in testing, which reached tens to hundreds of millions [8]. Normally, to 

achieve this high number of cycles within a reasonable time, the tests were run at higher speeds, which 

may not be representative of those in-service operating conditions. The parameters investigated in the 

reported studies included the maximum contact pressure [9], the rolling-sliding ratio [10], lubricant 

additives [10], vibration and transient loading [11], sliding to an over-rolling direction [5], and the 

number of cycles [5][8]. It was found that the number of load cycles and friction between the 

contacted surface in a mixed lubrication affected the formation of WECs [8], in addition to the contact 

pressure and sliding ratio. One of the recent studies [10] found that a specific lubricant additive - metal 

sulphonate detergent - had a significant effect, triggering surface-initiation cracks that were similar to 

the WECs.  

Despite a wide range of parameters were investigated under different testing levels of complexity, 

some issues still remained. For WTG planetary bearings the tangential speed is much lower than that 

tested in previous studies. Also, the values of the Coefficient of Traction (COT) have not been 

reported in some of the tests or lower values were reported, lower than that expected for roller 

bearings. Although the torque reversal is frequently reported in WTGs, no experimental investigation 

has been conducted to evaluate its effect due to the variation of the COT and reversed rotations. Some 

tests have investigated the effect of vibration or load variations, however the effect of the sequence in 

applying higher load levels or severe tribological conditions on damage initiation and propagation has 

not be investigated.  

The paper reports the design of experimental tests to investigate the COT at three different 

operation conditions including dry and lubricated tests followed by nine RSTs conducted at different 

operational conditions. The research presented in this paper focuses on surface initiated damage by 

investigating the effect of surface traction and the loading sequence which may represent WTG 

operational conditions involving torque reversal and severe transient loading.  

2.  Experimental Testing 

The machine used to perform rolling and sliding contact was the SUROS system (Sheffield University 

Rolling Sliding), shown in Figure 1 [12]. The instantaneous slip (Si) between the specimens is 

calculated by Equation 1, where R is the radius of the specimens and N is the rotational speed in RPM. 

During the test, the data is logged including load, rotational speed, number of revolutions, torque and 

COT. The machine is designed to run a dry or lubricated contact in an oil bath. One of the tested 

specimens has a crowned contact surface and the other has a flat contact surface, as show in Figure 2. 

 
Figure 1: Schematic representation of SUROS machine adopted from [12] 

 𝑆𝑖(%) = 200 ∗ (𝑅𝑈𝑝𝑝𝑒𝑟 ∗ 𝑁𝑈𝑝𝑝𝑒𝑟 − 𝑅𝐿𝑜𝑤𝑒𝑟 ∗ 𝑁𝐿𝑜𝑤𝑒𝑟𝑅𝑈𝑝𝑝𝑒𝑟 ∗ 𝑁𝑈𝑝𝑝𝑒𝑟 + 𝑅𝐿𝑜𝑤𝑒𝑟 ∗ 𝑁𝐿𝑜𝑤𝑒𝑟) 
1 

Oil 

bath 
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Figure 2: Specimens used for the tests (a) Flat (b) crowned surface of contact 

The running track temperature close to the point of contact was measured using an Infrared 

thermocouple. The temperature was measured every 30 minutes during the tests and a record was 

made in which the average was applied for calculating the lubricant film thickness between the 

specimens at each test. In this research, two types of lubricants, Castrol Alpha SP 46 and 68, were 

used to investigate the effect of different lubricant viscosities. The average temperature measured 

close to the point of contact was considered for each RST to find the viscosity and calculate the 

minimum lubricant film thickness, according to Hamrock and Dowson in [13],  and in turn to find the 

λ ratio, and thus the lubrication regime during the RSTs. 

In each of the RSTs, two discs, crowned on a non-crowned, were rolling over each other under five 
controlled parameters. These were rotational speed of lower disc, contact pressure, slip ratio, lubricant 
viscosity and number of cycles. Since the surface traction, quantified by the COT, is one of the main 
test parameters to be investigated, a set of tests were conducted to gain an insight into the possible 
values of the COT under different operating conditions, as shown in Table 1. It was found that after a 
running in of 2000 cycles in a lubricated condition before the first measurement, the surface became 
very smooth and this reduced the effect of surface roughness. 

Table 1: The settings for the COT measurement tests  

Test Lubrication Load (kN) Pmax 

(MPa) 

Speed (rpm) Slip % 

COT1 Sp 68 4.6 3052 20 -1 

COT2 Sp 68 6.5 3425 400 -10 

COT3 Dry 3.5 2786 400 -1 

To investigate the effect of different tribological conditions on surface initiated damage, nine RSTs 

were performed. The first test consisted of three steps, while each of the other eight tests consisted of 

two steps with different settings of operating parameters, as shown in Table 2. The first test ran longer 

than the other eight tests, and it was the only test with a step of reversed rotations, which was 

designated by the (–) sign of speed in Table 2. In these tests, with the exception of the number of 

cycles, the variation of all parameters was investigated as well as a change in the sequence of test 

steps. In each of the eight tests, there was a step which was called the high speed step where the testing 

parameters were set to a rotation speed of 400 rpm, maximum contact pressure of 3425 MPa, 250,000 

cycles, -10% slip and using SP 68 lubrication oil. The other step was called low speed step where the 

number of cycles was 50,000 and other investigated parameters varied between two values. In Table 2, 

sequence 1 refers to the first step, step (a), as the low speed step and the second step, step (b), as the 

high speed step. Sequence 2 refers to the first step, step (a), as the high speed step and the second step, 

step (b), as the low speed step. 

The tests in Table 2 were designed to investigate the effect of each of the studied parameters by 

comparing certain tests with each other. The features of the contact surface used to evaluate the effect 

of the investigated parameters were the variation of surface roughness, the weight loss, and the 

characteristics of surface. The surface roughness variation was examined using the non-contact 

Ø=47 mm 

10 mm 10 mm 

Radius=40 mm 

a b 
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profilometer (INFINITEFOCUS Alicona). This system uses an optical focus variation method to 

create 3D measurements. The arithmetical mean roughness (Ra) was measured for the surface of each 

specimen outside and inside wear scars, in the axial and circumferential directions, with at least three 

lines at different locations. Then, the average and standard deviation were calculated to find the Ra 

inside and outside the wear scars in the axial and circumferential directions. The wear scar roughness 

for each RST was compared with the original roughness of the specimens in order to find the 

percentage difference. 

Table 2: Specifications of RSTs 

RSTs Test 

step 

Speed 

(rpm) 

Slip

% 

Oil 

type 

SP 

Sequence Load 

(kN) 

Pmax 

(GPa) 

Cycles The radii of the 

elliptical contact 

area (mm) 

1 

1a 400 -10 68 - 6.5 3.42 900000 1.43 and 0.63 

1b -20 0 68 - 1.5-

3.5 

2.1-2.78 36 (0.88 and 0.39) to 

(1.16 and 0.52) 

1c 400 -10 68  6.5 3.42 100000 1.43 and 0.63 

2 
2a 400 -10 68 2 6.5 3.42 250000 1.43 and 0.63 

2b 87 -10 68 2 6.5 3.42 50000 1.43 and 0.63 

3 
3a 87 -10 68 1 6.5 3.42 50000 1.43 and 0.63 

3b 400 -10 68 1 6.5 3.42 250000 1.43 and 0.63 

4 
4a 87 -20 46 1 6.5 3.42 50000 1.43 and 0.63 

4b 400 -10 68 1 6.5 3.42 250000 1.43 and 0.63 

5 
5a 48 -10 46 1 6.5 3.42 50000 1.43 and 0.63 

5b 400 -10 68 1 6.5 3.42 250000 1.43 and 0.63 

6 
6a 48 -20 68 1 6.5 3.42 50000 1.43 and 0.63 

6b 400 -10 68 1 6.5 3.42 250000 1.43 and 0.63 

7 
7a 87 -20 68 1 6.5 3.42 50000 1.43 and 0.63 

7b 400 -10 68 1 6.5 3.42 250000 1.43 and 0.63 

8 
8a 400 -10 68 2 6.5 3.42 250000 1.43 and 0.63 

8b 87 -20 68 2 9.75 3.92 50000 1.63 and 0.73 

9 
9a 400 -10 68 2 6.5 3.42 250000 1.43 and 0.63 

9b 87 -20 68 2 6.5 3.42 50000 1.43 and 0.63 

3.  Results and Discussion 

In the following sections, the results of the COT at different operating conditions including dry contact 

and reverse rotation are presented first. Then the surface examination of the specimens is presented. 

Finally, the effects of the investigated parameters during the RSTs on the initiation of surface damage 

are compared. 

3.1.  Coefficient of Traction at Different Testing Conditions 

The COT results were obtained according to the sequence and testing parameters in Table 1. For a 

lubricated test under certain testing conditions, the COT did not vary significantly after a specific 

number of cycles, as shown in Figure 3 (a). However, for dry contact, the COT reached a very high 

value as shown in Figure 3 (b). Although dry contact may not be expected in the WTG bearings, it 

shows the possible COT values during metal on metal contact. It is found that a low slip ratio, -1%, 

caused a rapid increase in the COT and considerable surface damage. The heat generated could be the 

main reason for the adhesive surface damage and the increase in COT. However, the accumulation of 

heat after a number of cycles, and increasing the flash temperature reduce the COT due to the oxide 

formations.    
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After the COT measurement tests, the surfaces examination of specimens used for lubricated tests 

showed a very mild wear track which only reduced the roughness of the surface, as shown in Figure 4 

(a), while after the dry test, the surfaces were highly damaged, as shown in Figure 4 (b).  

a    b 

Figure 3: COT variation with number of cycles according to Table 1 (a) lubricated contact (COT2) (b) 
dry contact (COT3) 

a b  

Figure 4: The surface after the COT tests (a) after lubricated tests; (b) after high speed dry test 

To investigate the effect of reversed rotation on the COT, RST 1 (b), as specified in Table 1, was 

conducted. The results are shown in Figure 5. The variation of the COT shows that not only dry 

contact, such as in Figure 3 (b), can cause a high COT, but a very well lubricated contact surface can 

do so as well when the reversed rotation occurs for a brief time. In Figure 5, the COT jumped to a 

higher value after the maximum contact pressure reached 2.78 GPa (3.5 kN) as shown by the dashed 

line, although the load was being gradually increased. Accordingly, the instantly reversed rotation 

under this level of contact pressure can cause high values of COT. Reversed test can simulate the 

torque reversal when a roller moves in the reversed rotational direction. The accelerated damage 

observed on the surface supports the occurrence of premature failure of wind turbine bearings, which 

can be caused by changes in the direction of rotation. For the RSTs, the COT was in the range of 0.06 

to 0.087 and the value at the low speed step of each test was higher than that during the high-speed 

step for each test. This indicates that the tests were running in the mixed lubrication regime where 

higher speed produces a thicker lubricant film thus lower COT. 

 
Figure 5: COT during reversed rotation according to testing conditions in Table 2 
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3.2.  Effects of Tested parameters on Surface Damage and Wear 

The optical microscope was used to take images, such as those in Figure 6, from four equidistant 

regions around the circumference and the maximum size of cracks and pits were measured. For all the 

tests that developed pits, it was found that this was mainly due to axial surface cracks that were close 

to each other. 

1-a                                      1-b 1-c 

     
2-a                                     2-b 6-a                                      6-b 

    
3-a                                       3-b 7-a                                      7-b 

     
4-a                                      4-b 8-a                                       8-b 

     
5-a                                       5-b 9-a 

     
Figure 6: Non-crowned specimen surfaces at the middle of the contact width after each step of RSTs 

1 to 9 

For all the test steps conducted at 400 rpm, the λ values were almost one, which leads to the 

asperities on the surfaces being almost separated, whilst at low rotational speeds of 48 and 87 rpm, the 

hmin is considerably lower than the value of the composite roughness, and thus a mixed lubrication 

regime and partial contact between the surfaces are expected. No severe damage was observed on the 

surface, based on the observed optical images and the variation of the roughness. However, 

considerably more damage occurred during the reverse rotation. The observed variation in the initial 

200 µm 200 µm 

500 µm 500 µm 

500 µm 500 µm 

500 µm 500 µm 
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roughness implied that the calculation of the lambda ratio should not be based on the initial surface 

roughness, which varies and reduces quickly after the running in time. The wear rate was measured by 

the weight loss from the flat and the crowned specimen after each step of the RSTs. In general, the 

wear rate is very limited and within the range of milligrams. 

Table 3 shows pairs of tests carried out under similar conditions except one investigated parameter 

that varied in Test B. The observations from Test B were compared to that in test A. The results show 

some parameters that can increase surface damage, such as increasing the slip ratio and contact 

pressure (normal load), and other parameters that can mitigate this damage, such as reducing the 

speed, and changing the sequence of load steps to high speed first. A higher slipping ratio causes more 

relative sliding between the contacted bodies, and more surface strain that accumulates to fatigue the 

surface and onset cracking under mode II. Higher speed was found to increase the temperature and the 

surface damage, which could be due to the higher strain rate at a higher speed. Although damage 

accumulation theories such as the Miner rule, neglect the effect of load sequence, this research has 

found that the sequence has an effect on the surface damage during the RSTs. The results show that 

the propagation of surface damage was accelerated even under less severe conditions when the surface 

damage initiates first under low speed testing. This highlights the importance of avoiding severe 

tribological conditions or loading at the beginning of a bearings life. 

Table 3: Effects of investigated parameters on surface observations from RSTs 1 to 9 where LS and 
HS are the low and high speed steps, respectively 

Test 
A 

Test 
B 

The different Parameter 
in Test B 

% Change of 
Roughness 

Maximum 
surface Crack 

length 

Maximum pit 
size 

Wear rate 

3 7 
Slip ratio was increased 
in RST 7 at sequence 1 

Reduced  Increased  Increased  Increased  

7 4 
Viscosity was decreased 

in RST 4 
Increased  

Increased (LS) 
Reduced (HS) 

Reduced (LS) 
Reduced (HS) 

Increased (LS) 
Reduced (HS) 

7 6 
Speed was decreased in 

Test 6 
Increased Reduced  Reduced  Reduced  

9 8 
Load was increased in 

RST 8 
Increased 

Increase (HS) 
Increase (LS) 

Increase (HS) 
Reduced (LS)  

Reduced (HS) 
Increase (LS) 

7 9 
Sequence was changed 
from 1 to 2 in RST 9 at   

-20% slip 
Reduced Reduced  Reduced  Reduced  

3 2 
Sequence was changed 
from 1 to 2 in RST 2 at   

-10% slip 

Reduced 
 

Reduced  Reduced  Increased  

 

4.  Conclusions 

The effect of various tribological conditions on the surface initiated damage of bearing steel was 
investigated. Sets of tests were conducted and the observation of the COT and the topography of the 
specimens’ surface were utilized to characterize the effect of contact pressure, slipping ratio, rotational 
speed, lubricant viscosity and load sequence. This study concludes that  

 The COT did not vary significantly after a specific number of cycles for lubricated tests, and a 
high slip ratio did not necessarily correlate to high surface traction/COT under full lubrication. 
However, for dry contact or reversed rotation tests, the COT reached a very high value within 
a short time or few cycles.  
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 The severity of the damage observed during reversed rotation revealed more deteriorating 
effect of this condition compared with the other operating conditions. Accordingly, the 
severity of spalling correlated to the level of surface traction.  

 The initial surface roughness was reduced significantly after the running-in cycles. This 
results in inaccuracies in the calculation of the lambda ratio based on the initial surface 
roughness, and invalidates the assumption of boundary lubrication made in many studies.  

 It was also found that cracks and spalls on the surface were affected by sequence 1 (low speed 
step, then high speed step), higher slip ratio, higher contact pressure and higher speed at 
lambda ratio less than one.  
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