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A new set of exact coherent states in the form of a travelling wave is reported in plane
channel flow. They are continued over a range in Re from approximately 2600 up to
30000, an order of magnitude higher than those discovered in the transitional regime.
This particular type of exact coherent states is found to be gradually more localised in
the near-wall region on increasing the Reynolds number. As larger spanwise sizes L+

z

are considered, these exact coherent states appear via a saddle-node bifurcation with
a spanwise size of L+

z ≃ 50 and their phase speed is found to be c+ ≃ 11 at all the
Reynolds numbers considered. Computation of the eigenspectra shows that the time
scale of the exact coherent states is given by h/Ucl in channel flow at all Reynolds
numbers, and it becomes equivalent to the viscous inner time scale for the exact coherent
states in the limit of Re → ∞. The exact coherent states at several different spanwise
sizes are further continued to a higher Reynolds number, Re = 55000, using the eddy-
viscosity approach (Hwang & Cossu, Phys. Rev. Lett., vol. 105, 2010, 044505). It is
found that the continued exact coherent states at different sizes are self-similar at the
given Reynolds number. These observations suggest that, on increasing Reynolds number,
new sets of self-sustaining coherent structures are born in the near-wall region. Near
this onset, these structures scale in inner units, forming the near-wall self-sustaining
structures. With further increase of Reynolds number, the structures that emerged at
lower Reynolds numbers subsequently evolve into the self-sustaining structures in the
logarithmic region at different length scales, forming a hierarchy of self-similar coherent
structures as hypothesized by Townsend (i.e. attached eddy hypothesis). Finally, the
energetics of turbulent flow is discussed for a consistent extension of these dynamical
systems notions to high Reynolds numbers.

1. Introduction

The logarithmic dependence of mean velocity profile is the most fundamental feature
in wall-bounded turbulent shear flow. The original derivation of von Kármán (1930) is
based on the mixing length hypothesis (Prandtl 1925) for modelling of Reynolds shear
stress in a pressure-driven plane channel flow. Since the mixing length in the region
close to the wall (y/h < 0.2 where y is the wall-normal direction and h is half height of
channel) has to vanish at the wall, the only possible length scale in this region becomes
the distance from the wall (i.e. y). Given the mixing length is conceptually identical to the
mean free path in thermodynamics, this indicates that the correlation length scale of fluid
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motions (i.e. integral length scale) in the logarithmic region would be the distance from
the wall. Townsend (1956, 1976) hypothesized that it would be difficult to imagine the
emergence of this feature, unless the size of energy-containing eddies (coherent structures)
in the logarithmic region is proportional to the distance from their centre to the wall,
and, in this sense, these energy-containing eddies should be ‘attached’ to the wall (i.e.
the attached eddy hypothesis). He further assumed that these energy-containing eddies
are self-similar and that their near-wall behaviour could be modelled in the inviscid
limit. By linearly superposing a generic form of second-order statistical moment of each
of self-similar energy-containing eddies subject to the constant Reynolds shear stress,
he predicted that the turbulence intensity of wall-parallel velocity components would
be a logarithmically dependent function in the wall-normal direction. For the past two
decades, there has been growing evidence that supports the attached eddy hypothesis,
and, in particular, recent measurements have confirmed that the theoretical prediction
of Townsend (1976) is indeed a reliable first approximation of turbulence intensities in
the logarithmic region (e.g. Marusic et al. 2013). For the further details, the reader may
refer to the recent review by Marusic & Monty (2019) and the references therein.
In the original theory of Townsend (1976), the detailed form and dynamical feature of

individual attached eddies are not required to construct the logarithmic wall-normal
dependence of turbulence intensity of wall-parallel velocity components because the
attached eddies are only characterised by the second-order ‘statistical moments’. Indeed,
in earlier studies, the form of attached eddies was modelled only in a statistical manner
by taking the flow field observations available at the time. For example, Townsend (1976)
himself proposed a double-cone vortex as a statistical model of individual attached eddies
from the experimental observation by Kline et al. (1967) on the near-wall streaks. In
the refining work by Perry & Chong (1982), a ‘Λ’-shape vortex was adopted from the
flow visualisation of Head & Bandyopadhay (1981) in a turbulent boundary layer. More
recently, Woodcock & Marusic (2015) considered a fairly generic statistical model of
attached eddy, given in the form of spanwise alternating streamwise velocity with finite
streamwise size.
Nevertheless, the question of what the main energy-containing eddies really are is

very important, as these eddies would play the central role in momentum and mass
transfer due to their energy-containing nature – indeed, it was recently shown that the
energy-containing eddies which scale with the distance from the wall are the dominant
source of turbulent skin-friction generation at high Reynolds numbers (de Giovanetti
et al. 2016). Recently, some important statistical and dynamical features of these main
energy-containing eddies have also been reported. In particular, the energy-containing
eddies in the logarithmic region have been repeatedly found to be statistically and
dynamically self-similar (Hwang 2015; Hwang & Bengana 2016; Hellstöm et al. 2016),
as hypothesized by Townsend (1976). These energy-containing eddies have a sustaining
mechanism essentially independent of those at other (length and time) scales (Hwang
& Cossu 2010b, 2011). Each of the energy-containing eddies is composed of elongated
streaks and vortex packets statistically in the form of quasi-streamwise vortices (Hwang
2015; Hwang & Bengana 2016) and its turn-over dynamics is remarkably similar to the
so-called ‘self-sustaining process’ of near-wall turbulence that involves both linear and
nonlinear mechanisms within the given scale (Hamilton et al. 1995; Waleffe 1997; Schoppa
& Hussain 2002). It is important to note that this statistical and dynamical description
on the energy-containing eddies integrates all the known coherent structures within the
framework of the attached eddy hypothesis (Hwang 2015), including near-wall streaks
(Kline et al. 1967) and quasi-streamwise vortices (Jeong et al. 1997) in the near-wall
region, self-similar vortex packets and their wakes in the logarithmic region (del Álamo
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et al. 2006), and large-scale (Kovasznay et al. 1970) and very large-scale motions in the
outer region (Kim & Adrian 1999; del Álamo & Jiménez 2003; Hutchins & Marusic 2007).

The self-sustaining process has been firmly understood as the turbulence generation
mechanism, which involves a two-way interaction between streaks and quasi-streamwise
vortices (Hamilton et al. 1995; Waleffe 1997): quasi-streamwise vortices significantly
amplify streaks via the ‘lift-up’ effect (Butler & Farrell 1993; del Álamo & Jiménez
2006; Cossu et al. 2009; Pujals et al. 2009; Hwang & Cossu 2010a; Willis et al. 2010;
McKeon & Sharma 2010), and the amplified streaks subsequently regenerate new quasi-
streamwise vortices via streak instability/transient growth and the following nonlinear
mechanisms (Hamilton et al. 1995; Schoppa & Hussain 2002; Park et al. 2011; Alizard
2015; Cassinelli et al. 2017; de Giovanetti et al. 2017). Based on this observation, Waleffe
(1998, 2001, 2003) computed a set of non-trivial (relative) equilibrium solutions of the
Navier-Stokes equations by cleverly imposing the exact mathematical balance in the
two-way interactions between streaks and quasi-streamwise vortices. For the last two
decades, a large number of such solutions, in the form of stationary/travelling waves and
periodic orbits, have been found (Nagata 1990; Waleffe 1998; Kawahara & Kida 2001;
Waleffe 2003; Faisst & Eckhardt 2004; Wedin & Kerswell 2004; Hwang et al. 2016, and
many others), and their understanding has played a central role in the recent advance
in transition and turbulence at low Reynolds number. These solutions are often called
‘exact coherent states’, and they characterise the state-space skeleton of turbulence at
low Reynolds numbers (Gibson et al. 2008; Willis et al. 2013, 2016; Budanur & Hof 2017).

Given the close relation between the self-sustaining process and exact coherent states,
the existence of the self-sustaining process for individual attached eddies of Townsend
(1976) indicates that such exact coherent states presumably exist at high Reynolds
numbers (Hwang 2015; Hwang & Bengana 2016). Although computation of such exact
coherent states itself does not necessarily indicate that they can be easily reassembled
to form invariant solutions for the entire hierarchical organisation of attached eddies
with the Navier-Stokes equations, it would at least allow us to gain physical insight
into the emergence of such a hierarchy of coherent structures at high Reynolds number.
Interestingly, a set of such exact coherent states was very recently reported by Eckhardt
& Zammert (2018) in plane Couette flow, and it was obtained by properly rescaling
and continuing a pair of equilibrium states in Gibson et al. (2009) (EQ7 and EQ8)
to high Reynolds number. In the present study, we report a new set of such exact
coherent states in channel flow, which emerges in the form of relative equilibrium states
(travelling waves). The exact coherent states in the present study are obtained using an
over-damped simulation, as in Hwang & Bengana (2016), and they are in different form
from those found by Eckhardt & Zammert (2018) in plane Couette flow (see §3.3). Near
the saddle-node point in their spanwise size Lz, this new set of exact coherent states is
found to asymptotically scale in viscous inner units, indicating that they are associated
with the birth of near-wall structures on increasing Reynolds number. Continuation of
these solutions to high Reynolds numbers with an eddy viscosity model (Rawat et al.

2015; Hwang et al. 2016) further reveals that they underpin the self-sustaining process
of self-similar energy-containing eddies in the logarithmic region emerging in the form of
Townsend’s attached eddies.
This paper is organised as follows. In §2, the numerical method for computation of exact

coherent states in the present study is presented. Bifurcation, flow structure and statistics
of these solutions are then presented in §3 with continuation to high Reynolds numbers.
In this section, the relation of the present solutions to the others is also discussed. Finally,
in §4, a comprehensive discussion on scaling of these solutions and of the use of eddy
viscosity are discussed with concluding remarks.
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2. Numerical methods

2.1. Simulations

We consider a pressure-driven channel flow, in which the streamwise, wall-normal and
spanwise directions are denoted by x, y and z, respectively, and they are interchangeably
denoted by x1, x2 and x3. The velocity components in these directions are u, v, and
w, or u1, u2 and u3. The computations in the present study are carried out using the
Navier-Stokes solver Diablo, which is well documented in Bewley (2014). In this solver,
the streamwise and spanwise directions are discretised using Fourier series with 2/3
dealiasing rule, whereas the wall-normal direction is discretised using second-order central
differences. Time integration is performed semi-implicitly by combining the Crank-
Nicolson method with a third-order Runge-Kutta method. All the computations in the
present study are carried out by imposing a constant volume flow rate across the channel.

Further to direct numerical simulations, a set of over-damped large-eddy simulations
is considered by implementing the static Smagorinsky model (Smagorinsky 1963) in the
manner of our previous studies (Hwang & Cossu 2010b, 2011; Hwang 2015; Hwang &
Bengana 2016): i.e.

τ̃ij −
δij
3
τ̃kk = −2νtS̃ij , (2.1a)

with

νt = (Cs∆̃)2S̃D, (2.1b)

where ·̃ denotes the filtered quantity, Sij the strain rate tensor, Cs the Smagorinsky

constant, ∆̃ = (∆̃1∆̃2∆̃3)
1/3 the nominal filter width, S̃ = (2S̃ijS̃ij)

1/2 the norm of the
strain rate tensor, and D = 1−exp[−(y+/A+)3] is the van Driest damping function, with
A+ = 25 (the superscript + denotes scaling with viscous inner units: i.e. normalisation
by friction velocity uτ and viscous inner length scale δν(≡ ν/uτ ) where ν is the kinematic
viscosity). Here, the Smagorinsky constant Cs is the main control parameter of such an
over-damped simulation: its artificial elevation has been used to remove smaller-scale
background turbulence, while modelling their role in turbulent transport and dissipation
with the artificially elevated eddy viscosity (Hwang & Cossu 2010b). In the present
study, this approach is adopted to continue the discovered exact coherent states to higher
Reynolds numbers, and the relevance of this approach will be discussed in detail in §4.2.
In plane channel flow, the spanwise integral length scale of fully-developed turbulence

typically varies from λ+
z ≃ 100 to λz/h ≃ 1.5 (Hwang 2015). Therefore, setting the

spanwise computational domain Lz to be a value between the two spanwise integral
length scales eliminates any motions with spanwise size greater than Lz (Hwang 2013).
Combining this approach with elevation of Cs by an appropriate value enables us to
isolate self-sustaining motions at λz = Lz, as was shown in Hwang (2015) and Hwang &
Bengana (2016) where these self-sustaining motions were found to be approximately self-
similar with respect to the spanwise length scale λz. Since the goal of the present study
is to compute a family of exact coherent states embedded in such self-similar motions,
the spanwise domain size Lz is set as the main control parameter to characterise the size
of exact coherent states. The streamwise domain size is subsequently set to be Lx = 2Lz,
so that the computed exact coherent states fit in the minimal unit for the self-sustaining
process of each energy-containing motion in the logarithmic region (Hwang & Cossu
2011; Hwang & Bengana 2016).
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Figure 1. Bifurcation of the solutions with respect to Re: (a) bifurcation curves for
Lz/h = 0.2, 0.3, 0.45 and 0.6; (b, c, d) the corresponding flow visualisations of the saddle-node
points at Lz/h = 0.2, 0.3, 0.6, respectively. In (a), the solutions from Waleffe (2001) and Hwang
et al. (2016) are presented for Lz/h = 1.5: , Waleffe (2001); · · · · · ·, Hwang et al.
(2016); , present study. In (b, c, d), the blue and red iso-surfaces indicate u′+ = −2 and
λ+

2 = −0.002, respectively.

2.2. Exact coherent states

The search for exact coherent states is carried out in the following invariant subspace
of the velocity fields:

[u, v, w, p](x, y, z) = [u, −v, w, p](x, 2h− y, z), (2.2a)

[u, v, w, p](x, y, z) = [u, v, −w, p](x− Lx/2, y,−z). (2.2b)

Here, (2.2a) corresponds to the mirror symmetry about the channel mid-plane at y = h,
which is imposed by applying a symmetric boundary condition to the channel centre,
∂u/∂y = 0, v = 0, ∂w/∂y = 0 at y = h. This approach enables us to save computational
cost, and also prevents any complications originating from the interaction between the
upper and lower parts of channel (Neelavara et al. 2017). (2.2b) corresponds to the so-
called ‘shift-reflect’ symmetry, which is imposed in order to seek an exact coherent state
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Figure 2. Friction Reynolds number of the solutions with respect to (a) the outer- and (b) the
inner-scaled spanwise domains at Re = 2646, 3163, 3762, 6250, 10000, 15710, 30000.

featured with ‘sinuous-mode’ streak instability. We note that the sinuous-mode streak
instability has recently been found as the dominant breakdown mechanism of streaks in
the self-sustaining process (Cassinelli et al. 2017; de Giovanetti et al. 2017). Furthermore,
performing a numerical simulation in the minimal flow unit subject to this symmetry was
previously found not to yield any significant difference in turbulence statistics from those
without this symmetry (Hwang et al. 2016).
A travelling-wave form of exact coherent state (i.e. a relative equilibrium) has been

sought by combining the Newton-Krylov-Hookstep method (Viswanath 2007; Willis et al.
2013) with the numerical solver described in §2.1. This method computes invariant
solutions of the Navier-Stokes equations by minimising the relative error between an
initial state and that state time-stepped an interval T and shifted in the streamwise
direction by a distance −sx. For a travelling wave, the choice of T is arbitrary, and
TUcl/h = 10 ∼ 20 is chosen in the present study (Ucl is the centreline velocity of
the laminar base flow with the same flow rate). The solutions in the present study are
computed to a relative-error tolerance of 10−6 between the initial and shifted end states.
The stability of the computed exact coherent state is also examined by computing its
eigenvalues by Arnoldi iteration.
The initial guess for the Newton iteration is directly obtained from an over-damped

large-eddy simulation. The spanwise computational domain for this simulation is chosen
to be Lz/h = 0.5 (thus Lx/h = 1.0), and the Reynolds number (Re ≡ Uclh/ν) considered
is Re = 55000. The Smagorinsky constant is set to Cs = 0.35, the use of which isolates
the self-sustaining motion at the given spanwise length scale. A converged exact coherent
state is found from this state by Newton iteration. Numerical continuation of this solution
with a pseudo-arclength method is subsequently performed, gradually lowering Re and
Cs, until it becomes an exact solution of the Navier-Stokes equations (i.e. Cs = 0)
at a sufficiently low Reynolds number (Re ≃ 4000) for the given computational domain
(Lz/h = 0.5). Taking this solution as the base case, a set of exact solutions of the Navier-
Stokes equations is obtained for a range of Lz and Re (see §3.1). This task is carried by
continuing with Lz and Re and this differs from the approach by Eckhardt & Zammert
(2018) who employed a rescaling approach for a given solution to generate a new solution
at different scale. Continuations in the present study are carried out in one parameter at a
time, first in either Lz or Re while keeping the other fixed. The continuation parameter
is repeatedly switched to collect the data over the range of the two-parameter space.
Keeping Cs = 0, the smallest spanwise domain continued is Lz/h = 0.19, at which
Re = 30000 is reached. While gradually decreasing Lz, further elevation of Re appears
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Case Re Reτ Lz/h c/Ucl L+
z c+

M1 2646 93.8 0.615 0.467 57.6 13.2
M2 3163 100.5 0.558 0.402 56.1 12.6
M3 3762 108.3 0.509 0.351 55.1 12.2
M4 6250 133.8 0.399 0.249 53.3 11.6
M5 10000 163.7 0.320 0.186 52.4 11.4
M6 15710 199.7 0.259 0.143 51.7 11.2
M7 30000 267.9 0.190 0.099 51.0 11.0

Table 1. Properties of the solutions at the smallest L+
z in the bifurcation curve.

to be feasible. This is not attempted, however, as it would require an additional increase
of the number of the wall-normal grid points.

Continuation of the discovered exact solutions of the Navier-Stokes equations is typ-
ically limited to relatively low Reynolds numbers. As expected, this is particularly true
for the solutions with relatively large Lz. However, to explore their relation to the
self-sustaining process in the logarithmic region (see §3.2), they need to be continued
to fairly high Reynolds numbers, at which the logarithmic layer of the full simulation
would be reasonably well developed. For this purpose, the exact solutions for Lz/h =
0.375, 0.5, 0.75, obtained at low Reynolds numbers (Re < 10000), are further continued
to Re = 55000 using the over-damped large-eddy simulations described in §2.1, as
in the previous studies (Rawat et al. 2015; Hwang et al. 2016) – the continuation to
Re = 55000 is performed, while also increasing Cs in (2.1b) to an appropriate value. The
full simulation at Re = 55000 yields Reτ ≃ 2000 (Reτ ≡ uτh/ν) for a sufficiently large
computational domain (i.e. Lz > 1.5h and Lx > 3h; see also Hwang & Bengana 2016).

The resolution of exact coherent states in this study is determined carefully. Given
the expected self-similarity of the solutions with respect to the horizontal domain size,
the number of grid points in the horizontal plane is maintained to be Nx × Nz = 36 ×
36 at all the domains considered. At the same time, the solutions are expected to be
localised in the near-wall region (see figure 1(b − d)), thereby requiring a large number
of grid points in the wall-normal direction. For the solutions admitted by the Navier-
Stokes equations (i.e. Cs = 0), two wall-normal resolutions were originally considered for
the lower half-channel: i.e. Ny = 97 and Ny = 129, both of which are stretched using
a hyper-tangential function. These resolutions are the typical wall-normal resolutions
used for direct numerical simulations at Reτ ≃ 392 and Reτ ≃ 590, respectively (see
e.g. Moser et al. 1999), and, Ny = 97 is found to be good enough for most of the
parameters considered (see Appendix A). Therefore, throughout the present study, we
present the result obtained with Ny = 97. In the case of the solutions continued to high
Reynolds number using the over-damped large-eddy simulation (i.e. with non-zero Cs),
the standard wall-normal resolution required for the wall-resolved LES at Reτ ≃ 2000
is used for consistency with Hwang & Bengana (2016) (i.e. Ny = 65). We note that
this relatively small number for the wall-normal resolution at such a high Reynolds
number is not a great limitation, as the eddy viscosity in (2.1b) smooths out the solution.
Furthermore, the use of the eddy viscosity is introduced essentially to model the effect of
surrounding turbulence, and, as such, any different kind of such models can be adopted
for the same purpose. In this respect, the use of the eddy viscosity may be viewed to
be ad-hoc, but we shall see in §4.2 that its use is inevitable for energetically consistent
description of coherent structures in a turbulent flow.
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Figure 3. Inner-scaled flow visualisation of the solutions at the smallest L+
z : (a) M1; (b) M4;

(c) M7. Here, the blue and red iso-surfaces indicate u′+ = −2 and λ+

2 = −0.002, respectively.

3. Results

3.1. Bifurcation and scaling

Bifurcation of the computed exact coherent states with Re is reported in figure 1(a) for
various spanwise domain sizes: Lz/h = 0.2, 0.3, 0.45 and 0.6. Here, Reτ is defined by the
friction velocity of each solution, and is introduced to the skin friction of each solution
at different Reynolds numbers. In this figure, the travelling wave solutions, previously
obtained by Waleffe (2001) (dash-dotted line) and by Hwang et al. (2016) (dotted line),
are reported together for Lz = 1.5h. We note that these previous solutions also satisfy
the symmetries given by (2.2), although they are found unlikely to be connected to
the family of solutions reported here (see §3.3). For given Lz, each set of the solutions
shows a saddle-node bifurcation with Reynolds number: the solution that emerges at the
saddle-node point divides into two, one of which becomes high drag state (upper branch)
and the other becomes low drag state (lower branch). The flow structure at the onset
for different Lz is also shown in figures 1(b − d). It is evident that the smaller the Lz

of the solution, the more localised it is to the wall. All the solutions are characterised
by a ‘wavy’ streak (blue iso-surfaces of streamwise velocity fluctuations) with sinuous-
streak instability and streamwise vortices on the flank (red iso-surfaces of the second
largest eigenvalue λ2 of the symmetric tensor SikSkj+ΩikΩkj , where Sij and Ωij are the
symmetric and antisymmetric parts of the velocity gradient tensor, respectively (Jeong
& Hussain 1995)), indicating their physical connection to the self-sustaining process.

Bifurcation of the solutions is also studied with the outer-scaled spanwise domain size
Lz/h, as shown in figure 2(a) for Re = 2646, 3163, 3762, 6250, 10000, 15710 and 30000
(Cs = 0). For each Reynolds number, the solutions emerge via a saddle-node bifurcation
upon increasing Lz (the left critical point of each bifurcation curve in figure 2): i.e. the
solution, emerged at critical Lz, is divided into the upper-branch (high drag) and lower-
branch (low drag) states. Interestingly, in the case of the two lowest Reynolds numbers
considered, these lower- and upper-branch states meet each other again, and they cannot
be continued beyond a domain size greater than a certain value (Lz/h ≃ 0.8 forRe = 2646
and Lz/h ≃ 0.85 for Re = 3163). However, in general, it is not evident whether such a
behaviour would also be observed for the solutions found at higher Reynolds numbers,
as their continuation was found to be numerically very difficult while maintaining the
relative-error tolerance of 10−6 in the Newton iteration.

Given the wall-localised nature of these solutions, it is also appropriate to rescale the
size of these structures near the saddle-node point with viscous inner length, as presented



Exact coherent states of attached eddies in channel flow 9

Figure 4. Inner-scaled statistics of the solutions at the smallest L+
z : (a) U

+; (b) u+
rms; (c) v

+
rms;

(d) w+
rms; (e)−u′v′

+
; (f)−u′v′

+
(dU+/dy+). The Reynolds numbers are Re = 2646, 6250, 15710

and 30000. In (a), the dashed line indicates U+ = y+.

in figure 2(b). For all Reynolds numbers considered, the smallest inner-scaled spanwise
domain (L+

z = ReτLz/h) of each solution is found to have similar values, although it
should be noted that the saddle-node point is not defined at this domain size – the
saddle-node point is defined at the minimal Lz/h of the solution. The smallest inner-
scaled spanwise domains at differen Reynolds numbers are found to appear to approach
an asymptotic value, L+

z ≃ 50, as Re is increased. This is also seen in table 1 where
the spanwise domain size and the phase speed of the solutions at the smallest inner-
scaled spanwise domain are summarised. The smallest spanwise domain being L+

z ≃ 50
is consistent with the typical spanwise spacing of the near-wall motions (i.e. λ+

z ≃ 100)
— it indicates that a chaotic state associated with the near-wall dynamics requires a
spanwise size greater than λ+

z ≃ 50, while typical and long-lived self-sustaining near-
wall turbulence occurs for L+

z ≃ 100 (see e.g. Jiménez & Simens 2001; Hwang 2013)).
The phase speed of these solutions also approaches an asymptotic value of c+ ≃ 11 on



10 Q. Yang, A. P. Willis, and Y. Hwang

Figure 5. Inner-scaled properties of the solutions for Re = 2646, 6250, 15710 and 30000: (a)

phase speed, c+, peak values of (b) u+
rms, (c) v+rms, and (d) −u′v′

+
. The arrow in each subplot

passes through the properties of upper-branch states.

Figure 6. Flow visualisation of (a) lower- and (b) upper-branch states at Re = 2646
(L+

z ≃ 65). Here, the blue iso-surface is u′+ = −2, and the red iso-surface is λ+

2 = −0.002.

increasing Re, having the typical advection velocity (c+ ≃ 10 − 12) of the near-wall
coherent structures (Kim & Hussain 1993). The flow fields at the smallest L+

z of the
solutions are visualised in figure 3 for three different Reynolds numbers (M1, M4 and M7
in table 1), where their domain size and levels of the flow-field iso-surfaces are presented
to scale in inner units. The inner-scaled solutions are very similar to each other, as is
expected from the data in figure 2(b) and table 1.
One-point statistics at the smallest L+

z of the solutions are also examined in figure 4. To
reveal the asymptotic behaviour clearer, we present the data at Re = 2646, 6250, 15710
and 30000, such that their Reτ are spaced roughly in an even manner. Figure 4(a) shows
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Figure 7. Eigenspectra of the solutions at the smallest L+
z : (a) σ

+; (b) σh/Ucl where σ
denotes the eigenvalues.

the mean velocity profile, which appears to be characterised by two regions. In the region
below y+ ≃ 25, the mean velocity scales very well in inner units, as those in the full
minimal-flow simulations (Hwang 2013). On the other hand, in the region above y+ ≃ 40
where the flow structure rarely exists, the mean flow is close to a parabola, as is the
corresponding laminar base flow. Any non-trivial velocity fluctuations (figure 4(b − d)),
Reynolds shear stress (figure 4e) and production (figure 4f) appear only in the region
below y+ ≃ 40 ∼ 60. In particular, those obtained from the solutions at the two highest
Reynolds numbers are very close to each other, indicating that the solutions indeed
approach an asymptotic state approximately independent of the Reynolds number.
In figure 4(f), it is also worth noting that turbulence production contains two peaks:

one located in the region close to the wall and the other relatively further from the wall.
This is not surprising, however, as this feature emerges from the fact that the present
exact coherent state is an exact solution of the Navier-Stokes equations. To demonstrate
this, let us consider the mean streamwise momentum equation:

dU+

dy+
− u′v′

+
= 1− y+

Reτ
, (3.1)

where · denotes average in the time and the horizontal directions. In the limit of Reτ →
∞, (3.1) indicates that the near-wall production (i.e. −u′v′

+
(dU+/dy+) below y+ ≃ 50)

should have its local maxima at the wall-normal locations where −u′v′
+
= dU+/dy+ =

1/2. We note that −u′v′
+ ≃ 1 in the peak wall-normal location (y+ ≃ 20 in figure 4e)

and the present exact coherent state is localised around this location. This implies that

there would be two wall-normal locations at which −u′v′
+ ≃ 1/2 if Reτ is sufficiently

large: one appears in the region close to the wall (y+ < 20) and the other is located in
the region further from the wall (y+ > 20). This is consistent with the present exact
coherent state, which has two wall-normal peaks in the production.
The upper- and lower-branch states are further characterised in figure 5 using the

phase speed c+, the peak values of velocity fluctuations, and Reynolds shear stress for
Re = 2646, 6250, 15710 and 30000 cases. As is in figure 4, the asymptotic behaviour to
a universal state is evident especially for the two highest Reynolds numbers considered.
Their phase speeds are not very far from c+ ≃ 11, although the ones for lower-branch
states are greater than those of upper-branch ones (figure 5a). Similar to typical relative
equilibria, the peak values of velocity fluctuations indicate that the upper-branch states
feature a strong cross-streamwise velocity fluctuation, whereas the lower-branch states
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Case Lz/h Cs Reτ c/Ucl c/Uc Uc/Ucl

LB1 0.375 0.3 664 0.31 0.31 1.00
UB1 0.375 0.3 789 0.22 0.21 1.06

LB2 0.5 0.32 789 0.38 0.39 0.98
UB2 0.5 0.32 989 0.29 0.28 1.04

LB3 0.75 0.35 1039 0.48 0.51 0.95
UB3 0.75 0.35 1415 0.40 0.40 1.00

Table 2. Parameters of the solutions continued to Re = 55000 using over-damped large-eddy
simulations. Here, Uc denotes the centreline mean velocity of each solution.

have a strong streamwise velocity fluctuation. The upper-branch states also contain larger
Reynolds shear stress than the lower-branch ones, as is expected from the identity by
Fukagata et al. (2002) that directly relates Reynolds shear stress to skin-friction drag.
These statistical features are also consistent with the flow fields in figure 6: the upper-
branch state exhibits a strong waviness of the streak with more energetic streamwise
vortices, whereas the lower-branch one consists of a relatively straight streak and weak
streamwise vortices.
The stability of the solutions is examined for the smallest L+

z at each Reynolds number
(see also figure 2b). For this analysis, the eigenvalues of the Navier-Stokes equations
linearised about the given travelling-wave solution are computed in the co-moving frame
using the Arnoldi algorithm. Figure 7 shows the first five leading eigenvalues computed
in the invariant subspace of (2.2). Given the fairly good inner-scaling nature of the exact
coherent states, the inner scaling of the computed eigenvalues is first examined in figure
7(a). The most unstable eigenvalues of each solution appear to scale reasonably well in
inner units. This feature is similar to that of the wall-localised equilibrium states (EQ7
and EQ8) in plane Couette flow (Eckhardt & Zammert 2018) where only a few leading
eigenvalues were found to scale in inner units. However, in the present channel flow, such
leading eigenvalues are found to scale better with Ucl and h, as is further shown in figure
7(b). This non-intuitive behaviour needs a more careful examination of the scaling of
these leading eigenvalues, and a detailed discussion on this issue will be given in §4.1.
Finally, we observe that the zero eigenvalue here is associated with the streamwise shift
of the solution. The zero eigenvalue related to the saddle-node point need not quite be
observed here, as the saddle-node point is defined at the minimum Lz/h rather than at
the minimum L+

z .
The two unstable eigenvalues in the form of a complex conjugate pair in figure 7

indicate that the associated instability generates a modulated wave that breaks the
following flow symmetry of the given solution:

[u, v, w, p](x, y, z, t) = [u, v, w, p](x− ct, y, z, 0). (3.2)

Focussing on Re = 6250, we further investigate behaviour of the eigenspectra by
continuing the solution in Lz from the lower- to the upper-branch state. In figure 8, we
present a root locus analysis by tracking a few most unstable modes with the continuation
(note that the neutral eigenvalues with non-zero imaginary parts in figure 7 were not
included in this analysis). The behaviour of the first type (i.e. the leading two eigenvalues
in figure 7) is shown in figure 8(a). Two purely real eigenvalues in figure 7 are found to
collide with each other and form a complex conjugate pair of eigenvalues, indicating a
node-focus transition, as the solution is continued from the lower- to upper-branch state.
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Figure 8. Root loci of unstable modes of the present exact coherent state at Re = 6250: (a)
first two modes exhibiting a node-focus transition; (b) second mode with a single eigenvalue
that becomes neutral at the saddle-node point. The arrows indicate the direction of the root
loci from lower- to upper-branch state. Here, SN and NF indicate saddle-node and node-focus
point, respectively.

The complex conjugate pair of eigenvalues become neutral with a further continuation,
indicating formation of a limit cycle through a Hopf bifurcation. The behaviour of
this mode is reminiscent of that reported for a travelling wave solution in pipe flow
(Mellibovsky & Eckhardt 2011). However, it is important to note that these eigenvalues
do not cross zero at the saddle-node point (i.e. at the minimum Lz/h in figure 2a),
thereby being difficult to directly relate them to Takens-Bogdanov bifurcation. Indeed,
another eigenmode is found to be related to the saddle-node bifurcation, shown in figure
8(b). This mode becomes unstable as the solution moves from lower- to upper-branch
state. In particular, the zero crossing takes place exactly when the solution reaches the
saddle node, consistent with the saddle-node bifurcation in figure 2(a).

3.2. Continuation to high Reynolds numbers

The exact coherent states discussed in the previous section are localised in the wall-
normal direction, while scaling well with inner units near their critical Reynolds numbers.
These states therefore represent the near-wall coherent structures. In this section, we will
show that these states evolve into those relevant to the logarithmic region, as Reynolds
number is increased. The solutions presented in §3.1 are further continued to a high
Reynolds number to explore their relation to the self-sustaining processes in the logarith-
mic region. The exact solutions of the Navier-Stokes equations for Lz/h = 0.375, 0.5, 0.75,
obtained at low Reynolds numbers (Re < 10000), are continued to Re = 55000 while
maintaining the given Lz. At this Reynolds number, the separation between the inner
and the outer length scale is reasonably clear, thus it is possible to identify physically
meaningful structures associated with the logarithmic region. The three domain sizes
are deliberately chosen to match the minimal attached eddies in the logarithmic region
studied by Hwang & Bengana (2016). This numerical continuation is carried out while
gradually increasing both Re and Cs. The target value of the Smagorinsky constant Cs

for each Lz is chosen by carefully monitoring the one-dimensional spanwise wavenumber
of the corresponding over-damped simulation, such that only the largest admissible eddy
survives in the given flow domain. We note that the turbulence statistics of these over-
damped simulations for different Lz are found to exhibit self-similarity with Lz, as
reported previously in Hwang (2015) and Hwang & Bengana (2016) (not shown here).
Table 2 summarises the parameters and properties of the solutions continued to
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Figure 9. Flow visualisation of (a-c) the lower- and (d-f) upper-branch states: (a, d)
Lz/h = 0.375; (b, e) Lz/h = 0.5; and (c, f) Lz/h = 0.75. Here, the blue iso-surface indicates

u′+ = −2.2 for all the plots, while the red iso-surfaces in (a−c) are λ2 = −5 (uτ/Lz)
2 and those

in (d− f) are λ2 = −20 (uτ/Lz)
2.

Re = 55000 using the over-damped large-eddy simulation. Here, we note that the friction
velocity of all the solutions is smaller than Reτ ≃ 1800, the value expected from a full
simulation at this Re for a sufficiently large computational domain (i.e. Lx & 3h and
Lz & 1.5h) (de Giovanetti et al. 2016). This is primarily because the contribution of
the structures, the spanwise size of which is greater than the given spanwise domain Lz

in table 2, does not exist (see de Giovanetti et al. 2016, for further details). For this
reason, the friction Reynolds number of the solutions tends to be smaller on decreasing
Lz. Finally, the larger Lz is, the larger c/Ucl (or c/Uc where Uc is the centreline mean
velocity) is found. This is expected because the solution at larger size is located further
from the wall in outer units, and is thereby exposed to larger mean advection velocity.
However, the mean velocity of each solution is now very different from the original one
from a full simulation because the isolation procedure of the flow structures at a given
spanwise length scale destroys the Reynolds shear stress carried by the structures at other
length scales. Given the direct relation between Reynolds shear stress and mean velocity
through the streamwise mean momentum equation (3.1), it is evident that scaling of the
phase speed of the solutions would not provide any useful physical insight in relation to
the original logarithmic mean velocity. Therefore, this issue has not been pursued any
further.

The lower- and upper-branch solutions continued to Re = 55000 are visualised in
figure 9. The levels of the iso-surfaces in this figure are scaled by uτ of each solution and



Exact coherent states of attached eddies in channel flow 15

Figure 10. Normalised second-order statistics of (a, c, e, g) the lower- and (b, d, f, h)
upper-branch states with respect to the spanwise domain Lz: (a, b) streamwise (c, d) wall-normal
(e, f) spanwise velocity and (g, h) Reynolds shear stress. Here, , Lz/h = 0.375; - - - -,
Lz/h = 0.5; · · · · · ·, Lz/h = 0.75.
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its spanwise domain Lz. The flow visualisation reveals that the flow structures of the
lower- and upper-branch solutions are roughly self-similar with respect to these scales,
while maintaining the typical features of exact coherent states: i.e. the upper-branch
solutions contain stronger streamwise meandering motions of the streak and more intense
streamwise vortical structures than the lower-branch ones.

The self-similarity of the flow structures can also be seen in the normalised turbulent
velocity fluctuations and Reynolds shear stress with respect to Lz, as reported in figure 10.
These statistics can be scaled with the peak location of each profile, but the observed self-
similarity remains almost unchanged (see appendix B). Since the upper-branch solutions
will be shown to be of particular relevance to the self-sustaining turbulent state (see
figures 12 and 13), here we focus mainly on statistical features of these solutions. Both the
streamwise and spanwise velocity fluctuations of the upper-branch solutions have their
primary peak around the location fairly close to the wall, i.e. y/Lz ≃ 0.06− 0.07 (figure
10(b, f)). These velocity fluctuations are also considerably large in the region close to the
wall: for example, at y/Lz = 0.05, urms/urms,max ≃ 0.95 and wrms/wrms,max ≃ 0.9. On
the other hand, the peak wall-normal locations of the wall-normal velocity fluctuation
and Reynolds shear stress are located further from the wall than those of the streamwise
and spanwise velocity fluctuations: i.e. y/Lz ≃ 0.2−0.25 for wall-normal velocity (figures
10d) and y/Lz ≃ 0.15− 0.2 for Reynolds shear stress (figures 10h). Therefore, both the
wall-normal velocity fluctuation and Reynolds shear stress do not reach the region close
to the wall. For example, at y/Lz = 0.05, vrms/vrms,max ≃ 0.2 and u′v′/u′v′min ≃ 0.4),
which are much smaller than those of urms/urms,max and wrms/wrms,max.

The self-similarity of the upper-branch solutions with respect to Lz and their near-
wall behaviour shown in figure 10 suggest that the statistical features of the upper-branch
solutions are consistent with those of an ‘individual attached eddy’ in Townsend (1976).
Furthermore, these upper-branch solutions do appear to contribute to the logarithmic
region. Since the mean velocity profile is directly coupled with Reynolds shear stress
through the streamwise mean-momentum equation, this issue can be explored with the
Reynolds shear-stress profile in figure 10(h). Note that the spanwise integral length scale
in turbulent channel flow is proportional to the distance from the wall for 100δν 6 Lz 6

1.5h (e.g. Hwang 2015). Given the peak wall-normal location of the Reynolds shear stress
profiles (i.e. y/Lz ≃ 0.15 − 0.2), the wall-normal locations, to which the peak Reynolds
shear stress of the upper-branch solutions contributes, would be in 15 − 20δν 6 y 6

0.2 − 0.3h. It is evident that this range is very close to the typical wall-normal extent
of the logarithmic layer, suggesting that the upper-branch solutions would indeed be
relevant to the logarithmic layer.
The observed statistical self-similarities are also consistent with the statistical data of

the over-damped large-eddy simulations in Hwang (2015) and Hwang & Bengana (2016).
However, it is found that there is an important difference between the turbulence statistics
and the present relative equilibrium states of the over-damped large-eddy simulations.
Figure 11 compares first- and second-order statistics of the lower- and upper-branch
solutions (LB2 and UB2) with those of the corresponding unsteady simulation for Lz =
0.5h at the same Cs. In the region close to the wall (y/h < 0.2) where the exact coherent
states carry non-zero turbulent fluctuations, the upper-branch state seems to reasonably
describe the statistics of the full chaotic dynamics in the unsteady simulation. However,
both upper- and lower-branch states are localised only in the region close to the wall,
and, especially, their cross-streamwise velocity components carry very little energy above
y/h ≃ 0.2. This is in contrast to the full chaotic dynamics of the over-damped large-
eddy simulation, because it exhibits fairly large velocity fluctuations above y/h ≃ 0.2.
It is important to mention that such non-zero turbulent fluctuations for y/h > 0.2 were
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Figure 11. First- and second-order statistics for Lz/h = 0.5: (a) U+; (b) u+
rms; (c) v+rms; (d)

w+
rms. Here, , full simulation; - - - -, upper-branch state (UB2); , lower-branch state

(LB2).

analysed in our recent study for minimal Couette flow (Yang, Willis & Hwang 2018), and
they were shown to be the consequence of local mean shear in such outer region, which
admits self-sustaining processes at the length scale of the artificially narrow spanwise
domain.
Towards isolating the chaotic dynamics associated mainly with the solutions in the

present study, we perform an additional numerical simulation, in which the velocity
fluctuations above a certain wall-normal location are artificially damped out. We consider
the following form of body forcing to the right-hand side of the Navier-Stokes equations:

fi = µ(y)(ui − 〈ui〉x,z), (3.3a)

where 〈·〉x,z indicates the average in the streamwise and spanwise directions and

µ(y) = µ0

[
1− 1

2

(
1 + tanh

(
10
(η2
η20

− 1
)))]

. (3.3b)

Here, µ0(= Ucl/h) is the damping strength used, η = y/h − 1, η0 = y0/h − 1, and y0 is
the wall-normal location, above which the damping (3.3) is applied. The location of y0
is determined by gradually lowering from the centreline until turbulence is not sustained
in the domain; this gives y0 = 0.6Lz. Figure 12 compares the first- and second-order
statistics of the upper-branch state (UB2) with those of an over-damped simulation
with (3.3) (y0 = 0.3h) for Lz/h = 0.5. It is evident that the statistics now compare
much more favourably with each other (compare figure 12 with figure 11), indicating
the upper-branch state as a good proxy of the self-sustaining energy-containing motion
below y/h ≃ 0.3.
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Figure 12. First- and second-order statistics for Lz/h = 0.5: (a) U+; (b) u+
rms; (c) v

+
rms; (d)

w+
rms. Here, , simulation with damping (3.3); - - - -, upper-branch state (UB2).

Figure 13. Phase portrait for Lz/h = 0.5 in the plane of Eu −Ev+w scaled in (a) inner and (b)
outer units. Here, , simulation with damping (3.3); open circles, LB2; and filled circles,
UB2.

From the simulation with the damping function (3.3), state-space dynamics of the
upper-branch state can be shown. To this end, we consider the following state-space
variables,

Eu =
1

2VΩn

∫

Ωn

u′2 dV, Ev+w =
1

2VΩn

∫

Ωn

v′2 + w′2 dV, (3.4)

where u′, v′ and w′ are streamwise, wall-normal and spanwise velocity fluctuations,
respectively. Here, VΩn

is the volume of the near-wall region of the computational
domain defined as Ωn = [0, Lx] × [0, 0.6Lz] × [0, Lz], and this is introduced to consider
only the region where both the damped simulation and the solutions continued with
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Figure 14. (a) Outer- and (b) inner-scaled bifurcation curves with Lz. Here, , Waleffe
(2001) and · · · · · ·, Hwang et al. (2016) at Re = 1538, whereas , at Re = 2646 (lower
curve) and Re = 6250 (upper curve).

the eddy viscosity carry non-negligibly large velocity fluctuations. (Energy input and
dissipation have not been considered as the dissipation of the damped simulation requires
incorporation of the contribution from the damping body force in (3.3), whereas the
solutions do not.) In figure 13, the phase portraits respectively scaled by uτ and Ucl in
the Eu − Ev+w plane are shown. In both cases, the upper-branch state is reasonably
well placed in the middle of the chaotic solution trajectory given by the self-sustaining
motion at the given size, suggesting that the upper-branch state would be a reasonable
proxy for the near-wall chaotic dynamics and its skin-friction generation in the damped
simulation.

3.3. Relation to other solutions

The relative equilibrium states in the present study belong to the invariant subspace
described by (2.2). The two solutions previously reported by Waleffe (2001) and Hwang
et al. (2016) also belong to this subspace, although they were computed in different ways:
the solution in Waleffe (2001) was obtained by continuously deforming the base flow from
the one of Nagata (1990) in plane Couette flow, whereas the solution in Hwang et al.

(2016) was obtained using an over-damped large-eddy simulation designed to isolate self-
sustaining large- and very-large-scale motions, the spanwise size of which is Lz/h ≃ 1.5
(Hwang & Cossu 2010b). In this section, we explore whether the solutions in the present
study have any link with these previous solutions. It is useful to remember that the
solutions reported in the present study could be continued only for small spanwise domain
(Lz/h . 1; see also figure 2), whereas those in Waleffe (2001) and Hwang et al. (2016)
were previously reported for the spanwise domains larger than Lz/h ≃ 1.
First, numerical continuation of the solutions in Waleffe (2001) and in Hwang et al.

(2016) is performed by gradually lowering Lz. Here, the solution of Waleffe (2001) was
obtained by downloading its raw data from his personal webpage. His solution was
interpolated onto our grid system, then used as initial condition of our Newton solver. The
Newton iteration converged quickly and the retrieved solution using our solver showed
excellent agreement with that in Waleffe (2001). The continuation result of the two pairs
of the solutions in Waleffe (2001) and in Hwang et al. (2016) with Lz is shown in figure
14 at Re = 1538. For a sufficiently large spanwise domain (Lz/h > 1.5 or L+

z > 140), the
two solution pairs form four equilibrium states. As Lz is decreased, their upper-branch



20 Q. Yang, A. P. Willis, and Y. Hwang

states meet each other around Lz/h ≃ 1.4 (L+
z ≃ 120) and the lower-branch ones exhibit

the same behaviour around Lz/h ≃ 1.2 (L+
z ≃ 75). This suggests that the solutions in

Waleffe (2001) and in Hwang et al. (2016) are homotopic relatives, while implying that
they are unlikely to be continued for Lz . h. Furthermore, these solutions are found not
to be localised in the near-wall region, as Lz is decreased (not shown here).
By contrast, it is found that the solutions in the present study begin to emerge at

a little higher Reynolds number (see the solid-lined curves at Re = 2646 in figure 14).
This suggests that the solutions in the present study are unlikely to be continuously or
directly linked to those reported in Waleffe (2001) and Hwang et al. (2016). However, any
possibility of their mutual connections should not be completely ignored at this moment.
Indeed, the disappearance of the solutions of Waleffe (2001) and Hwang et al. (2016) on
decreasing Lz might be linked to the emergence of different types of invariant solutions,
such as a relative periodic orbit, through a saddle-node infinite period (SNIPER) bifurca-
tion, as was recently reported in Rawat et al. (2016) with the solution of Waleffe (2001)
for large Lz(> 2h) at Re = 2000. Such a periodic orbit emerging from the SNIPER
bifurcation might be connected to the solutions in the present study, although pursuing
this issue any further is beyond the scope of the present study.
Finally, the present solutions are compared with those recently reported by Eckhardt

& Zammert (2018) in plane Couette flow. We note that the wall-localised solutions in
Eckhardt & Zammert (2018) originate from a pair of the solutions (EQ7 and EQ8) in
Gibson et al. (2009), and they are obtained by rescaling the Navier-Stokes equations with
its spanwise domain size using the uniform base-flow shear of plane Coutte flow. While
their solutions were found to scale in inner units as those in the present study, it appears
that their spatial structure is significantly different from the present solutions in plane
channel flow. For example, the EQ7 and EQ8 solutions in Gibson et al. (2009) typically
exhibit two pairs of streaks and quasi-streamwise vortices, and the high- and low-speed
streaks alternate along the streamwise directions. By contrast, the spatial structure of
the present solution features by a pair of high- and low-speed streaks continuously linked
along the streamwise direction (figure 6), which is more like the solutions found in Waleffe
(2001) and Hwang et al. (2016). This suggests that the solutions in the present study are
not likely to be homotopic with those in Eckhardt & Zammert (2018).

4. Discussion

4.1. Scaling of the exact coherent states

The exact coherent states in the present study have been found to scale approximately
in inner units, except their eigenvalues that appear to scale better with the time scale
of the laminar base flow (figure 7b). Given the wall-localised nature of these states, this
observation is intuitively unexpected, leading us to more carefully examine their precise
scaling. To address this issue, it is instructive to consider the equation for the rate of the
total kinetic energy per unit volume:

dE

dt
= I −D, (4.1a)

where

E =
1

2VΩ

∫

Ω

uiui dV,

I =
Umν

VΩ

∫ Lx

0

∫ Lz

0

∂u

∂y

∣∣∣
y=0

dxdz, D =
ν

VΩ

∫

Ω

∂ui

∂xj

∂ui

∂xj
dV. (4.1b)
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Figure 15. Scaling of the critical spanwise domain Lz at the onset of the exact coherent
states with respect to Re−1/2.

Here, VΩ(= Lx × Ly × Lz) is the volume of the computational domain Ω, I the rate of
energy input originating from the applied pressure gradient,D the rate of dissipation, and
Um(= (2/3)Ucl) the bulk velocity. We first restrict ourselves to the relative equilibrium
solutions in the present study. From (4.1), it is evident that the rate of energy input for
the given equilibrium state is I = (Um/h)u2

τ . Unless the dissipation mechanism imposes
different velocity and time scales, the velocity scale of the kinetic energy E should become
uτ with the evolution time scale given by Te = h/Um. This is expected to be particular
true near the critical Reynolds number at which the solutions emerge, because their
integral and dissipation scales are expected to be hardly separated. Indeed, at the saddle-
node point of the solutions, we have shown that the velocity fluctuations scale well with uτ

(e.g. figure 5) and that the leading eigenvalues in figure 7 scale well with Te (equivalently
to h/Ucl with the factor 3/2).

At first glance, this observation, made with (4.1) and figure 7(b), is seemingly odd
because Te is the time scale of fluid motion which travels downstream with the ‘bulk’
velocity Um over the ‘outer’-scaling distance h. Indeed, it is intuitively difficult to imagine
how any wall-localised fluid motion, such as the solutions in the present study, would scale
with such a global time scale Te instead of the local viscous inner time scale Tin = ν/u2

τ .
However, there is also further evidence supporting Te as the time scale of the solutions
in the present study. Given the expected little scale separation between the processes
of I and D near the saddle-node point of the solutions, the rate of dissipation in this
case would scale as D ∼ νu2

τ/L
2
z (Lz is the spanwise size of the solutions). The balance

between I and D in (4.1) with dE/dt = 0 yields the following scaling of the spanwise
wavelength with Reynolds number:

Lz

h
∼ 1√

Re
, (4.2)

providing scaling of the saddle-node point of the exact coherent states in the ‘outer unit’.
Here, we note again that (4.2) is obtained by setting I = u2

τ/Te. In figure 15, (4.2)
is examined by plotting the spanwise domain size of each solution at the saddle-node
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point as a function of 1/
√
Re. It is evident that (4.2) provides an excellent prediction for

the ‘outer’ scaling of the spanwise domain size of the saddle-node point with Reynolds
number, suggesting that Te would indeed be the time scale of the present exact coherent
states.
All of the observations, made on the time scale of the present exact coherent states,

are physically difficult to explain, unless there exists an explicit mathematical relation
between Te and Tin. Therefore, we now explore how they are precisely related to each
other for the solutions in the present study. In the limit of Re → ∞, the size of the
solutions have been shown to asymptotically scale in inner units (i.e. L+

z ≃ const as
shown in table 1). Combining this with (4.2) then yields

uτ

Ucl
∼ 1√

Re
and

δν
h

∼ 1√
Re

, (4.3)

which provide the explicit relation between the inner scales and those of the laminar base
flow. It is then straightforward to realise

Te ∼ Tin, (4.4)

indicating that Tin is actually proportional to Te for Re → ∞. This now explains that
Tin would be the time scale for the solutions, if Re → ∞, and confirms that the relatively
poor inner scaling of the eigenvalues in figure 7(a) is the finite Reynolds number effect
of the solutions.
Based on this observation, we now take uτ and Tin as the velocity and time scales, and

consider Re → ∞. Then, in this limit, we have that the mean and velocity fluctuations
of the exact coherent states in the present study are governed by the following equations:

dU+

dy+
− (u′v′)

+
= 1, (4.5a)

∂u′

i
+

∂t+
+ U+

i

∂u′

j
+

∂x+
j

+ u′

i
+ ∂U+

j

∂x+
j

= −∂p′
+

∂x+
i
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where the over-bar denotes average in time, Ui = U(y)δi1 is the mean velocity, and u′

i and
p′ are the velocity and pressure fluctuations, respectively. Here the mean equation (4.5a)
now explicitly excludes the term originating from the mean pressure gradient because
Reτ → ∞ from (4.3): indeed, if the Reynolds shear stress is zero, (4.5a) indicates that
the base flow becomes a uniform shear flow as one would easily expect.

Equations (4.5) now suggest that different types of wall-localised exact coherent
states can be further sought using (4.5) rather than the full equations. This would
be particularly beneficial from the computational viewpoint, since these exact coherent
states do not contain any significant flow structures in most of the wall-normal domain.
Furthermore, the viscous term in (4.5) is given at the order of unity, suggesting that such
solutions at least at their onset would follow the asymptotic description proposed by
Deguichi (2015) with imposition of no-slip boundary condition at the wall. Finally, the
form of the mean equation (4.5a) indicates that the full turbulent dynamics of (4.5) is also
relevant to description of the dynamics of the so-called ‘mesolayer’, in which the effect of
viscous force from the presence of the wall dominates over that of the pressure gradient.
Given the size of mesolayer scaling as ∆y+ ∼

√
Reτ (∆y+ is the wall-normal extent of the

mesolayer; see Afzal 1982; Sreenivasan & Sahay 1997), the only additional requirement
should be that the size of computational domain needs to follow Ldom ≪

√
Reτ where

Ldom is the size of computational domain at all the directions.
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4.2. Continuation to high Reynolds numbers with eddy viscosity

The continuation of the exact coherent states to high Reynolds number in §3.2 has
been carried out by introducing an eddy viscosity, which was implemented using the
over-damped large-eddy simulation (e.g. Hwang & Cossu 2010b). Introduction of such
an artificially elevated eddy viscosity was originally introduced to examine the self-
sustaining processes in the logarithmic and outer regions. However, in the present study,
its main benefit lies in enabling us to extend the dynamical systems notions to high
Reynolds numbers. In particular, it technically relaxes the numerical difficulty typically
arising in continuation of the upper-branch states to high Reynolds numbers, which are
highly relevant to the description of turbulent state. To provide a more comprehensive
discussion of the physical relevance of the present eddy-viscosity-based approach, we
start by considering the dimensional form of the equations for turbulent fluctuation.
Since the size of the coherent structures in fully-developed turbulence and the present
exact coherent states is well characterized by the spanwise length scale (e.g. Hwang 2015),
it is useful to consider a Fourier-mode decomposition of turbulent velocity fluctuation in
the spanwise direction:

u′

i(t, x, y, z) =

∫
∞

−∞

û′

i(t, x, y; kz)e
ikzzdkz, (4.6)

where ·̂ denotes the Fourier-transformed state and kz is the spanwise wavenumber.
Then, the streawmise-averaged equation for the turbulent kinetic energy at each spanwise

wavenumber (i.e. ê(y; kz) = û′
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where ∗ denotes the complex conjugate, and 〈 · 〉x the spatial average in the x-direction.

Here, P̂ (y; kz) is turbulence production, ε̂ (y; kz) dissipation, T̂turb (y; kz) nonlinear tur-

bulent transport, T̂p (y; kz) transport by pressure, and T̂ν (y; kz) viscous transport (i.e.

diffusion of turbulent kinetic energy). In the region above the wall, T̂p (y; kz) and T̂ν (y; kz)
have been found to be negligible, and they will be excluded in the following discussion on
the energetics of coherent structures in the logarithmic region. Also, ∂ê((y; kz)/∂t goes
to zero with the time average. For a further discussion on these issues, the reader may
refer to Cho et al. (2018) and Lee & Moser (2018).

Given the scale of turbulent kinetic energy in (4.2) and the logarithmic mean velocity,

turbulence production should scale as P̂ (y; kz,int) ∼ u3
τ/y at the wavenumbers of integral

length scales (kz,int ∼ 2π/y) where turbulence production mainly takes place and
dissipation is negligibly small. Therefore, from (4.7), the main energy balance at kz =



24 Q. Yang, A. P. Willis, and Y. Hwang

kz,int is given by

P̂ (y; kz,int) + T̂turb (y; kz,int) ≃ 0, (4.8)

as numerically confirmed by e.g. Cho et al. (2018). This balance can also be checked
by scaling the nonlinear turbulent transport term with the integral velocity and length
scales in the logarithmic region (i.e. uτ and y): T̂turb (y; kz,int) ∼ O(u3

τ/y), whereas
ε̂ (y; kz,int) ∼ O(Re−1

y u3
τ/y) with Rey(= uτy/ν) → ∞ by the definition of the logarithmic

layer. Therefore, for k = kint, the dissipation ε̂ cannot be balanced with the production
P̂ , and the only possible way to form the energy balance is through (4.8).
Since the turbulent transport is an energy-preserving process over the given computa-

tional domain,
∫
∞

−∞
T̂turb (y; kz) dkz ≃ 0 in the logarithmic layer (Cho et al. 2018). This

implies that the negative T̂turb (y; kz,int) in (4.8) should be positive at some other kz. It
is evident that this process should take place through energy cascade to dissipate out the
produced turbulent kinetic energy. The dissipation process takes place at the Kolmogorov
microscale given by η ≡ (ν3/P̂ (y; kz,int))

1/4, thus η ∼ y1/4 in the logarithmic region.
Since turbulence production at the dissipation scales should be negligibly small, the
main energy balance at the dissipation length scale (i.e. k = kz,dis(∼ 2π/η)) is given by

T̂turb (y; kz,dis) + ε̂ (y; kz,dis) ≃ 0, (4.9)

Here, (4.9) is made by approximating the energy-conservative nature of nonlinear turbu-

lent transport (i.e.
∫
∞

−∞
T̂turb (y; kz) dkz ≃ 0), such that T̂turb (y; kz,dis)+T̂turb (y; kz,int) ≃

0. From (4.8), one can easily derive

P̂ (y; kz,int) ≃ ε̂ (y; kz,dis) , (4.10)

the balance between turbulence production and dissipation in the logarithmic layer
(Tennekes & Lumley 1967), which is also consistent with the spectral budget analysis of
full numerical simulation data in Cho et al. (2018) and Lee & Moser (2018).
Now, let us consider the over-damped large-eddy simulations, in which all the motions,

except the self-sustaining one at kz = kz,int, are damped out by artificially increasing
Cs in (2.1). It is evident that this artificial elimination of the motions at other scales
would significantly reduce the role of nonlinear transport in (4.8), as there are now very
few motions to nonlinearly interact with each other. However, the physical dissipation
at the integral length scale (i.e. ε̂ (y; kz,int)) cannot be large at high Reynolds numbers,
indicating that the dissipation by the artificially elevated eddy viscosity is replacing the
role of T̂turb (y; kz,int), such that

P̂ (y; kz,int) + ǫ̂ν (y; kz,int) ≃ 0, (4.11)

where ǫ̂ν (y; kz,int) is the dissipation by the eddy-viscosity model in (2.1). Here, it is

important to mention that the replacement of T̂turb (y; kz,int) with ǫ̂ν (y; kz,int) should not

change at least the value of P̂ (y; kz,int). In other words, the friction velocity uτ should be

maintained to be roughly the same in this replacement process, since P̂ (y; kz,int) ∼ u3
τ/y.

Indeed, the use of (2.1) has been consistently found not to yield any significant change
in the friction velocity (see e.g. Hwang 2015), indicating that it does not significantly

modify the value of P̂ (y; kz,int) described by the self-sustaining process and the exact
coherent states in the present study. By contrast, an artificial elevation molecular viscosity
(i.e. lowering Reynolds number) significantly reduces P̂ (y; kz,int) as well, because it also
involves a significant reduction of the friction velocity.
The discussion here suggests that modelling the surrounding turbulence using an

eddy-viscosity-based model, as in the present study, provides an energetically consistent
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Figure 16. A schematic illustration of the evolution of attached eddies in turbulent channel
flow. Dark circles indicate attached eddies at the emergence, and grey circles indicate attached
eddies evolved from those at lower Reynolds numbers.

description for the processes at high Reynolds numbers, although it is essentially ad
hoc to extend the notions of dynamical systems to such regimes. Given this nature,
it is also possible to consider any other form of such a model as long as it correctly
models the energetics described here. In this respect, it is finally worth mentioning the
recent phenomenological modelling of coherent structures using the notions of the relative
equilibrium (Chini, Montemuro, White & Klewicki 2017), and such a modelling effort may
also take some benefit from the energy balance discussed here.

5. Concluding Remarks

We have presented a family of exact coherent states, individual members of which
appears to underpin the individual attached eddy hypothesized by Townsend (1976). The
initial condition for the Newton iteration in the present study was obtained from an over-
damped large-eddy simulation with a narrow spanwise computational domain, in which
the related energy-containing eddies reside through their self-sustaining process (Hwang
& Bengana 2016). Then, a converged exact coherent state of the Navier-Stokes equations
was obtained, and the solution family was subsequently calculated by continuing with the
spanwise domain size and with Reynolds number. It has been found that these solutions
emerge with a scaling in inner units, suggesting that, right after the onset (i.e. the saddle-
node point), they underpin the self-sustaining process of near-wall coherent structures.
Continuation of these solutions to high Reynolds number, using the over-damped large-
eddy simulation (Hwang & Cossu 2010b; Hwang 2015), has further revealed that they
evolve into the self-similar states in the logarithmic region, each of which underpins the
self-sustaining process at its length scale.
This observation for the exact coherent states in the present study indicates that the

near-wall region (say y+ 6 30) is the location where new sets of coherent structures
are born on increasing Reynolds number, and their size scales in inner units near this
onset. With further increase of Reynolds number, the near-wall structure that emerged
at different (lower) Reynolds numbers subsequently evolve into the structures in the
logarithmic region at different length scales, as illustrated by the schematic in figure 16.
It is evident that this process leads the main flow topology in the logarithmic region to
become in the form of a hierarchy of self-similar coherent structures, consistent with the
attached eddy hypothesis of Townsend (1976). From this perspective, the self-similarity
of the coherent structures in the logarithmic region is a natural consequence of this
process, as they all initially emerged in the form of near-wall coherent structures at
lower Reynolds numbers.
The invariant solutions of the Navier-Stokes equations found in the present study

provides solid evidence on the existence of Townsend’s attached eddies, each of
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which would underpin the self-sustaining process of individual attached eddy at a
given length scale. The present result also provides direct support for the previous
work conducted with the linearised Navier-Stokes equations where self-similar linear
transient-growth/resolvent/POD modes were found (del Álamo & Jiménez 2006; Hwang
& Cossu 2010a; Moarref et al. 2013). Finally, it is tempting to use the statistics of
the present exact coherent states as the input for the previous analysis based on linear
superposition of statistics of individual attached eddies (e.g. Perry et al. 1986; Perry &
Marusic 1995). However, it should be pointed out that the Navier-Stokes equations are
nonlinear. Therefore, in principle, such a superposition, which would strictly be valid
for the linearly decomposable statistics of the given flow (e.g. Fourier modes), is not
feasible with the present solutions, placing a new challenge for a theoretical description
of high-Reynolds number turbulence using invariant solutions. Nevertheless, bifurcation
of these states in the present study have provided important physical insight into the
fundamental mechanism, by which the hierarchical organisation of self-similar coherent
structures is formed throughout the logarithmic layer on increasing Reynolds numbers.
Furthermore, the smart use of these low-dimensional being for individual attached eddy
may offer the unique opportunity to explore dynamics of scale interactions as well as
development of novel flow control strategies.
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Appendix A. Effect of wall-normal resolution

The effect of wall-normal resolution is shown in figure 17 where the bifurcation diagram
with Lz is shown for Ny = 97 and Ny = 129. It appears that the use of Ny = 97 shows
excellent agreement with that of Ny = 129, only except around Lz/h ≃ 0.8.

Appendix B. Effect of reference length scale for attached eddies

In Townsend’s attached eddy hypothesis (Townsend 1956, 1976), the length scale of
each attached eddy is the distance from its centre to the wall (i.e. y). Hwang (2015) has
shown that the spanwise size of the attached eddy is proportional to its centre height.
Therefore, in the present study, the spanwise domain Lz has been used as the reference
length scale, as shown in figure 10. However, the self-similarity in figure 10 remains almost
unchanged if the statistics of the present exact solution of the over-damped simulation
are rescaled with the distance from the wall. To demonstrate this, the normalised second-
order statistics for the lower- and upper-branch states in figure 10 are scaled with the
wall-normal location of each profile, ym, and they are shown in figure 18. Reasonably
good self-similarity is also observed as is in figure 10.
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Figure 17. Friction Reynolds number of the solutions with respect to the outer-spanwise
domains at Re = 2646, 3163, 3762, 6250, 10000, 15710, 30000: , Ny = 97; - - - -,

Ny = 129.
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Figure 18. Normalised second-order statistics of (a, c, e, g) the lower- and (b, d, f, h)
upper-branch states with respect to the peak location of each profile, ym: (a, b) streamwise (c, d)
wall-normal (e, f) spanwise velocity and (g, h) Reynolds shear stress. Here, , Lz/h = 0.375;
- - - -, Lz/h = 0.5; · · · · · ·, Lz/h = 0.75.
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