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Abstract

The development and use of numerical simulators to predict vessel motions is essential to design and oper-
ational decision making in offshore engineering. Increasingly, probabilistic analyses of these simulators are
being used to quantify prediction uncertainty. In practice, obtaining the required number of model eval-
uations may be prohibited by time and computational constraints. Emulation reduces the computational
burden by forming a statistical surrogate of the model. The method is Bayesian and treats the numerical
simulator as an unknown function modelled by a Gaussian process prior, with covariances of the model
outputs constructed as a function of the covariances of the inputs. In offshore engineering, simulator inputs
include directional quantities and we describe a way to build this information into the covariance structure.
The methodology is discussed with reference to a numerical simulator which computes the mean turret
offset amplitude of a FPSO in response to environmental forcing. It is demonstrated through statistical
diagnostics that the emulator is well designed, with evaluations executed around 60,000 times faster than
the numeric simulator. The method is generalisable to many offshore engineering numerical simulators that
require directional inputs and is widely applicable to industry.

Keywords: Gaussian process emulation, FPSO vessel motions, directional inputs, uncertainty
quantification, Bayesian statistics

1. Introduction

Using numerical simulators to represent the behaviour of complex physical systems is central to design and
operational decision making in offshore engineering. For example, simulating the hydrodynamic responses
of floating facilities is used to assess the motions of spread-moored vessels during squalls (Legerstee et al.,
2006), predict the heading and motions of vessels given steady metocean conditions (Milne et al., 2016; Milne
and Zed, 2018), model ship stability due to roll motions (Surendran and Reddy, 2003), and understand
the hydrodynamics of side-by-side offloading (Zhao et al., 2018). While capable of providing valuable
point predictions such simulators would also benefit from a common statistical framework to quantify the
simulator’s uncertainty to produce statistical predictions. By propagating the distributions of the input
parameters through a simulator, Monte Carlo (MC) techniques are readily available (Saltelli et al., 2000,
2004) but at the cost of many thousands of simulator runs. This becomes challenging when each simulator
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run is expensive and/or results are needed quickly (O’Hagan, 2006), as in operational phases where decisions
must regularly be made reactively and promptly to changing conditions. This article describes a method
to quantify vessel motion simulators’ predictive uncertainties at significantly reduced computational cost by
approximating the simulator with a statistical surrogate.

The process of approximating a computationally intensive simulator with a cheaper model is known in the
literature as emulation (Oakley and O’Hagan, 2002). The idea is to model comparatively few simulator
outputs from a data analytic perspective and use the results to predict the behaviour of the simulator
at unobserved locations. Many techniques are available, including neural networks (Schiller and Doerffer,
1999; Knutti et al., 2006; Sanderson et al., 2008), regression models (Rougier et al., 2009; Sexton et al., 2011;
Williamson et al., 2013) and Gaussian processes (Sacks et al., 1989; Oakley and O’Hagan, 2002; O’Hagan,
2006; Conti et al., 2009). Within the statistics community the principal technique used for emulation
involves Gaussian processes (GPs) 1 (Bastos and O’Hagan, 2009), a stochastic process similar to kriging
in spatial statistics. Marrel et al. (2008) compare GPs to other emulation techniques and conclude that
it is a good and judicious alternative to both simple linear regression models, and more complex methods
such as neural networks and boosting trees. We adopt a Bayesian approach by treating the simulator as
an unknown function whose prior distribution is a GP. Updating the prior with simulator outputs yields
posterior predictive densities at unobserved input locations. The attractions of Bayesian GP emulation are
their flexibility, analytic tractability, proved model efficiency, and probabilistic quantification of uncertainty
(see O’Hagan (2006) for a tutorial).

When appropriately designed, the cheaper model, herein referred to as the emulator, requires orders of
magnitude less runs than what is typically needed by a MC based analysis (Kennedy and O’Hagan, 2001).
Emulation has been successfully employed across many disciplines, including contributions to research in
climate science (Johnson et al., 2015), cosmology (Vernon et al., 2014), complex fluid dynamics modelling
(Moonen and Allegrini, 2015), epidemiology (Andrianakis et al., 2015), hydrology (Rajabi et al., 2015), water
resources (Razavi et al., 2012), petroleum engineering (Craig et al., 2001), and environmental engineering
(Petropoulos et al., 2013). In contrast, to the best of our knowledge, emulation in the offshore engineering
literature has only been addressed in Green et al. (2016), who emulate a univariate linear finite element
simulator of an offshore platform as part of a Bayesian calibration exercise. We extend this work and offer
a comprehensive overview of the topic, methodological advances to allow for multi-dimensional circular and
linear inputs, and provide a suite of diagnostic tools.

Under a GP framework, the simulator’s outputs are modelled as a (infinite dimensional) multivariate Gaus-
sian distribution, of which any finite subset also has a multivariate Gaussian distribution. In practice, this
implies that (given the parameter estimates) the posterior predictive densities are also multivariate Gaus-
sian, updated conditionally on the simulator outputs. The covariance of the GP is typically constructed such
that simulator outputs that are close together have higher correlation than outputs that are further apart.
An important characteristic of GP emulation is that “close together” and “further apart” are specified by
distances in the simulator’s input space. This introduces an additional layer of complexity for many offshore
engineering processes where simulators require not only inputs defined on the real number line but also
directional inputs, known in the statistical literature as “linear” and “circular” inputs, respectively, (Fisher,
1995). The inclusion of both circular and linear inputs in emulation is novel both in theory and application
and we demonstrate how they are incorporated into the covariance structure.

We develop a GP emulator to predict the response for a turret-moored Floating Production Storage Offload-
ing (FPSO) vessel, as simulated by a function of environmental forcing. The FPSO of interest is currently
mooring in the Australian North–West Shelf, one of Australia’s most economically significant maritime re-
gions. This problem is selected due to both the recent industry interest in mooring integrity monitoring
(Prislin et al., 2017), and the computational cost of the simulator. The emulation methodology presented

1Here the term “Gaussian process” refers to the statistical process, and not the wave description as it has been used in
other offshore engineering literature.
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can theoretically be used to predict any continuous univariate output from the simulator, of which we anal-
yse the mean offset amplitude from the simulator’s stochastic time-domain output. The output stochasticity
necessitates an additional noise term within the emulator and we do so following methodologies provided
in previous research (Andrianakis and Challenor, 2012; Andrianakis et al., 2015; Johnson et al., 2011). The
model input space is defined by the metocean parameters describing the wind, wind-wave, swell and surface
currents that result in a ten dimensional input space comprising four circular and six linear variables over
which the emulator is constructed. The covariance matrix is constructed as a product of squared exponential
functions for linear inputs and C4–Wendland functions for circular inputs (Gneiting, 2013).

In total 3,000 time-domain simulation runs are used, of which 2,500 are used to train the emulator and
500 are withheld for validation. To capture the joint probability structure of the wind, wind-wave, and
swell-wave input parameters we sample them jointly from a 34 year hindcast dataset over the region of
interest. Unfortunately, surface current hindcasts were not available over this time span. Instead, we
augment the hindcast dataset with samples from the distributional results of a recent expert elicitation
workshop on surface currents on the North–West Shelf’s Exmouth Plateau as described in Astfalck et al.
(2018). It is vital to confirm the emulator is a reasonable surrogate of the simulator and the statistical
diagnostics presented in Bastos and O’Hagan (2009) are used to assess the emulator performance. The
diagnostics indicate satisfactory performance. Furthermore, the emulator offers a run-time decrease of
∼60,000 times, with a single emulator run executing in ∼0.5 ms as compared to a single simulation run of
∼30 s. Furthermore, the predictive variances are sufficiently small to be meaningful in application. The
method presented herein is generalisable and may be applied to many numerical models with univariate and
continuous outputs in offshore engineering.

The paper proceeds as follows. Section 2 describes the underlying numerical simulator and the required
inputs. Section 3 reviews the concepts behind GP emulation, including the additional considerations required
by this application. Section 4 presents the results of the emulation together with the validation diagnostics.
Section 5 discusses the significance of the results and outlines some further uses of emulation when analysing
simulator performance, and Section 6 summarises the key conclusions of the study. Appendix A provides a
more detailed derivation of Bayesian GP emulation for the interested reader. Code used within this paper,
and non-confidential synthetic data with which it may be used, have been uploaded to the first author’s
GitHub repository https://github.com/astfalckl/emulation.

2. Description of the numerical simulations

2.1. Simulation methodology

The dynamic response of a turret-moored FPSO to environmental forcing was simulated in the time domain
using Ariane7 developed by Bureau Veritas (Bureau Veritas, 2007). The commercial multi-body hydrody-
namic software was utilised to compute the turret-offset from a 6-DOF coupled analysis of the vessel and its
moorings in response to wind, waves and currents. The analyses accounted for the inherent non-linearities
and inertias associated with the combined low and high wave frequency dynamic responses of the vessel.
The simulations were three hours in duration, which excluded a 3,000 s initialisation period and used a
time step of one second. The mean turret-offset amplitude was computed from the time histories through
the relation | 1T

∑T
t=1 rt|, where rt is a vector position in terms of Easting and Northing, referenced to a

fixed global reference, for each time measurement, t. A screen shot of a single Ariane7 output time-series is
shown in Figure 1; the left section of the graph denotes the initialisation period where data was not used in
training the emulator. Figure 2 shows the frequency domain response of the FPSO’s mean offset amplitudes.
It is seen that the FPSO mooring response is dominated by the low frequency responses, with the higher
wave frequency components having a comparatively smaller influence — indicative of a relatively compliant
mooring system. Nevertheless, the Ariane time-domain simulation is set-up to ensure that both constituents
are accounted for in the calculation of mean offset amplitude.
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Figure 1: A single Ariane7 output time-series of mean offset amplitude, generated with a randomly sampled metocean state
from the hindcast data.

Figure 2: Frequency domain responses of the FPSO’s mean offset amplitudes.

2.2. Vessel properties

The FPSO considered in the study has a length of approximately 350m, a beam of 60m and is moored in
a water depth of approximately 350m in the North–West Shelf of Australia. The internal turret mooring
system comprises steel chain lines arranged in a three-by-three configuration which are fixed to the seabed
using drag anchors, as seen in Figure 3. The simulations were performed for typical (non-extreme) operating
conditions corresponding to a mean draft of 12m and displacement of 180,000 Te.

2.3. Site Properties

The environmental conditions at the facility include temporally variable surface currents, wind, wind-waves,
and swell. The dominant swell primarily originates from the South–West, and wind, surface currents,
and wind-waves exhibit large directional variation. The wind and wave parameters which describe the
environment at the site were acquired from a numerical hindcast dataset based on the NCEP Climate
Forecast System Reanalysis (CFSRv2) (Saha et al., 2010) and the third generation WaveWatch III spectral
wave model (Tolman, 2014), which had previously been verified against field measurements. The wind data
comprised the mean wind speed and direction at 10m elevation. The wind-waves and swell are individually
described in terms of JONSWAP parameters (i.e. significant wave height, peak spectral period, mean
direction and the peak enhancement factor) (Hasselmann et al., 1973). Hindcast data of surface currents
were however deemed to not be reliable, owing to their particularly high spatial and temporal variability. In
lieu of field measurement of the currents, results of a recent expert elicitation of the surface currents at the
site were utilised (Astfalck et al., 2018). Severe tropical cyclones are expected during the Wet season, during
which the vessel is expected to disconnect. As such, simulating the vessel response in cyclonic conditions is
not considered.

4



Figure 3: Mooring configuration of the turret-moored FPSO.

2.4. Input parameters

Ten input parameters represent the variable environmental input space of Ariane7. Each of these inputs is
listed in Table 1. Directional and magnitude components of wind and surface current are used. Each wave
state is described by a direction, significant wave height, and peak crossing period and the other JONSWAP
parameters are assumed temporally constant. The circular inputs, x1:4, are normalised on [0, 2π), and the
linear inputs, x5:10, are normalised on (0, 1]. Normalisation aids both the numerical stability of the emulator
and serves to confidentialise the data for publication. A-priori, all parameters listed in Table 1 are considered
to affect the FPSO mean offset amplitude and are therefore included for consideration in modelling.

Table 1: Model input parameters. The symbol ° denotes angular measurements in degrees relative to compass North.

Parameter Unit

x1 Surface current direction °

x2 Wind direction °

x3 Swell direction °

x4 Wind–wave direction °

x5 Surface current magnitude m s−1

x6 Wind magnitude m s−1

x7 Swell significant wave height m
x8 Swell peak period s
x9 Wind-wave significant wave height m
x10 Wind-wave peak period s

3. Gaussian process emulation

GP emulation considers the simulator to be an unknown function f(·), modelled by a GP prior, where f(·)
returns univariate output, y, from a set of p–dimensional inputs, x ∈ X . Herein the mean offset amplitude
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is represented by y and the inputs in Table 1 are represented by x. The GP prior represents the belief
that the predictive distribution of any output y, conditioned on its input x, is Gaussian. Furthermore, the
joint distribution of the outputs of any finite collection of elements in the input space follows a multivariate
Gaussian distribution. If X is continuous, the set of all possible inputs in X results in a infinite-dimensional
Gaussian distribution from which a realisation of the function may be sampled. In practice, we only consider
the finite collection of training and prediction locations. Mathematically, this prior belief is expressed as

f(·)|Θ ∼ GP(m0(·), λ0(·, ·))

where m0(·) is the mean function, λ0(·, ·) is the covariance function, and Θ = [β, σ2, ψ] is a vector of
all unknown hyperparameters. The mean function models the global trends in the data, and is most
commonly represented as the linear regression model m0(x) = h(x)Tβ. Here, h(·) is a vector of m known
regression functions, h1(·), . . . , hm(·), and β is an unknown vector of coefficients. More advanced mean
structures have been used (for instance in Vernon et al. (2010)); however, due to the satisfactory results
seen in Section 4 these structures are deemed not necessary herein. The covariance function is defined as
λ0(x,x

′) = σ2c(x,x′;ψ), where σ2 is an unknown amplitude parameter, and c(·, ·) is a known correlation
function dependent on unknown parameters ψ. The correlation function controls important aspects of the
emulator, such as smoothness and periodicity; further details pertinent to our application are discussed in
Section 3.1.1.

Given a set of training data, where the simulator has been run n times producing outputs y = {y1, . . . , yn}
from corresponding inputs x1, . . . ,xn ∈ X , the likelihood of the data can be expressed as

y|β, σ2, ψ ∼ MN (Hβ, σ2Σ), (1)

whereH = [h(x1), . . . ,h(xn)]
T , and Σ is a matrix with i,jth elements Σi,j = c(xi,xj ;ψ), i, j ∈ {1, . . . , n}. As

detailed in Appendix A, by setting a prior over the hyperparameters and invoking Bayes’ theorem we can first
make inference about the posterior distribution of the hyperparameters (Equation A.6). Subsequently the
posterior predictive distribution can be calculated using Equations A.4 and A.5 to predict simulator outputs
for any input in X . It is the posterior predictive distribution that forms the emulator. Because sampling
from the posterior predictive distribution involves straightforward linear algebra, emulator predictions are
orders of magnitude faster than executing the simulator.

Despite its simplicity, the GP emulator is highly flexible and capable of capturing very non-linear model
behaviour (see O’Hagan (1978) for early work on flexible curve fitting using GPs). The emulation literature
has shown that these assumptions are generally appropriate. In any case, a collection of statistical diagnostics
are employed in Section 4 to validate the emulator. For the sake of clarity and brevity we have omitted much
of the mathematics from the main body of this text and provide a more thorough mathematical description
of GP emulation in Appendix A.

3.1. Adapting emulation for application to vessel motion modelling

The above methodology can be applied to the emulation of vessel motion simulations with two important
extensions. The first is the specification of a correlation function to incorporate knowledge about both the
circular and linear inputs. The second is to incorporate stochasticity in the model outputs—this is to reflect
the knowledge that repeated executions of Ariane7 at the same inputs result in randomly varying outputs
due to random wave-state sampling in the time-domain.

3.1.1. Specification of the correlation function

By selecting an appropriate correlation function, c(·, ·;ψ), we can incorporate our knowledge about the emu-
lator properties, such as output smoothness and periodicity. When multiplied by the amplitude parameter,
σ2, this yields a non-negative definite variance-covariance matrix for any set of inputs in X . Generally,
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in emulation, the correlation function reflects that “nearness” in the input space implies high correlation
in the outputs and the converse. Figure 4 shows the evident change in model behaviour from different
correlation functions. Rasmussen (2004) provides a comprehensive review of correlation functions and their
applications.

In the present application, the input space is defined by four circular and six linear parameters; hence, we
define c(·, ·;ψ) for both types of inputs. This is achieved by specifying the global correlation function as a
product of correlation functions for each dimension in X . We define c(·, ·;ψ) as

c(x,x′;ψ) =

4
∏

m=1

cC4(xm, x
′

m;ψ)

10
∏

n=5

cSE(xn, x
′

n;ψ).

Here, cSE(·, ·;ψ) and cC4(·, ·;ψ) denote the families of squared exponential and C4–Wendland correlation
functions respectively. An implication of the squared exponential function is that samples from the GP are
infinitely differentiable. As we wish to model the belief that a small change in inputs imparts a small change
in the outputs, this assumption of smoothness is appropriate. The squared exponential correlation function
is defined as

cSE(xn, x
′

n; ρn) = exp

(

−
|xn − x′n|

2

2ρn

)

, ρn > 0,

where ρn is a length-scale parameter governing output smoothness for each linear input n. Larger values of
ρn reflect a smoother output surface. This effect is demonstrated in Figure 4 with a simple toy simulator
containing one input parameter and emulated using the squared exponential correlation function. Figures 4a
and 4b show the GP emulator results when ρ1 = 1 and ρ1 = 0.05. The underlying true function is denoted by
the black dashed line and the red dots are the training points for the emulator. For each case a single sample
from the GP is shown by the blue solid line, and 0.95 predictive intervals are shaded in grey. Smoother
estimates of the underlying function and tighter predictive densities are apparent for ρ1 = 1 than ρ1 = 0.05.
Note also in Figure 4 that at the training points the emulator’s predictive uncertainties are zero. This is
because the toy simulator is deterministic so the underlying function is known exactly at these points. In
this sense the mathematical foundation of the simulator is encoded into the emulator, which in turn uses
standard results of multivariate Gaussian random variables to quantify posterior predictions at unobserved
locations.

The C4–Wendland function is a class of circular correlation function, defined in Gneiting (1999) as

cC4(xm, x
′

m; τm) =

(

1 + τm
d(xm, x

′

m)

π
+

(τ2m − 1)

3

d(xm, x
′

m)2

π2

)(

1−
d(xm, x

′

m)

π

)τm

+

, τm ≥ 6,

where (t)+ = max(t, 0), and d(xm, x
′

m) is the geodesic distance, d(xm, x
′

m) = arccos
(

cos
(

xj − x′j
))

, between
two angles on the unit circle. Similar to the squared exponential function, τm governs the output smoothness
for each circular input m, with larger values of τm reflecting a rougher output surface.

By defining the correlation function as such, we assume that the underlying function is homogeneous along
each dimension, but as a higher dimensional surface is anisotropic. This means that differing degrees of
smoothness can be used to describe response change between dimensions, but this smoothness does not
change within dimensions. Methods for building GPs over heterogeneous models is an ongoing topic of
discussion within the statistics community (for example see Pope et al. (2018)), but we do not require such
methodologies herein.

3.1.2. Allowance for output stochasticity

The majority of the emulation literature deals with functions that are deterministic, such that repeated
evaluations of the model with identical inputs results in identical outputs. However, for time-domain simu-
lations such as Ariane7, repeated executions of the same inputs result in slight variations in output due to
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(a) ρ = 1 (b) ρ = .05

Figure 4: Effect of varying length-scale, ρ, on the GP predictions. The true function (black dashed line), the 95% prediction
intervals (grey boundary), and a single sample (blue solid line) are given for both GPs. The red points were provided to both
GPs as training points. The approximation in (a), where the appropriate values have been used is clearly more suitable than
that shown in (b).

different wave train histories with varying seeds. Thus, an allowance should be made for the fact that we
can not observe the true output value. There are many approaches to the emulation of stochastic simulators
(Andrianakis and Challenor, 2012; Andrianakis et al., 2015; Johnson et al., 2011). Here, we add a term to
the diagonal of the prior distribution’s variance–covariance matrix, such that Σ̃ = Σ+ νI, as in Rasmussen
(2004). This addition changes the likelihood in Equation 1 to be

y|β, σ2, ψ ∼ MN (Hβ, σ2(Σ + νI)).

The addition of ν in the prior distribution accounts for noise in the observed data but without further
augmentations it would not account for noise in the predictions. As emulation is concerned with predicting
simulation outputs, rather than modelling the underlying process, we must include prediction noise. To do
this we substitute Σ̃∗∗ = Σ∗∗ + νI in the posterior variance, where Σ∗∗ is a matrix with i, jth elements
Σ∗∗i,j

= c(x∗

i ,x
∗

j ;ψ), i, j ∈ {1, . . . , n∗}. Here, we use ∗ to denote predictive quantities, such that the x∗

i ’s are
the locations of the prediction inputs, and n∗ is the number of predictions. The effects that the addition of ν
has on the emulator are demonstrated in Figure 5, which shows the same toy example as in Figure 4 with and
without the effects of including ν in prediction. The values of ρ1 are constant in both Figures. By including ν,
rather than interpolating the points (Figure 5a), the emulator will approximate the points with uncertainty
(Figure 5b). In emulation, this addition is only suitable when the simulator outputs are stochastic, as the
false inclusion of a noise term may lead to unsuitable estimates of the other hyperparameters.

De Oliveira (2007) shows that after the addition of the noise term in Σ̃ and Σ̃∗∗, the non-informative prior
p(β, σ2) ∝ σ−2 remains conjugate. Following the procedure in Appendix A, similar results are produced to
that of Equations A.4 and A.5, differing only in that Σ and Σ∗∗ are replaced by Σ̃ and Σ̃∗∗. The value that
ν takes may be estimated along with ψ. Equation A.6 is adapted to incorporate ν such that

p(ψ, ν|y) ∝ p(ψ, ν)|Σ̃|−1/2|HT Σ̃−1H|−1/2(σ̂2)−(n−q)/2.

A maximum-a-posteriori estimate is then made on the parameters ν and ψ.
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(a) ν = 0 (b) ν = 0.05

Figure 5: The effects of including the noise term, ν, in the GPs. The true function (black dashed line), and the 95% prediction
intervals (grey boundary) are shown for both GPs. The red points were provided to both GPs as training points. Effects of ν
can be seen where in (a) when it is zero, training points are interpolated exactly. Conversely, in (b) where ν is non-zero, the
training points have an associated noise.

4. Emulation results and diagnostics

4.1. Model specification and results

Calculations of mean offset amplitude resulting from a series of numerical simulations of FPSO trajectories
in response to varying environmental conditions are emulated using the methodology presented in Section 3.
Table 1 lists the considered inputs; this results in a ten dimensional input space with both circular and
linear variables. A numerical hindcast dataset is used to inform wind, wind-wave, and swell parameters, and
the results of an expert elicitation workshop are used to inform surface current parameters (Astfalck et al.,
2018).

As with many other offshore engineering applications, the input space is highly correlated and complex.
Fortunately, a 34 year dataset of hourly hindcast observations for wind, wind-wave and swell is available.
We note that whilst the hindcast data are not real observations, it is widely understood that these data
form good approximations to the real metocean processes (Chawla et al., 2013). To prevent designing the
emulator in regions of negligible probability, we select our training data by uniformly randomly sampling
time-measurements from the hindcast dataset. This exploits the inherent correlated structure present in the
inputs, allowing us to obtain random draws from the joint distribution of wind, wind-wave, and swell. The
elicitation results in Astfalck et al. (2018) present seasonal distributions for surface current magnitude and
direction, at the location of the FPSO. We augment the training samples from the hindcast dataset with
seasonally matched samples from the elicited distributions of surface current. This method of design offers a
pragmatic approach for designing the emulator, without the requirement to specify a priori the complicated,
dependent probability distributions of the input parameters. Furthermore, this reduces the effective size of
the input space over which the emulator is to be constructed. A consequence of this design method is the
loss of space filling afforded by other popular methods such as Latin hyper-cube sampling. However, given
the highly correlated and complex structure of the input space, this is deemed as acceptable. We iteratively
generated training points and monitored the root mean squared error, and the average prediction variance
— both as a function of the number of training points. These results are shown in Figure 6. Relatively
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little increases in accuracy and precision are seen after 2500 training points, and thus we deem this as an
acceptable sample size for our training data. In total we use 2,500 Ariane7 executions for training and 500
for validation. The design process of the emulator is illustrated in Figure 7.

Figure 6: The average root mean squared error between the emulator and the simulator, and the average prediction variance
of the emulator.

Expert Elicitation
of Surface Currents

Hindcast Dataset
of Wind and Waves

GP Emulator Ariane7

Mean offset am-
plitude prediction

Training Inputs

Figure 7: Flowchart depicting the emulation methodology. The results of an expert elicitation are used to augment the the
hindcast dataset. Training inputs are then run through Ariane7, and the resulting outputs are used to train the emulator.
Once the emulator is trained predictions of mean offset amplitude, given a metocean condition, are made.

With regard to the primary motivation of reducing simulation time, the trained emulator offers a run-time
decrease of ∼60,000 times, where a single emulator run requires ∼0.5 ms compared to a single Ariane7
run of ∼30 s. As an initial indicator of performance we conduct an uncertainty analysis on the mean
offset amplitude and compare validation (unobserved) data obtained from the simulator with outputs of the
emulator run at the same locations. Figure 8 provides histograms of the distribution of the mean offset
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amplitude (measured in metres) from the Ariane7 training runs (Figure 8a), and the emulator (Figure 8b).
In general, the agreement is favourable, with relatively small differences in the tails which is attributable
to emulator uncertainty. However, the total simulation run times required to produce these histograms are
14,700 s for Ariane7, and 0.27 s for the emulator. This reinforces the advantages that emulation holds, as
estimated predictive values, and their uncertainty, are able to be obtained in near-real time. For instance,
this would be useful in informing predictions of vessel motions during operational phases.

(a) (b)

Figure 8: Histograms to show the distribution of the mean offset amplitude (measured in metres) from (a) the Ariane7 training
runs, and (b) the emulator.

4.2. Validation diagnostics

Due to the input dimensionality, validation of the emulator by simple inspection is challenging, as visualisa-
tion of high-dimensional surfaces is difficult and often impossible. Rather, we utilise a collection of statistical
diagnostics presented in Bastos and O’Hagan (2009), to analyse the emulator performance. We examine the
prediction variances, individual prediction errors, coverage, and prediction intervals. Visual presentations
of these diagnostics are shown in Figure 9. These measures are selected as they diagnose common issues in
emulation and are easily interpretable. A more comprehensive overview of emulator diagnostics is available
in Bastos and O’Hagan (2009).

The diagnostics presented in Bastos and O’Hagan (2009) assume that the simulator is deterministic, meaning
that the true simulator outputs can be observed. As discussed in Section 3.1.2 this is not the case with
Ariane7. Its inherent stochasticity is however quantified by ν — calculated to be ν = 5×10−3. As this value
is several orders of magnitude less than the simulation outputs, for the purpose of diagnostic calculations,
we consider the simulator stochasticity to be negligible.

4.2.1. Prediction variances

Figure 9a plots the empirical density of the variances, Var[y∗|x∗

i ], of the predicted outputs y∗ with corre-
sponding inputs x∗. This is calculated by Equation A.5. For emulator predictions to be useful, the predictive
variances must be smaller than a stipulated threshold, often determined as a percentage of the total output
variance of the simulator, Var[y]. The requisite precision is application specific, as more critical applications
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may necessitate more precise predictions. We use the threshold 0.1Var[y], and Figure 9a shows that 91.4% of
the data lies underneath this bound, which is indicated by the dotted line. This suggests that the majority
of emulator predictions are precise enough to be meaningful, at this threshold. Large prediction variances
are symptomatic of validation points lying far from the training points. The implemented random sampling
design of the training and validation points makes covering the entire input space with the training data
difficult. Despite this, we find by using a random sampling design the emulator is in general acceptably
meaningful in its predictions.

4.2.2. Individual prediction errors

The standardised individual prediction errors are calculated as the difference between the simulator’s outputs
and the emulator’s mean predictions, standardised by the predictive standard deviations. Mathematically
this is defined as

DI
i (y

∗) =
y∗i −M2(x

∗

i |ψ)
√

Λ2(x,x∗

i ;ψ)
,

for each validation point, i, where M2(x
∗

i |ψ) and Λ2(x,x
∗

i ;ψ) are defined in Equations A.4 and A.5 as

M2(x
∗;ψ) = H∗β̂ +ΣT

∗
Σ−1

∗∗
(y−Hβ), and

Λ2(x,x
∗;ψ) = σ̂2[Σ∗∗ − ΣT

∗
Σ−1Σ∗ + (H − ΣT

∗
Σ−1H)(ΣT

∗
Σ−1Σ∗)

−1(H − ΣT
∗
Σ−1H)T ].

Given the emulator’s Gaussian assumption, the DI
i (y

∗) have standard Student-t distributions with n − 1
degrees of freedom, where n is the number of training points. As n is large in this case, we can approximate
the errors to be normally distributed. Thus, values of DI

i (y
∗) located far outside regions of reasonable

probability for a standard normal distribution indicate disagreement between the emulator and the simulator.
This is useful to diagnose issues in emulation, possibly indicating an inappropriate choice of mean function,
poor estimation of hyperparameters, false assumption of model homogeneity, or non-Gaussian distributed
outputs.

Figure 9b compares the empirical density of the DI
i (y

∗) (solid black line) to the standard normal distribution
(grey dashed line). The small excess mass in the tails of the empirical distribution suggests minor disagree-
ment between the emulator and the simulator. We calculate 97% of the validation data to be bounded by
[−3, 3], where 99% is expected. Investigation into the locations of the points not bounded by [−3, 3] show
them to be isolated and random, suggesting no significant structure in the error. It is noted that this does
not necessarily diagnose a fault in the emulator, as complex simulators can be highly non-linear and may
behave erroneously, thus breaking the assumption of simulator homogeneity. This point is further discussed
in Section 4.2.4 in the context of the prediction intervals of the emulator.

4.2.3. Coverage

Emulator coverage, also known as the Dα diagnostic, calculates the proportion of the validation points lying
within the emulator’s marginal prediction intervals of size α. For a given nominal coverage, α, the diagnostic
is evaluated as

Dα(y∗) =
1

m

m
∑

i=1

1(y∗

i ∈ PIi(α)),

where 1(·) is an indicator function, PIi(α) denotes the predictive interval bounding α probability at input i,
and m is the total number of validation points. Should the emulator accurately approximate the simulator
we expect the value of α and Dα to be close. When Dα > α, this indicates accurate prediction of the true
values, however with excessive uncertainty. Conversely, should Dα < α the emulator does not predict the
true values; this may either be due to too-small prediction variance or a more fundamental disagreement
between the emulator and the simulator.
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Figure 9c plots the nominal coverage, α, against the empirical coverage, Dα. It can be seen that the
emulator slightly over-predicts the simulator outputs in the interval α ∈ [0.25, 0.75], and slightly under-
predicts towards the tail values. Due to random sampling variation, slight deviation from the diagonal is
expected—especially towards higher values of α. The discrepancy between α and Dα is minor, and we
conclude that the emulator predicts with reasonable accuracy throughout its entire predictive distribution.

4.2.4. Prediction intervals

Finally, in Figure 9d, we plot the Ariane7 outputs against the emulator’s 50% prediction intervals. This
may help diagnose structure in the error of the emulator, as a function of the output value. An example
of where this is useful would be to diagnose an emulator that regularly under-predicts large values. As we
analyse the 50% prediction intervals, under the assumption of output independence, we expect that half
of the plotted lines intersect the diagonal, with all lines being close. However, there are three locations
where there is a serious discrepancy between the emulator and the simulator. These points are all located
towards low Ariane7 output values. Again, this does not necessarily diagnose a fault in the emulator, as
many computationally expensive models are complicated, and often unexpected and erratic behaviour may
occur. In such situations, it is unreasonable for the emulator to predict this behaviour. When the emulator
is expected to perform well, and there are large disagreements, a simulation developer may be notified to
aid with further exploration. This is especially salient for simulators with high-dimensional input spaces, as
dimensionality may prevent assiduous exploration of the simulator. Thus, further to efficient computation
we may also use emulation to help diagnose erroneous simulator outputs.

5. Discussion

With the goal of increasing the computational efficiency of predicting mean offset amplitude from Ariane7,
we demonstrate the application of a Gaussian process emulator. We achieve a time increase of ∼60,000
times, and diagnostic results indicate that the emulator predicts Ariane7 accurately and precisely. The
mean offset amplitude is of particular interest to the ocean engineering community for assessing mooring
integrity. The theory presented is the same for any continuous univariate output, and thus may be adapted
to a wide range of applications. We note that the emulation methodology presented within is not capable
of simulating full time-series outputs, but rather predicts univariate statistical summaries of the simulation.
Though information from the simulation time-series output may be lost (for instance the turret-position rate
of change), many statistical summaries remain that are important to decision making and to capturing the
hydrodynamic non-linearities. Should more complicated output structures be required, extensions to to allow
for multivariate (Conti and O’Hagan, 2010), functional (Bayarri et al., 2009), and time-series outputs (Conti
et al., 2009) are available. Whilst the run time of Ariane7 is not prohibitive to some statistical analyses,
for instance the global uncertainty analysis shown in Figure 8a, emulation enables a much richer class of
analyses; this may include short-term uncertainty analysis for operational decisions based on simulator
predictions, sensitivity analysis, and Bayesian model calibration—all of which are of increasing importance
to the offshore engineering industry, as discussed below.

A natural extension of this theory is to use the emulator for operational predictions with near-real time
uncertainty quantification. For instance, given an uncertain and impending weather forecast, samples may
be propagated through the emulator to provide an uncertain output prediction. Such a Monte Carlo based
uncertainty analysis may require thousands of runs, which the emulator can perform in a matter of seconds.
Further, this may be computed on-board the vessel using fairly standard desktop computers, mitigating data
security concerns associated with advanced computing techniques if data must be transmitted to shore for
analysis. The current state-of-the-art for vessel motion prediction relies either on heavily simplified models,
more advanced simulations that require substantial computational resources—typically external to the ship,
or the vessel-captain’s subjective experience. Emulation can allow for the information embedded in complex
numerical simulators to be used locally, at low cost and efficiently.
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(a) Empirical prediction variance density at the lo-
cations of the validation points. The vertical dotted
line represents the desired threshold, calculated as
0.1Var[y], of the predictive variances.

(b) Comparison of the empirical density of the in-
dividual prediction errors (solid black line) and the
standard normal distribution (grey dashed line).

(c) The Dα coverage plot showing the proportion
of validation points lying within the emulator’s
marginal predictive intervals.

(d) Ariane7 outputs plotted against the emulator’s
50% prediction intervals.

Figure 9: Emulation diagnostics adapted from Bastos and O’Hagan (2009). All diagnostics have been calculated using the
validation points.
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Sensitivity analysis calculates the relative importance of each simulator input via examination of their
influence on the simulator output. Examples of sensitivity analysis being implemented in the offshore
engineering community may be found in Huang et al. (2017); Eldin and Kim (2016); Xu et al. (2015). Many
techniques are available, however we provide discussion with respect to variance-based sensitivity analysis
(Saltelli et al., 2000; Chan et al., 1997; Oakley and O’Hagan, 2004): the most widely implemented method
for sensitivity analysis amongst the statistics community (see Saltelli and Annoni (2010) for a tutorial). To
ensure this is done efficaciously, Saltelli and Annoni (2010) advocate for over 10,000k model runs to be used,
where k is the input dimensionality of the model. This estimation is under the assumption of independent
inputs; note that for dependent inputs—as demanded by many metocean processes—this number may be
orders of magnitude larger as the assumptions made in Saltelli et al. (2010), for the efficient sampling of
model runs, are violated. Computationally less intensive methodologies for sensitivity analysis are available,
however many of these are not as meaningful in their results as their variance-based brethren. Furthermore,
to the best of the authors knowledge, variance-based methods have been the only methods proposed that
may allow for dependent inputs—as necessitated by offshore modelling. Thus, the use of emulation to
facilitate variance-based methods for sensitivity analysis is desirable.

Model calibration has always been of importance to numerical simulation developers. For the offshore engi-
neering community this plays a particularly important role when model-scale or field data are incorporated
in the simulations (for example in Jiao et al. (2018) and Hifi and Barltrop (2015)). The model uncertainty
due to uncertain input parameter estimates is often challenging to capture. Kennedy and O’Hagan (2001)
present a Bayesian method to calibrate numerical simulators, whereby all sources of uncertainty are included
in the calibration. This has since become a standard practice amongst the statistics community (Santner
et al., 2003). The method demonstrated in Kennedy and O’Hagan (2001) however requires Markov-chain-
Monte-Carlo (MCMC) sampling of the simulator, with changing input parameter values. MCMC sampling
frequently involves hundreds of thousands of iterations—where a larger input space often necessitates more
samples—and the simulator must be re-evaluated each time. Bayesian calibration is thus generally not fea-
sible for use with expensive simulators. Combining emulation with Bayesian calibration offers an attractive
means to overcome this hurdle in offshore engineering applications such vessel motion prediction.

By increasing the breadth of application for Ariane7, and other numerical simulators, more detailed insights
and predictions may be garnered. Complex numerical simulators are predominantly used in design phases,
and not in operations, primarily due to their computational expense. Whilst many design analyses are
enabled by emulation, so to are a range of operational applications. Emulation builds upon the information
contained inside of complex simulators, and embeds this knowledge into a efficient modelling framework to
probabilistically predict at unobserved locations. Thus, the use of emulation does not supplant the need for
numerical simulators; instead, emulation may ultimately lead to the wider uptake of both existing and new
simulators.

6. Conclusion

Motivated by the need to overcome the burden of prohibitive simulation run times, emulation has been
applied to model the turret offset of a FPSO in response to environmental forcing. The requirements for
incorporating directional inputs and stochastic outputs are identified. Both the theoretical development of
a covariance structure to account for input directionality, and the application of emulation, are particularly
novel to offshore engineering. The trained emulator offers a run-time increase of ∼60,000 times, where a
single emulator run requires ∼0.5 ms compared to a single Ariane7 run of ∼30 s. Four diagnostics are used
to assess the appropriateness of the emulator design, and they indicate satisfactory performance. Reduction
of the computational burden induced by numerical simulators may enable a collection of different analyses,
including probabilistic analyses such as near-real time uncertainty quantification, sensitivity analysis, and
Bayesian model calibration. It is demonstrated that emulation offers a new and robust technique to reduce
computational expense and is generally applicable to a wide range of offshore engineering problems.
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Appendix A. Gaussian Process emulation

Consider a function, f(·), returning univariate outputs, y, from a set of p–dimensional inputs, x ∈ X ⊆ R
p.

Despite the function outputs, y, being theoretically known for any x ∈ X , in practice, we must execute
software to evaluate f(·); this is often computationally intensive. From a Bayesian perspective, we thus
consider the function f(·) to be unknown, and assign it a prior distribution. When observations from
f(·) are available, the prior belief of the function is updated to form a posterior distribution, where the
uncertainty is zero at the observed locations. Output predictions, y∗, are obtained from the posterior
predictive distribution, p(y∗|y), for inputs x∗ ∈ X . Following the recommendations of Oakley and O’Hagan
(2002) we implement a GP prior over f(·).

The GP prior is a generalisation of the multivariate Gaussian distribution to infinitely many variables, where
any finite collection of variables is distributed as a multivariate Gaussian distribution. When representing
a function, each variable in the multivariate Gaussian distribution represents a single element in the input
space. Mathematically, we represent our prior belief about f(·) as

f(·)|β, σ2, ψ ∼ GP(m0(·;β), λ0(·, ·; Φ)),

where the mean function m0(·) is given by m0(x) = h(x)Tβ and λ0(·, ·; Φ) denotes the covariance function
with hyperparameters Φ = [σ2, ψ]. Here, h(·) is a vector of m known regression functions, h1(·), . . . , hm(·),
and β is an unknown vector of coefficients. The non–zero mean function is designed to represent the global
trends of the model output over the input space, and is commonly defined as h = (1,x)T . The covariance
function λ0(·, ·; Φ) is defined as λ0(x,x

′; Φ) = σ2c(x,x′;ψ), where σ2 is an unknown scale parameter and
c(·, ·;ψ) is a known correlation function with a vector of unknown parameters ψ. The choice of c(·, ·;ψ)
determines properties of the emulator’s structure, for instance, smoothness and periodicity.

Given n realisations from f(·), y = [y1, . . . , yn], corresponding to inputs x1, . . . ,xn ∈ X , the likelihood of
the observed data is given by the multivariate Gaussian distribution

y|β, σ2, ψ ∼ MN (Hβ, σ2Σ), (A.1)

where H = [h(x1), . . . ,h(xn)]
T , and Σ is a matrix with i,jth elements Σi,j = c(xi,xj ;ψ), i, j ∈ {1, . . . , n}.

Given n∗ inputs [x∗

1, . . . ,x
∗

n∗ ] where the function has not been observed, with corresponding unknown outputs
y∗, the joint distribution of y and y∗ is the multivariate Gaussian distribution

[

y

y∗

]

∼ MN

([

Hβ

H∗β

]

, σ2

[

Σ Σ∗

ΣT
∗

Σ∗∗

])

, (A.2)

whereH∗ = [h(x∗

1), . . . ,h(x
∗

n∗)]T , Σ∗ is the n×n
∗ matrix with elements Σi,j = c(xi,x

∗

j ;ψ), i ∈ {1, . . . , n}, j ∈
{1, . . . , n∗}, and Σ∗∗ is the n∗ × n∗ matrix with elements Σi,j = c(x∗

i ,x
∗

j ;ψ), i, j ∈ {1, . . . , n∗}. By condi-
tioning on y the full conditional distribution is given by

y∗|y, β, σ2, ψ ∼ MN (M1(x
∗;β,Φ),Λ1(x,x

∗; Φ)), (A.3)

where
M1(x

∗;β,Φ) = H∗β +ΣT
∗
Σ−1(y−Hβ), and

Λ1(x,x
∗; Φ) = σ2(Σ∗∗ − ΣT

∗
Σ−1Σ∗).

To make inference about the unobserved outputs y∗, we must first account for the unknown hyperparameters
β, σ2 and ψ. Following Kennedy and O’Hagan (2001) and Oakley and O’Hagan (2002), we specify the prior
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distribution of β and σ2 as p(β, σ2) ∝ σ−2. Combining this with Equation 1 using Bayes’ theorem, the
posterior distribution is a normal inverse-gamma distribution, given by

β|y, σ2, ψ ∼ MN (β̂, σ2(HTΣ−1H)), and

σ2|y, ψ ∼ IG

(

n− q

2
,
(n− q − 2)σ̂2

2

)

,

where β̂ = (HTΣ−1H)−1HTΣ−1y and σ̂2 =
yT (Σ−1

−Σ−1Σ∗(Σ
T
∗
Σ−1Σ∗)

−1ΣT
∗
Σ−1)y

n−q−2 . Equation A.3 may now be

expressed independent of β and σ2 by integrating them out, where

p(y∗|y, ψ) =

∫ ∫

p(y∗|y, β, σ2, ψ)p(β|y, σ2, ψ), p(σ2|y, ψ)dβdσ2.

This yields the multivariate t distribution

y∗|y, ψ ∼ MT n−q(M2(x
∗;ψ),Λ2(x,x

∗;ψ)),

where
M2(x

∗;ψ) = H∗β̂ +ΣT
∗
Σ−1(y−Hβ̂), and (A.4)

Λ2(x,x
∗;ψ) = σ̂2[Σ∗∗ − ΣT

∗
Σ−1Σ∗ + (H − ΣT

∗
Σ−1H)(ΣT

∗
Σ−1Σ∗)

−1(H − ΣT
∗
Σ−1H)T ]. (A.5)

Finally, we must estimate the unknown parameters, ψ, in the correlation function, c(·, ·;ψ). Due to the
analytically intractable structure of the correlation function, there exist no analytical solutions for ψ. A
fully Bayesian analysis would estimate ψ probabilistically using computational techniques such as Markov-
chain-Monte-Carlo sampling. Alternatively, an estimate of ψ is made, and then assumed to be the truth.
For any prior belief p(ψ), it can be shown that

p(ψ|y) ∝ p(ψ)

∫ ∫

p(y|β, σ2, ψ)p(β, σ2)dβdσ2

∝ p(ψ)|Σ|−1/2|HTΣ−1H|−1/2(σ̂2)−(n−q)/2, (A.6)

where Σ and σ̂2 are functions of ψ. To estimate ψ we take a maximum-a-posteriori estimate by finding the
value of ψ for which Equation A.6 is maximised. This does not effect Equations A.4 and A.5 as ψ is only
required to calculate values of Σ, Σ∗ and Σ∗∗.
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