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A B S T R A C T

Hundreds of millions of hectares of tropical forest have been selectively logged, either legally or illegally.
Methods for detecting and monitoring tropical selective logging using satellite data are at an early stage, with
current methods only able to detect more intensive timber harvest (> 20m3 ha−1). The spatial resolution of
widely available datasets, like Landsat, have previously been considered too coarse to measure the subtle
changes in forests associated with less intensive selective logging, yet most present-day logging is at low in-
tensity. We utilized a detailed selective logging dataset from over 11,000 ha of forest in Rondônia, southern
Brazilian Amazon, to develop a Random Forest machine-learning algorithm for detecting low-intensity selective
logging (< 15m3 ha−1). We show that Landsat imagery acquired before the cessation of logging activities (i.e.
the inal cloud-free image of the dry season during logging) was better at detecting selective logging than
imagery acquired at the start of the following dry season (i.e. the irst cloud-free image of the next dry season).
Within our study area the detection rate of logged pixels was approximately 90% (with roughly 20% commission
and 8% omission error rates) and approximately 40% of the area inside low-intensity selective logging tracts
were labelled as logged. Application of the algorithm to 6152 ha of selectively logged forest at a second site in
Pará, northeast Brazilian Amazon, resulted in the detection of 2316 ha (38%) of selective logging (with 20%
commission and 7% omission error rates). This suggests that our method can detect low-intensity selective
logging across large areas of the Amazon. It is thus an important step forward in developing systems for detecting
selective logging pan-tropically with freely available data sets, and has key implications for monitoring logging
and implementing carbon-based payments for ecosystem service schemes.

1. Introduction

Earth's tropical forests are being rapidly lost and degraded by
agricultural expansion and commercial logging operations, with po-
pulation growth projected to further increase pressures on forests
globally (Asner et al., 2005; DeFries et al., 2010). The ability to monitor
forest disturbances is an important component in sustainable forest
management, understanding the global carbon budget, and im-
plementing climate policy initiatives, such as the United Nation's (UN)
Reducing Emissions from Deforestation and Forest Degradation (REDD
+) programme, which seeks to mitigate climate change and biodi-
versity losses through improved forest management practices (GOFC-
GOLD, 2016). The UN anticipates that payments to nations under REDD
+ initiatives, which compensate countries for conserving forests (and

sequestering carbon), could reach $30 billion annually (Phelps et al.,
2010, UN-REDD Programme, http://www.un-redd.org).

Remote sensing is considered the most accurate and cost-efective
way to systematically monitor forests at broad spatial scales (Achard
et al., 2007; Herold and Johns, 2007; Shimabukuro et al., 2014). Large-
scale monitoring of deforestation has signiicantly improved in recent
years, and forest losses can be identiied with accuracies> 90% using
freely available satellite data (Hansen et al., 2013). In addition, near
real-time deforestation tracking and alert systems are now possible with
systems like DETER (Shimabukuro et al., 2014), FORMA (Hammer
et al., 2014; Hansen et al., 2013), and Global Forest Watch (Hansen
et al., 2016). In contrast, methods for detecting and monitoring forest
degradation are less developed. Forest degradation is an ambiguous
term, with over 50 diferent deinitions and no internationally
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established description (Ghazoul et al., 2015; Simula, 2009). This
makes generalizing its impacts diicult, in part because degradation
can include forests subject to varying intensities of selective logging,
ire, artisanal gold mining, fuelwood extraction, etc., which has ham-
pered the development of coordinated international forest policies to
track and monitor forest degradation (Ghazoul et al., 2015; Sasaki and
Putz, 2009).

Here we focus on detecting a key driver of forest degradation
globally, commercial logging operations. In contrast to forest clearance
(i.e. deforestation), selective logging represents a more difuse dis-
turbance wherein only a subset of trees (typically the most economic-
ally valuable) are harvested (Fisher et al., 2014; Putz et al., 2001). The
resulting forest maintains some degree of its original composition (e.g.
canopy cover, biodiversity measures, carbon content, etc.) but is
punctured by treefall gaps and logging roads and consequently lies on a
continuum between primary forest and complete deforestation
(Ghazoul et al., 2015; Thompson et al., 2013). The intensity of selective
logging operations can vary in two main ways: (1) the volume of wood
harvested typically ranges up about 50m3 ha−1, as high as 150m3 ha−1

in Asia (Burivalova et al., 2014; Putz et al., 2001) and (2) the degree to
which reduced-impact logging is practiced, in which damage to the
remaining forest is minimized by careful planning of road networks,
skid trails, and directional felling of trees to limit additional tree or
canopy damage (Putz and Pinard, 1993). We acknowledge wood bio-
mass can vary substantially across forest types globally and may not, by
itself, be a perfect indicator of logging intensity. However, in this
manuscript we deine logging intensity in terms of wood volume ex-
tracted to be consistent with legal restrictions outlined in the Brazilian
forest code.

Selective logging activities are often the irst anthropogenic dis-
turbance to afect primary tropical forests (Asner et al., 2009b; Nepstad
et al., 1999) and are thought to be a major source of carbon emissions
from degradation (Hosonuma et al., 2012; Pearson et al., 2017). More-
over, road networks associated with logging are often precursors to ad-
ditional land-use changes (such as agricultural conversion or development
of human settlements) and facilitate further degradation (e.g. increased
susceptibility to ires or illegal logging) and forest losses (Alamgir et al.,
2017; Kumar et al., 2014; Matricardi et al., 2010). Estimates suggest over
400million ha of tropical forest, an area the size of the European Union,
are earmarked in the tropical timber estate to be logged (Blaser et al.,
2011). However, the extent of forest subjected to selective logging across
the tropics has yet to be estimated (Asner et al., 2005).

Several authors have tried to address the challenges of using sa-
tellite data to estimate forest disturbances from selective logging in the
tropics (Asner et al., 2002, 2004a, 2005; Matricardi et al., 2007, 2010;
Shimabukuro et al., 2014; Souza and Barreto, 2000; Souza et al., 2005).
The majority of approaches employ classiication of fractional images
derived from spectral unmixing of Landsat scenes. Despite these ad-
vancements, Landsat imagery has been considered too coarse to
monitor less intensive selective logging activities, with nearly all ap-
plications involving logging intensities> 20m3 ha−1 (Asner et al.,
2002, 2004a, 2005, Matricardi et al., 2007, 2010; Shimabukuro et al.,
2014; Souza and Barreto, 2000; Souza et al., 2005). While most authors
acknowledge their methods can detect areas of selective logging at
moderately high intensities (> 20m3 ha−1; 3–7 trees ha−1), that pos-
sess large canopy gaps and an abundance of spectrally distinct features,
like log landing decks or large road networks, their respective abilities
to detect lower logging intensities are unknown. Therefore, using
Landsat data to map and quantify selective logging at lower logging
intensities (< 20m3 ha−1) remains a major challenge, and the amount
of forest disturbance overlooked using currently available techniques is
unknown. Yet, growing concerns over the impacts of selective logging
on carbon and biodiversity (Bicknell et al., 2014; Edwards et al., 2014;
França et al., 2017; Martin et al., 2015; Putz et al., 2008) has led to
increased use of improved forest management practices, such as re-
duced-impact logging (Putz and Pinard, 1993). Consequently, the

extent of tropical forests being logged at lower intensities and with
reduced-impact is almost certainly expanding. In addition, there is an
ever-increasing need to detect and account for the estimated 50–90% of
tropical timber on the international market harvested illegally at very
low intensities (Brancalion et al., 2018; Kleinschmit et al., 2016).
Therefore methods to detect subtle forest disturbances from satellite
systems with regular global coverage are urgently needed, both to es-
tablish reference levels from historical data (e.g. the vast amount of
freely available Landsat archives) and to obtain maximum beneit from
current and future systems, such as Landsat 8, 9 and Sentinel-2 (Drusch
et al., 2012; Roy et al., 2014).

The primary objective of this study was to develop a new method for
detecting selective logging in moist tropical forest with Landsat data. It
focuses on reduced-impact selective logging of intensity< 15m3 ha−1

(1–2 trees ha−1), much lower than is typically reported in studies that
use remote sensing data to estimate selective logging (Asner et al.,
2004a, 2005; Souza and Roberts, 2005), but still more than three times
the background rate of natural mortality estimated for tropical forests
(Brienen et al., 2015; Clark et al., 2004). We used detailed spatial and
temporal logging records from Rondônia, Brazil, together with Landsat
data, to build a machine learning algorithm for detecting selectively
logged Landsat pixels. Machine learning (neural networks, decision
trees, support vector machines, etc.) for classiication of satellite ima-
gery has been used with increasing success in recent years (Tuia et al.,
2011) and can turn a suite of predictor variables weakly correlated with
a response into a relatively strong classiier (Breiman, 2001). The suc-
cessful application of this algorithm to a test site in northern Pará,
Brazil, approximately 1500 km from the location of algorithm devel-
opment, demonstrates that this approach is transferable and can greatly
improve existing methods of detecting subtle selective logging activities
in the tropics.

2. Study sites and satellite imagery

Data from two test sites in the Brazilian Amazon were used in this
study (Fig. 1a). The Jamari site consists of terra firme tropical forest
inside the Jamari National Forest, Rondônia, Brazil. The logging con-
cession was subdivided into forest management units (FMUs) that were
each approximately 2000 ha (Fig. 1b). Selective logging occurred
within a single FMU in each year, at an intensity of approximately
10m3 ha−1 (1–2 trees ha−1), beginning at the end of the wet season
(roughly June) and continuing through the dry season (until November)
from 2011 through 2015. Forest inventory measurements were re-
corded by trained foresters and included the spatial location of each
marketable tree. At the Jamari site, heavy cloud cover typically occurs
between October and May, but cloud-free images from Landsat 5 The-
matic Mapper (TM), Landsat 7 Enhanced Thematic Mapper (ETM+),
and Landsat 8 Operational Land Imager (OLI) were acquired approxi-
mately annually for 2008 to 2016 in the intervening dry season
(Table 1). Note that the 2012 ETM+ images sufered from missing data
as a result of the scanline corrector error and appear striped (Storey
et al., 2005). For the analyses, we distinguished “early” and “late”
images for a given region. The early image was the last cloud-free image
of the dry season in the same year the FMU was logged (typically in
August, approximately 2–3months before cessation of logging activities
for the season). The late image was the irst cloud-free image of the dry
season in the year after cessation of logging activities (typically in June,
approximately 8–12months after the FMU was logged). We used early
and late imagery to generate two separate datasets and build two se-
parate algorithms in order to assess which time period provided better
detection of selective logging. This is illustrated for a hypothetical
logging season in Fig. 2. The selection of two time periods relects the
fact that after 8–12months, regrowth of foliage and other vegetation
can reduce the spectral signatures required to identify canopy gaps and
woody debris in tropical systems (Asner et al., 2004a, b; Broadbent
et al., 2006).
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The Jari site (Fig. 1c) in Pará, Brazil, consists of terra firme tropical
forest inside the 12,500 ha Jari concession that was selectively logged
at an intensity of approximately 12m3 ha−1 (1–3 trees ha−1) between
July and December 2012. In contrast to Jamari, the Jari site lacked
detailed information on where trees were removed, but the volume of
wood (m3) harvested was recorded for 10 ha (400m×250m) blocks in
the concession. The Jari site allowed us to assess whether the algo-
rithms developed using the Jamari dataset, located approximately
1500 km away, were transferable to this distant site. At Jari heavy
cloud cover is common throughout the year, but we used the early and
late time period imagery with the lowest cloud cover available to assess
logging before and after logging activities occurred within the FMU
(Table 1).

3. Methods

3.1. Data inputs for detecting selective logging

For the Landsat scenes given in Table 1, the surface relectance
values for the Blue, Green, Red, Near Infrared, Shortwave Infrared 1

and Shortwave Infrared 2 bands were measured at each pixel where
logging occurred (n=13,699) and 2000 randomly selected pixels in an
adjacent FMU that remained unlogged. In addition, since logging ac-
tivities tend to be accompanied by surrounding disturbances (residual
damage to neighbouring unharvested trees and skid trails along which
logs are extracted), seven texture measures were calculated for each
band (mean, variance, homogeneity, contrast, dissimilarity, entropy,
and second moment) to provide a local context for each pixel
(Beekhuizen and Clarke, 2010; Castillo-Santiago et al., 2010; Haralick
et al., 1973; Rodriguez-Galiano et al., 2012). These were calculated
within a 7× 7 pixel window, chosen as a trade-of between minimizing
window size while still capturing the disturbances in a selectively
logged forest compared to an unlogged forest (see Section 4.1 for a brief
comparison of larger and smaller window sizes). The various texture
metrics were assigned to the centre pixel, thus maintaining pixel size
(i.e. 30m), and were added after preliminary modelling eforts with
only the surface relectance bands were found to perform inadequately
(i.e. approximately double the rate of omission error of logged pixels;
see Table S1 for details). Because of possible Landsat inter-sensor dif-
ferences, we added one inal categorical variable that represented the

(b)(a)

(c) 0                             10

kilometres

0                             10

kilometres

Fig. 1. Location of the Jamari (black star) and Jari (grey star) study sites in the Brazilian Amazon (a). Landsat 8 image (RGB bands 6,5,4) of the Jamari site (b) from
June 2016 in Rondônia, Brazil. The six southern forest management units (outlined in black) include the locations of data inputs for machine learning algorithm
development, while the northern 2 units remained unlogged. Landsat 8 image (bands 6,5,4) of the Jari site (c) from September 2016 in Pará, Brazil. Jamari and Jari
were selectively logged from 2011 to 2015 and in 2012, respectively.
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sensor (TM, ETM+, or OLI) from which the image was acquired. The
dataset thus comprised a 49-element vector (6 surface relectance
bands, 7 texture measures for each band, and a sensor-type indicator)
for each pixel where logging occurred and an additional 2000 randomly
selected pixels in an adjacent FMU that remained unlogged between
2008 and 2016.

The early and late datasets were reduced to exclude data from time
periods close to when each FMU was logged. In the early dataset, for
each FMU we excluded data from the year before logging because ac-
cess roads were built and pixel values would therefore not represent
undisturbed forest. In addition, data from all years following logging
were excluded (see Table S2 for details). For example, for an FMU
logged in 2014 the early dataset comprised data from around August in
2008 through 2012 (representative of unlogged conditions) and August
2014 (representative of logged conditions), but excluded data from
August 2013, 2015 and 2016. The same procedure was used for the late
dataset. For example, for an FMU logged in 2014 the unlogged dataset
included data acquired around June in 2008 through 2012, while the
logged data was for June 2015. Data were excluded from June 2013
(roads being built in the FMU), 2014 (logging recently initiated), and
June 2016 (2 years post-logging). In both the early and late datasets the
data from 2000 randomly selected pixels in an adjacent FMU that re-
mained unlogged were retained from all years because they were never
logged. Note that for early data, the imagery was acquired before the
inal part of the FMU was logged; this introduced some errors into
model training, because some pixels labelled as logged in the training
data were still unlogged. Despite this, we demonstrate in Section 4.1

that detection of selective logging was better with early time period
data.

3.2. Random Forest for detection of selective logging

We built Random Forest (RF) models using the randomForest
package in program R version 3.3.1 (Liaw and Wiener, 2002; R
Development Core Team, 2016). The RF algorithm (Breiman, 2001) is a
machine learning technique that uses an ensemble method to identify a
response variable (here, whether a pixel was logged or unlogged) given
a set of predictor variables (e.g. surface relectance values). In contrast
to a single decision tree, RF models employ multiple, independent de-
cision trees (hence a forest). Random subsets of the training data are
drawn, with replacement, to construct many trees in parallel, with each
tree casting a vote on which class should be assigned to the input data.
The withheld subset of the data, called the out-of-bag fraction, can be
used for validation in the absence of independent validation data
(Breiman, 2001). To reduce generalization error, RF also uses a random
subset of predictor variables in the decision at each node within a tree
during construction.

We split the early and late datasets into 75% for training and 25%
was withheld for validation. We used the out-of-bag data during model
training to determine the threshold value for classiication (i.e. model
calibration, see Section 3.3.1). In order to ensure independence, the
training and validation datasets were spatially iltered such that no
observations in the training dataset were within 90m of an observation
in the validation dataset. RF models have only two tuning parameters:
the number of classiication trees to be produced (k), and the number of
predictor variables used at each node (m). We used 10-fold cross-vali-
dation to identify the number of trees (k=1000) and the number of
variables to use at each node (m=5) that minimized the out-of-bag
error rate on the training data.

3.3. Algorithm evaluation

3.3.1. Calibration: selecting the detection threshold
RF models typically use a simple majority vote to assign an ob-

servation to a particular class, for example, in binary decisions
when> 50% of the trees assign a pixel to a particular class (Breiman,
2001). However, the proportion of votes cast for a particular class from
the total set of trees can be obtained for each pixel and a classiication
threshold can be applied to this proportion (Liaw and Wiener, 2002).
We adopted this approach here, wherein the proportion of votes that
predicted each observation to be logged, denoted as X and informally
termed the likelihood a pixel was logged, was used to select the classi-
ication threshold. Model calibration (with the out-of-bag data) was
then used to deine a threshold, T, such that if X > T the pixel was
classiied as logged (Fig. 3).

Detection of logging involves only two classes, logged and unlogged
forest, so the confusion matrix has the form:

Table 1
Landsat 5 (TM), 7 (ETM+), and 8 (OLI) scenes used to build and assess Random
Forest models developed to detect selective logging. The Jamari study site is
path 232, row 066 and the Jari site is path 226, row 061.

Study site Acquisition date Scene timing Solar zenith angle Landsat sensor

Jamari 2008-07-28 Early 49.75 TM
2009-07-31 Early 50.00 TM
2010-07-18 Early 46.36 TM
2011-08-06 Early 51.67 TM
2012-08-16 Early 54.05 ETM+
2013-08-27 Early 57.07 OLI
2014-08-30 Early 58.84 OLI
2015-09-02 Early 60.19 OLI
2009-06-29 Late 43.79 TM
2010-07-02 Late 43.63 TM
2011-07-05 Late 44.30 TM
2012–06-13 Late 41.64 ETM+
2013-07-10 Late 42.26 OLI
2014-06-11 Late 40.43 OLI
2015-06-14 Late 40.47 OLI
2016-06-16 Late 40.37 OLI

Jari 2011-11-08 Early 123.31 ETM+
2012-11-10 Early 125.27 ETM+
2011-07-03 Late 48.12 ETM+
2013-08-17 Late 60.92 OLI

Fig. 2. Timeline representation of a single forest management unit in the Jamari study site. Vertical blue lines indicate image acquisitions during the early and late
time periods (black boxes) relative to when logging occurred (red box). In this example the early Landsat image was acquired part way through the logging season, so
part of the management unit has yet to be cut. The late image is the irst cloud-free image of the following dry season and is acquired approximately 8months after
the management unit was selectively logged. (For interpretation of the references to color in this igure legend, the reader is referred to the web version of this
article.)
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Reference

L UL

Predicted L DL DUL

UL NL−DL NUL−DUL

where L and UL refer to logged and unlogged, NL and NUL are the
numbers of logged and unlogged observations in the reference dataset,
and DL and DUL are respectively the numbers of logged and unlogged
pixels detected as logged. The total number of observations is
N=NL+NUL. Since logging is a relatively rare event, both in our data
and on the landscape (i.e. NL ≪NUL), it is appropriate to use the ter-
minology of detection theory. Accordingly, we deine the detection
probability Pd= DL/NL and false detection probability Pfd=DUL/NUL as
the probabilities that a logged or unlogged pixel is classiied as logged,
respectively. Pd is equivalent to 1− the omission error of the logged
class and Pfd is the omission error of the unlogged class.

A pixel was classiied as logged if X, the proportion of votes from RF
that predict the pixel as logged, exceeds a given threshold T. Hence the
detection and false detection probabilities depend on T and can be
written

P T f X dX( ) ( )d
T

L

1
= (1a)

and

P T f X dX( ) ( )fd
T

UL

1
= (1b)

where fL(X) and fUL(X) are the probability distributions of X for the
logged and unlogged classes, respectively (see Fig. 3).

The selection of T involves a trade-of between increasing Pd and
reducing Pfd (Fig. 3). In making this choice, the overall accuracy, given
by

A
D N D

N

( )
,

L UL UL
=

+

(2)

is not a good guide, since it can be shown that A is maximal (equiva-
lently, the overall probability of error is a minimum) when

f X

f X

N

N

( )

( )
.L

UL

UL

L

=

(3)

If NL and NUL were equal, the threshold would then be chosen at the
intersection of fL(X) and fUL(X), but since NL ≪NUL it has a much higher

value (i.e. it moves to the right in Fig. 3). This is because to increase
overall accuracy it is more efective to reduce Pfd than to increase Pd,
since there are so many more unlogged pixels (Schwartz, 1984), and
maximizing accuracy would lead to very few (or even no) detections.
For example, if only 1% of an area was logged and all the pixels were
classiied as unlogged, the overall accuracy would be 99%. Thus,
overall accuracy would not suiciently balance the trade-of between
true and false detections to meet our objectives.

Various criteria could be used to select a classiication threshold,
including maximizing Cohen's kappa (Cohen, 1960) or deining an ac-
ceptable rate of omission error; ultimately however, there is no wrong
threshold, since this depends on the objectives of prediction. The cri-
terion used in this study to deine Twas to ix the proportion of detected
pixels that were truly logged, deined here as dpL:

( )( )
d

D

D D

1

1
.pL

L

L UL N

N

P

P

UL

L

fd

d

=

+

=

+ (4)

Adopting this criterion is equivalent to a Constant False Discovery
Rate detector which is widely used in detection problems with rare
events (Benjamini and Hochberg, 1995; Neuvial and Roquain, 2011).
This ixes the rate of prediction error (i.e. type I) when labelling pixels
as logged, because dpL is equal to 1 minus the commission error of the
logged class, thus limiting the rate of commission error. This approach
enables the user to select the proportion of detections that will be false.
It was chosen because in the detection of rare events (e.g. selective
logging within the Amazon Basin, for example), the implications of a
particular error rate when predicting over the majority class (i.e. un-
logged forest) are greater than an equivalent error rate when predicting
over the minority class (i.e. 10% of millions of unlogged pixels> 10%
of thousands of selectively logged pixels). Thus, in order to avoid being
swamped by false detections, we wanted to ix the proportion of all
detected pixels that were incorrect and accept the level of accuracy
associated with this criterion. The approach outlined here, therefore,
should be viewed from a detection theory perspective as opposed to
simply being a classiication problem.

Model calibration was used to calculate Pd, Pfd, and dpL across the
full range of threshold values. In practice this involved iterating
through all values of T between 0 and 1 (in steps of 0.001), building
each confusion matrix, and calculating the associated values of Pd, Pfd,
and dpL. The threshold value was chosen such that dpL=0.85 in the
training data (i.e. 15% of pixels classiied as logged were actually un-
logged). We initially set dpL to 95% to strongly limit the rate of false

=
+

=
+

=
+

Fig. 3. Diagram representing the trade-of between the
probability of detection (Pd) and the probability of false
detection (Pfd) associated with using a threshold T (ver-
tical black line) on the variable X (the proportion of votes
that predicted each observation to be logged) to label
pixels as logged and unlogged. Here the purple and or-
ange colors correspond to probability distribution func-
tions of X for hypothetical logged, fL(X), and unlogged,
fUL(X), observations, respectively (scaled by the sample
size in each group). Thus, the areas A and B are the
portions of the observations from unlogged and logged
pixels, respectively, that will be labelled as unlogged.
Similarly, C and D represent the portions of the ob-
servations from logged and unlogged pixels, respectively,
that will be labelled as logged. (For interpretation of the
references to color in this igure legend, the reader is
referred to the web version of this article.)
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detections, but this resulted in very high omission error of truly logged
pixels (> 75%). Consequently, dpL was reduced to 0.85 by lowering the
threshold, thus causing the detection and false detection rates to in-
crease and causing more logged pixels to be detected. This value was
then used to estimate Pd and Pfd during model assessment with the
validation dataset.

3.3.2. Validation: assessing model accuracy
RF models were validated using a random, independent subset of

the early and late datasets (described in Section 3.2). The threshold
value of T, chosen during model calibration, was applied to the vali-
dation data and the associated error rates were calculated. The values of
Pd, Pfd, and dpL are presented across full range of threshold values to
thoroughly illustrate model performance. Good practices outlined by
Olofsson et al. (2014) were used to assess agreement and calculate
unbiased error estimates when mapping selective logging detections.
During mapping, non-forested areas were excluded using Brazil's na-
tional forest change product, PRODES (INPE, 2015), and cloudy pixels
were masked using the cloud mask provided with Landsat surface re-
lectance imagery. In addition, we provide the value of Cohen's kappa,
κ, for comparison with other studies (Cohen, 1960).

4. Results

4.1. Random Forest classification of selective logging at Jamari

The rates of true and false detection probabilities for the early and
late validation data are shown in Fig. 4 for the full range of T (black
lines). These curves indicate how a given threshold value used for
classiication inluenced the associated values of Pd, Pfd, κ, and dpL in the

validation data. For example, if a dpL of 0.90 was used (indicating 10%
of logging detections would be spurious) then the false detection rate
(Pfd) would be<1% for both datasets, but the detection rate (Pd) would
be approximately 55% and 30% for the early and late datasets, re-
spectively. These plots clearly demonstrate that there is no un-
ambiguous way to choose an optimal value for T, and the choice about
its value is a trade-of between the number of true and false detections.

In general, these plots indicate that the early data provided a higher
detection rate than the late data, for a given false detection rate. The
early and late data had similar rates of commission error when labelling
logged pixels, which is not surprising given we used this measure to
constrain models during training. However, the late data had higher
rates of omission error of logged pixels and detected less logging
(Table 2). In addition, these plots demonstrate why using the threshold
that maximized Cohen's κ would lead to higher false detection rates, as
the threshold value is higher when dpL=0.85 than at maximum κ (i.e.
pixels classiied as logged must have a higher likelihood). Furthermore,
because κ is high across a wide range of threshold values for both early
and late data, slight diferences in the likelihoods produced by the
validation data could result in dramatic shifts in the value of T.

Although dpL was ixed at 0.85 during model calibration (i.e. with
the training data), the values calculated with the validation dataset
were slightly lower (Table 2). Thus, the threshold value determined
during model training did not produce the same values for dpL when
used against the validation dataset (i.e. some loss of performance).
Slight diferences in the proportion of logged observations (16.3% and
14.5% in training and validation, respectively) and minor diferences in
the ratio of Pfd : Pd between the training and validation datasets account
for the disparity (see Eq. (4)). In general model assessments seldom give
identical performance across training and validation phases, and the
diference here were marginal and yielded comparable model behavior.

The early data displayed higher spatial correspondence between
high likelihoods and the locations of logging in Jamari. This is illu-
strated in Fig. 5, where the likelihood of logging provided by RF is
shown on a color scale and the individual locations of tree removal are
indicated by black squares. The early model yields much higher like-
lihoods and these match well with reference logging data, whereas
there is generally lower correspondence between reference logging lo-
cations and regions of highest likelihood in the late predictions. Note
that we expect some logging locations to be omitted in the early data as
the corresponding satellite data were acquired part way through the
logging period and missed later logging. Evidence for this is provided
by the inset regions expanded at the bottom of Fig. 5 where the loca-
tions of the last 200 trees in the logging records for the season are
displayed as crosses instead of squares. Many of these locations occur in
low likelihood regions in the early data because these locations were
probably unlogged at the time of the image acquisition (dates for spe-
ciic tree removal were unavailable).

A further marked diference between the predictions is that, in
general, far more pixels were labelled as logged in the early data than in
the late, as can be seen by comparing the classiications in Fig. 6, which
shows the years between 2011 and 2015 for the early (top) and late
(bottom) datasets, respectively. The FMU where logging occurred in
each year is outlined in yellow and the 2015 image also shows the FMU
to be logged in 2016 outlined in white. The early classiications appear
to show some indication of a retained signal from the previously logged
FMU (particularly 2012-08-16 and 2013-08-27 in Fig. 6) that are less
visible in the late classiications. In addition, the range of predicted
logging likelihoods with late data was more variable from scene to
scene, which resulted in some scenes having very few pixels of high
likelihood of logging (see 2012-06-13 in Fig. 6) and others with most of
the study area predicted as logged (see 2016-06-16 in Fig. 6). This
suggests the threshold value from model calibration could not be used
reliably for all late images and a scene-speciic threshold value might
need to be calculated for each image to provide better correspondence
with logging activities.

Fig. 4. Trade-of curves between true (Pd) and false (Pfd) detection rates (solid
and dashed black lines, respectively) for the early (top) and late (bottom)
Random Forest models at the Jamari site as a result of varying the threshold
value (T) for classiication. Also shown are the corresponding values of dpL (the
proportion of detections that were truly logged) and Cohen's kappa (solid and
dashed grey lines, respectively).
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The true proportion of logged pixels in each FMU (from the logging
records) was roughly 12% in a given year (mean=11.8%; standard
deviation= 2.4%), but the early classiications consistently labelled a

greater number of pixels as logged (Fig. 7). For example, the proportion
of pixels assigned in each FMU for early acquisitions was expected to be
around 25% (10% truly logged and 15% false positives), but nearly

Table 2
Confusion matrix summarizing unbiased (Olofsson et al., 2014) results from Random Forest (RF) model classiications of logged and unlogged observations at Jamari
derived from Landsat data at labelled points (observations before and after selective logging). The classiication threshold (T) for RF models was set during model
calibration such that the proportion of detections that were truly logged (dpL) was ixed at 0.85, resulting in a T of 0.40 and 0.65 for the early and late datasets,
respectively. The corresponding values for overall accuracy (OA), Cohen's kappa (κ), the proportion of detected pixels that were truly logged (dpL), and the detection
probability (Pd) are provided.

Early Late

OA: 89.7%
κ: 0.78
dpL: 0.80
Pd: 0.92

Reference Class Commission OA: 91.7%
κ: 0.40
dpL: 0.80
Pd: 0.30

Reference Class Commission

Logged Unlogged Error (%) Logged Unlogged Error (%)

Predicted Class Logged 0.313 0.076 19.5 Predicted Class Logged 0.032 0.008 19.9
Unlogged 0.027 0.584 4.4 Unlogged 0.075 0.885 7.8

Omission Error (%) 8.0 11.5 Omission Error (%) 70.1 1.0

Early

2013-08-27

3 km

Early      1 km

Late

2014-06-11

Late                                                  

Likelihood Pixel was Logged

Fig. 5. Example of a forest management unit in Jamari logged in 2013 showing the RF predicted likelihood that each pixel was logged (highest likelihoods in red) for
the early and late data. Logging roads are thin black lines and tree removal locations are displayed as black squares and crosses. The black crosses (see insets for
detail) coincide with the inal 200 trees in the logging records for 2013. (For interpretation of the references to color in this igure legend, the reader is referred to the
web version of this article.)
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twice as many were identiied. However, forest disturbances from se-
lective logging afect patches of forest and not just the pixels where
trees were logged. Extra detections would be expected because of ad-
ditional tree and canopy damage associated with tree removals, roads,
and construction of skid trails. Note that the rate of false detections over
unlogged FMUs (open diamonds in Fig. 7) is roughly as expected for the
early algorithm and most dates for the late algorithm, but is sig-
niicantly diferent for the late algorithm for the FMU logged in 2015.
The late scene for this FMU clearly shows anomalous behaviour and
displays high likelihood of logging over most of the study area, in-
cluding known unlogged regions (see Fig. 6).

We used the early algorithm to predict over the available Landsat
time series in Jamari that coincided with logging in four FMUs (see
Table S3 for image dates) and plotted the detections of logging through
time (Fig. 8). As expected, the proportion of detected pixels increased
through the logging season during the year a given FMU was logged.

There was also a drift upwards in the unlogged FMU, but the detections
peaked just above the expected rate of 12% by late August (Fig. 8).
Importantly, known unlogged regions will not exhibit a dpL of 0.85 (i.e.
a false discovery rate of 15%), as any and all detections in known un-
logged areas are wrong (i.e. a dpL=0). Consequently, the false alarm
rate is the expected proportion of detections (i.e. Pfd=11.5% in
Table 2). This suggests that the algorithm performed as would be ex-
pected for tracking forest disturbances through time in both logged and
unlogged FMUs. In particular, forest patches subjected to selective
logging should display measurable increases in detections as the log-
ging season progresses and known unlogged regions will exhibit the
expected false alarm rate.

We assessed the impact of the window size used to calculate texture
measures on the proportion of pixels labelled as logged FMUs for three
logged and one unlogged FMU in the early data (Fig. 9). Reducing the

5 km

2011-08-06 2013-08-272012-08-16 2014-08-30 2015-08-17

2012-06-13 2013-07-10 2014-06-11 2015-06-14 2016-06-16

Fig. 6. Classiications for Jamari between 2011 and 2016 with early (top) and late (bottom) Landsat data. The forest management units (FMUs) are outlined in black
and the FMU logged in each year (where logging should be detected) is outlined in yellow. Blue and green represent classiications for logged and unlogged forest,
respectively. White areas are no-date and correspond to the Landsat 7 scan-line corrector error (stripes) and pixels that were non-forest (irregular patches) in Brazil's
Program to Calculate Deforestation in the Amazon (PRODES) database. The FMU logged in 2016 is outlined in white (far right) and the top two FMUs in each image
remained unlogged. (For interpretation of the references to color in this igure legend, the reader is referred to the web version of this article.)

Fig. 7. The proportion of pixels in each FMU that were classiied as logged in
Fig. 6 for the early (open symbols) and late (closed symbols) algorithms. Circles
are the logged FMUs in each year and diamonds are values from an FMU that
remained unlogged. The black line represents the mean ± 1 standard deviation
(dashed lines) of the true rate of logging across all FMUs. Values are unbiased
(Olofsson et al., 2014) to account for possible sampling bias in the validation
data.

Fig. 8. The proportion of pixels classiied as logged through time in three
logged and one unlogged FMU using the early RF model. Triangles, circles, and
squares represent logged FMUs (solid lines) and diamonds are an unlogged FMU
(dotted line). The grey horizontal line at 12% is the approximate detection rate
expected for unlogged regions. Values are unbiased (Olofsson et al., 2014) to
account for possible sampling bias in the validation data.
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window size from 7×7 to 3× 3 lowered the proportion labelled as
logged by nearly 50% within each FMU, resulting in smaller clusters of
pixels with high likelihoods (Fig. 9). However, as noted above, forest
disturbance from selective logging afects chunks of forest and not just
the pixels where trees are cut. Thus, depending on the scale of interest,
larger or smaller window sizes may be better for identifying patches of
forest that have been selectively logged. In contrast, reducing the
window size had little impact on the false detection rate over unlogged
regions, remaining close to the 12% expected irrespective of window
size (Fig. 9). This suggests that the choice of window size is independent
of the false positive rate over undisturbed forested areas and primarily
afects likelihoods around pixels that the algorithm identiies as dis-
turbed.

4.2. Random Forest predictions of logging at Jari

The majority of the best available (suiciently cloud-free) Landsat
scenes over Jari were from the ETM+ sensor, which sufered the scan-
line corrector error, so approximately 22% of each image has missing
data that appear as white stripes in Figs. 10 and 11 (Storey et al., 2005).
Nonetheless, this allowed us to see behaviour similar to Jamari,
wherein predictions using early data clearly identiied active logging
(Fig. 10) and predictions using late data detected very little logging
(Fig. 11). In particular, with late data most of the study area was
classiied as unlogged both before and after logging. Additionally, with
early data the predictions of logged pixels in the year before logging
were close to the expected rate of false positives over unlogged regions
(approximately 12%). However, with late data the rate of false positives
was not close to the expected rate over unlogged regions. Maps for the
year before logging are displayed to demonstrate that the early dataset
identiied the correct year in which logging occurred and did not simply
predict high amounts of logging for every year.

In total, an area of 6152 ha was visible in Jari after removing clouds
and missing data gaps from the SLC error in the year of logging. Of this
area, 1710 ha was not logged (black boxes in Figs. 10 and 11). Since we
lacked detailed logging records and only knew which 10 ha blocks were
logged, a formal accuracy assessment of logging detections was not
possible. However, when using the unbiased proportions and the
threshold from Table 3 to classify predictions, the early algorithm la-
belled 2316 ha (38%) as logged (Fig. 10). This value is consistent with
predictions from Jamari where approximately 40% of logged FMUs
were labelled with early data (see Fig. 7). In addition, the rate of
commission error when predicting logged pixels (i.e. 1− dpL) was
19.8%, which is also consistent with the rate of commission error

between the validation data and prediction errors found for the Jamari
site.

5. Discussion

The spatial resolution of Landsat data has previously been con-
sidered too coarse to monitor selective logging activities (Asner et al.,
2002), with most applications involving logging intensities> 20
m3 ha−1 at sites with an abundance of spectrally distinct features
(Asner et al., 2005; Souza and Barreto, 2000; Souza et al., 2005).
However, we have demonstrated that Landsat surface relectance data
can be used efectively, in a supervised machine learning framework, to
detect subtle spectral changes from selective logging at low intensities.
Although a deinitive estimate of the amount of logging activities that
have previously gone undetected is diicult to determine, a dataset of
824 logging permits from the state of Pará, Brazil found 18% of permits
authorized for logging were harvested at intensities< 20m3 ha−1

(Richardson and Peres, 2016). Thus, our approach has the potential to
signiicantly increase current abilities to detect and monitor selective
logging activities that up to now have been, at best, marginally de-
tectable (see Supplementary material, Section 3 for a comparison be-
tween our method and CLASlite, Asner et al., 2009a). In addition, the
approach outlined here has the distinct advantage of being able to make
predictions about forests on a single scene to map disturbances, instead
of requiring successive cloud-free images like many approaches (Asner
et al., 2009a). This is particularly important since a single, low-cloud
scene may be all that is available for a given region (see Souza Jr et al.,
2013).

Only the algorithm developed with data close to the time of active
logging (i.e. the early data) performed well at detecting selective log-
ging. Many logged pixels were omitted when using data from the irst
cloud-free image of the next dry season (i.e. late). In addition, only the
algorithm trained with imagery close in time to the logging events was
transferable to new areas (Figs. 10 and 11). Thus, our results suggest
images acquired during, or very soon after, active logging are needed to
map low intensity selective logging. This is partly because logging ac-
tivities typically occur in the dry season when cloud-free imagery is
more likely to be available, but also because the spectral changes as-
sociated with low-intensity selective logging practices are subtle and
short-lived and rapidly become obscured under even limited regrowth
(Broadbent et al., 2006).

The decision to ix the proportion of logging detections that were
correct (i.e. limiting the commission error when predicting logged
pixels) deined the classiication threshold applied to the likelihoods
produced by the RF models developed at Jamari. This threshold would
likely give diferent values of dpL in regions that contain diferent pro-
portions of logged and unlogged observations (see Eq. (4)). Indeed, the
threshold value from model training produced a slightly higher dpL
when assessed against the validation dataset, yet these data were from
the same study site. In addition, depending on the distribution of
likelihoods produced by the RF models, diferent datasets might yield
diferent threshold values, for example because of higher selective
logging intensities. However, assuming both classes are present, the
proportion of detected pixels that are wrong (i.e. 1− dpL) would be
expected to remain invariant. Hence if the same threshold were applied
over the whole of the Amazon basin, we would expect approximately
20% of all detections to be wrong and 11.5% of truly intact forest pixels
to be identiied as logged. This could be used to reine the algorithm (in
the absence of ield data on logging locations) by examining the rate of
false detections over known unlogged regions or protected areas to
achieve a similar error rate. Adopting this threshold (i.e. Pfd=11.5)
would make the method equivalent to a Constant False Alarm Rate
detector which is widely used in detection problems with rare events
(Scharf, 1991). A dpL of 85% was the value chosen here as a compromise
that gives a high detection rate (0.92 for early data, see Table 2) while
keeping the proportion of detections that are false to an acceptable

Fig. 9. The proportion of pixels classiied as logged in three logged FMUs and
one unlogged FMU from RF models using texture measures with diferent
window sizes. Triangles, circles, and squares represent windows used for tex-
ture calculation of 7×7, 5×5 and 3×3 pixels, respectively. The dashed line
at 12% is the approximate detection rate expected for unlogged regions. Values
are unbiased (Olofsson et al., 2014) to account for possible sampling bias in the
validation data.
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level. However, other values of dpL could be chosen, depending on the
predictive objectives of the particular application. This is precisely why
Fig. 4 shows the full range of threshold values; to enable a detailed
assessment of model performance with higher or lower values of T
or dpL.

An important issue when assessing detections of selective logging is
that patches of forest are afected, not just the isolated pixels where trees
are removed. The area around logged pixels is certain to be disturbed
because of canopy damage associated with tree removals and the con-
struction of roads and skid trails, but the precise amount is unknown.
Consequently, taking as a reference purely the pixels where trees were
known to be removed is inadequate for assessing the disturbance due to
logging. Indeed, the true rate of logged pixels at Jamari was approxi-
mately 12% (mean=11.8%; standard deviation= 2.4%), but this re-
presents a minimum expected detection rate and the associated forest
disturbances would result in more detections. The early algorithm la-
belled approximately 40% of the area inside FMUs in Jamari and Jari as
logged. This may be a more realistic estimate and is likely close to the
upper limit of what constitutes forest disturbance for this level of log-
ging. However, because the choice of window size for texture measure
calculation afected the proportion of pixels labelled as logged (Fig. 9),
the appropriate window size for a particular application needs to be

considered. Smaller windows resulted in fewer detections, but use of
too small a window risks being unable to adequately measure texture
arising from forest disturbances from selective logging. Thus, the spe-
ciic application would best dictate the optimum approach and the user
should, if possible, use window sizes matched to the expected or known
spatial spread of forest disturbance around tree removals.

Selective logging rates in the Brazilian Legal Amazon (BLA) are
thought to have remained relatively stable since 2000, with Pará and
Mato Grosso enduring the highest rates of selective logging (Betts et al.,
2017; Souza Jr et al., 2013). However, our indings suggest that their
assessments of forest disturbance and the associated carbon emissions
are likely underestimated. Machine learning approaches (neural net-
works, decision trees, support vector machines, etc.) for classiication of
satellite imagery have been used with increasing frequency and success
since their initial applications to remote sensing questions in the 1990's
(Tuia et al., 2011), but their efectiveness relies heavily on adequate
training data. Our results suggest that detailed logging records ought to
be a reporting requirement for logging companies or for REDD+ pro-
jects related to logging. These datasets could be used for building, im-
proving, and updating models similar to the one presented here, with
the aim of facilitating the creation of pan-tropical estimates of (legal
and illegal) selective logging activities.

2011-11-08

(pre-logging)

2012-11-10

(ac ve logging in FMU)

Fig. 10. Logged (blue) and unlogged (green) predictions
at the Jari study site using a Random Forest model
trained from early Landsat inputs. Predictions from
November 2011 (top) were before logging activities
began and from November 2012 (bottom) while active
logging was ongoing. Clouds were masked out and ap-
pear as irregular white patches (top). Missing data re-
gions from the Landsat 7 scan-line corrector error appear
as white stripes through the maps. Black boxes indicate
the 10 ha blocks inside the Jari concession that were not
logged. (For interpretation of the references to color in
this igure legend, the reader is referred to the web ver-
sion of this article.)
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From a conservation perspective, the ability to identify regions of
forest that are selectively logged is useful for mapping primary forest,
but also for delineating logged forests with conservation value. Forests
subjected to selective logging generally maintain far higher levels of
biodiversity than other modiied habitats, such as plantations or sec-
ondary forests (Gibson et al., 2011; Edwards et al., 2014). Moreover,
even after accounting for the amount of wood removed, reduced impact

logging activities (like those at our study site in Jamari) do better at
maintaining biodiversity than conventional selective logging practices
(Bicknell et al., 2014) while simultaneously sequestering more carbon
during regrowth (Martin et al., 2015; Putz et al., 2008). Thus, in the
context of REDD+ or alternative conservation initiatives, forests af-
fected by low intensity selective logging ofer high biodiversity value
and carbon sequestration potential. Accordingly, our method could be

2011-07-03

(pre-logging)

2013-08-17

(8 months post logging)

Fig. 11. Logged (blue) and unlogged (green) predictions
at the Jari study site using a Random Forest model
trained from late Landsat inputs. Predictions from July
2011 (top) were before logging activities began and from
August 2013 (bottom), approximately 8months post-
logging. Clouds were masked out and appear as irregular
white patches. Missing data regions from the Landsat 7
scan-line corrector error appear as white stripes through
the map (top). Black boxes indicate the 10 ha blocks in-
side the Jari concession that were not logged. (For in-
terpretation of the references to color in this igure le-
gend, the reader is referred to the web version of this
article.)

Table 3
Confusion matrix summarizing unbiased (Olofsson et al., 2014) results from Random Forest (RF) model classiications of logged and unlogged observations at Jari
with Landsat data. The thresholds (T) developed at Jamari were used to classify predictions at Jari and were 0.40 and 0.65 for the early and late datasets, respectively
(Table 2). The corresponding values for overall accuracy (OA), Cohen's kappa (κ), the proportion of detected pixels that were truly logged (dpL), and the detection
probability (Pd) are provided.

Early Late

OA: 89.0%
κ: 0.77
dpL: 0.80
Pd: 0.93

Reference Class Commission OA: 92.2%
κ: 0.05
dpL: 0.80
Pd: 0.03

Reference Class Commission

Logged Unlogged Error (%) Logged Unlogged Error (%)

Predicted Class Logged 0.351 0.085 19.5 Predicted Class Logged 0.002 0.005 19.9
Unlogged 0.025 0.538 4.4 Unlogged 0.078 0.919 7.8

Omission Error (%) 6.7 13.7 Omission Error (%) 97.3 0.06
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used for identifying and prioritizing forest tracts suitable for such in-
itiatives.

5.1. Study limitations

While the minimum mapping unit remained 30m, the use of texture
measures resulted in some spatial aggregation of logging predictions
(see Figs. 5 and 6). This was expected around logged pixels, as a result
of canopy gaps, skid trails, and roads, but clustered detections were also
present in unlogged FMUs (see Fig. 6). Ideally, predictions of logging in
unlogged FMUs would have shown a difuse 12–15% of spurious de-
tections. Attempts to reine the accuracy of a inal predictive map, by
performing a post-processing step in which either likelihoods or clas-
siied pixels are re-examined (e.g. using a window analysis to apply
neighbourhood rules whereby likelihoods or counts of nearby pixels are
re-evaluated against some criteria) to enhance the detection rate or
limit the false detection rate further, would prove diicult (Huang
et al., 2014). However, using a smaller window size for texture calcu-
lation, such as 5× 5 pixels, would reduce this efect. Ultimately, the
optimal window size for textures depends on the objectives of the ap-
plication and understanding how diferent window sizes afect detec-
tion and false detection rates.

Landsat surface relectance data is known to exhibit occasional
strong scene-to-scene and within-scene variations because of dis-
continuities across focal plane modules (Moritt et al., 2015) and sea-
sonal changes in solar viewing angles (Roy et al., 2016), respectively.
We did not take these efects into account and likely afected algorithm
performance in some instances (e.g. 2016-06-16 in Fig. 6). Thus, a large
scale application of the approach outlined here should include a step to
normalize surface relectance data across scenes to facilitate detection
of the subtle and short lived spectral changes associated with low-in-
tensity selective logging practices (Broadbent et al., 2006).

Our analysis used a binary classiication (logged and unlogged
forest) yet tropical forest landscapes are a heterogeneous mixture of
land uses (e.g. secondary forests, burned areas inside forests, agri-
cultural ields). We avoided some of these complexities by using the
PRODES forest designations to remove urban areas, agricultural ields,
and deforested areas that had regenerated to secondary forest.
However, our method cannot distinguish between disturbance types
and is best suited for tracts of remaining forest that contain logging
concessions. In addition, selective logging represents a range of forest
disturbance intensities and we would have preferred to use the logging
dataset in a regression framework (i.e. a continuous response, such as
logging intensity). However, the range of logging intensities within our
Jamari dataset was very limited, since it was such a low intensity
concession. Consequently, a regression approach was not suitable for
the Jamari dataset and we chose to use classiication. Additional da-
tasets could fold into the framework here and might facilitate a con-
tinuous response approach as those datasets become available.

Finally, our analyses used freely available optical datasets.
However, the problems associated with using optical imagery in the
tropics, including the limited availability of cloud-free images over
many regions and the rapid regeneration of tropical forest vegetation,
remain major obstacles to pan-tropical assessments of tropical selective
logging rates. Methods that integrate optical and radar dataset into a
single algorithm would likely further improve the detection of tropical
selective logging activities (Higginbottom et al., 2018; Joshi et al.,
2016; Reiche et al., 2018).

6. Conclusion

Loss and degradation of forests in the tropics has important im-
plications for global climate change, local populations and biodiversity
(Lewis et al., 2015). Methods to reliably map forest disturbances from
selective logging would be a key contribution to quantifying the ter-
restrial portion of the carbon budget and the role of land-use change in

tropical forests emissions (Baccini et al., 2017). In addition, reliable
forest monitoring systems are actively sought after by tropical nations
and conservation groups tasked with mitigating global climate change
through improved forest management practices (GOFC-GOLD, 2016).
Our results should stimulate further assessments of regional rates of
low-intensity selective logging in tropical forests.

Our analysis, based on training Random Forest models with detailed
records of tree removals, has demonstrated that Landsat data can be
efective at detecting selective logging at much lower intensities than
has previously been reported. To be successful, the input satellite data
needs to be acquired within a few months of the logging, as the subtle
signal caused by logging (and the more extensive disturbance asso-
ciated with logging) is rapidly lost. Although we had less complete
knowledge of logging activities at the Jari site, the algorithm developed
at Jamari appeared to transfer successfully to this site (despite being
1500 km away). Hence there is reason to expect that it could be applied
at much wider scales.
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