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Incorporating velocity shear into the magneto-Boussinesq approximation
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Motivated by consideration of the solar tachocline, we derive, via an asymptotic procedure, a new set
of equations incorporating velocity shear and magnetic buoyancy into the Boussinesq approximation.
We demonstrate, by increasing the magnetic field scale height, how these equations are linked to the
magneto-Boussinesq equations of Spiegel and Weiss (1982).
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1. Introduction

Instabilities driven by magnetic buoyancy have been studied over a number of years, with
particular emphasis given to their role in disrupting a strong, predominantly toroidal magnetic
field in the solar interior (see, for example, the review by Hughes 2007). For a variety of
(essentially unrelated) reasons, it has been suggested that the bulk of the Sun’s magnetic
field is stored at the base of, or just below, the convection zone. From estimates of the rise
times of magnetic flux tubes through the convection zone, Parker (1975) argued that it would
be difficult to confine the magnetic field for times comparable with the solar cycle period
unless the dynamo operated only in the ‘very lowest levels of the convective zone’. Golub et

al. (1981) (see also Spiegel and Weiss 1980) proposed a similarly deep-seated layer of toroidal
field, but from arguments based instead on the expulsion of magnetic fields by convective
motions. Perhaps the most compelling evidence for pinning down the location of the solar
toroidal field comes from the discovery, by helioseismology, of the solar tachocline, a thin
region of strong radial and latitudinal velocity shear, sandwiched between the convective and
radiative zones (Schou et al. 1998). Although there is little consensus on exactly how the solar
dynamo operates, it is generally agreed that toroidal field is wound up from a relatively weak
poloidal ingredient via strong differential rotation (the ω-effect of mean field dynamo theory).
Consequently, the tachocline becomes the natural location for a deep-seated, predominantly
toroidal magnetic field.
Given this, it is natural to seek to build upon previous studies of magnetic buoyancy insta-

bilities by incorporating the effects of a velocity shear. Using the energy principle, Tobias and
Hughes (2004), extending the results of Adam (1978), obtained necessary conditions for the
ideal (diffusionless) linear instability of a magnetohydrodynamic (MHD) state with aligned
horizontal flow and magnetic field, each stratified arbitrarily in the vertical direction. From a
different perspective, Vasil and Brummell (2008) considered the fully nonlinear evolution of
magnetic buoyancy instabilities in a magnetic layer generated through the stretching of an
initially vertical magnetic field by a horizontal, depth-dependent shear flow.
Instability due to magnetic buoyancy is an inherently compressible phenomenon, with the
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magnetic pressure playing the crucial role in reducing the local density of the gas. Thus, most
studies of the instability have employed the equations of fully compressible MHD. However,
just as convection of a compressible fluid can, under certain circumstances, be treated within
the almost-incompressible Boussinesq approximation (Spiegel and Veronis 1960), so can mag-
netic buoyancy be incorporated into a similar magneto-Boussinesq approximation (Spiegel
and Weiss 1982). Such approximations afford a simplification of the governing equations and
thus aid both theoretical and numerical analysis. Our aim in this paper is to incorporate
the effects of a velocity shear into the magneto-Boussinesq equations, self-consistently and in
such a way that the influence of the shear is comparable with that of the magnetic buoyancy
instability.
The equations of the Boussinesq approximation for a compressible fluid were derived in

the classic paper of Spiegel and Veronis (1960), who considered thermal convection of a layer
of fluid subject to two important assumptions: the first is that the depth of the fluid layer
is much smaller than the scale height of any thermodynamic quantity; the second is that
motion-induced fluctuations in density, temperature and pressure do not exceed their static
variation. The first assumption is a statement about the basic state, the second is an emi-
nently reasonable supposition that can be verified a posteriori. Under these assumptions, the
governing equations simplify considerably. In particular, the fluid is treated as incompress-
ible, with density variations neglected except in the buoyancy term in the equation of motion;
furthermore, fluctuations in the pressure are small — a reflection of the low Mach number —
and thus density variations are directly proportional to variations in temperature.
For problems such as magnetoconvection, magnetic fields can be incorporated into the

Boussinesq approximation in a straightforward manner (see, for example, Proctor and Weiss
1982). The field enters through the induction equation and via the Lorentz force in the mo-
mentum equation; variations in magnetic pressure are assumed to have no influence on density
fluctuations. Including the effects of magnetic buoyancy is however a more subtle procedure.
Spiegel and Weiss (1982) considered the problem of the instability of a stratified, horizontal
magnetic field with scale height HB very large compared with the layer depth d. The crucial
ordering is now one in which variations in the total pressure (gas + magnetic) are small; this
has implications for all the governing equations. In the momentum equation, density fluctua-
tions are related to variations in both the temperature and the magnetic pressure; similarly,
variations in magnetic pressure enter into the energy equation. The velocity is, to leading
order, incompressible. However, it becomes necessary to include the next order correction to
∇·u in the induction equation; in standard notation this then takes the form

∂B

∂t
+ u·∇B = B·∇u− w

Hρ
B + η∇2B , (1)

where Hρ is the density scale height of the basic state. The final, and extremely important
feature to note is that within the magneto-Boussinesq approximation, magnetic buoyancy
is relevant only for modes of a certain horizontal scale. In particular, when considering the
stability of an equilibrium state with a unidirectional horizontal field, magnetic buoyancy
is of significance for perturbations with a long (O(HB)) length scale in the direction of the
imposed field. One consequence of this is that the magnetic field is not exactly solenoidal;
∇·B = 0 only to O(d/HB), an approximation that is however consistent with the overall
level of approximation introduced in the magneto-Boussinesq approximation.
In an approach complementary to that of Spiegel and Weiss (1982), Corfield (1984) re-

derived the magneto-Boussinesq equations through a formal scaling analysis, expanding all
variables in terms of the two small parameters of the system: d/H, where H denotes any
of the scale heights (all comparable), and δρ/ρ0, the ratio of fluctuations in density to a
representative value.
Our aim in this paper is to incorporate the effects of a shear flow into the magneto-
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Boussinesq approximation. As explained in Appendix A, if this is done in what might be
considered the obvious fashion — namely with the shear flow of the same order as the veloc-
ity perturbations in Corfield’s ordering — then the influence of the shear has no bearing on
the onset of instability. Thus, in order to consider a regime in which a shear flow may interact
with the magnetic buoyancy instability, it becomes necessary to consider in some detail the
magnitudes of the imposed magnetic field and the velocity shear flow, together with their
gradients, as well as the horizontal scale of the perturbations.
In section 2 we present a derivation of the scalings inherent to the magneto-Boussinesq ap-

proximation in the absence of an imposed shear flow; the derivation follows a similar approach
to that of Corfield (1984), though we are more explicit in stating the underlying physical as-
sumptions. In section 3 we explore the orderings of the imposed shear flow and magnetic field
that are necessary in order to accommodate the effects of magnetic buoyancy and velocity
shear on the same footing. Following this, section 4.1 contains the main result of the paper, the
derivation of asymptotically consistent magneto-Boussinesq equations incorporating velocity
shear; the crucial differences with the equations of Corfield (1984) are discussed in section 4.2.
In section 5 we explore these differences systematically by explaining how the various scalings
change with the magnitude of the magnetic field scale height, thus providing a transition be-
tween the equations of Corfield (1984) and our new set of equations. The concluding discussion
is contained in section 6.

2. The magneto-Boussinesq approximation

In standard notation, the magnetohydrodynamic equations for a perfect gas are

ρ (∂t + u·∇)u = −∇Π − gρẑ + µ−1
0 B·∇B + F +∇·τ , (2a)

∂tρ+∇·(ρu) = 0 , (2b)

(∂t + u·∇)B = B·∇u−B(∇·u) + η∇2B , (2c)

∇·B = 0 , (2d)

ρcp (∂t + u·∇)T − (∂t + u·∇) p = K∇2T + ηµ−1
0 (∇×B)2 + Φ , (2e)

p = RρT, (2f)

where ẑ is the unit vector in the vertical direction, Π is the total pressure, consisting of the
sum of the gas pressure p and the magnetic pressure pm = B2/2µ0, F is a body force and

τij = µ
(
∂iuj + ∂jui − 2

3δij∂kuk
)
, Φ = τij∂iuj . (3a,b)

The specific heat at constant pressure cp, the permeability µ0, the magnetic diffusivity η, the
thermal conductivity K, the gas constant R and the dynamic viscosity µ are all taken as
constant. Although we shall assume a perfect gas throughout, the main ideas of the paper
still hold for a more general equation of state.
An important point to make is that our analysis proceeds via three distinct stages. First

we consider a purely hydrostatic, z-dependent reference state. This is then perturbed by the
inclusion of a horizontal magnetic field and aligned shear flow, both z-dependent, leading
to a z-dependent MHD basic state. Finally, we consider three-dimensional, time-dependent
perturbations of this basic state.
The reference state, consisting of a vertically stratified layer of gas in hydrostatic balance

in the region 0 < z < d, is governed by the equation

dp̂

dz
= − gρ̂ , (4)
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where p̂ and ρ̂ are the reference state pressure and density respectively. For any field variable
f we define the inverse scale height of a reference state f̂(z) by H−1

f = d
(
ln f̂

)
/dz

∣∣
z=0

and

take f∗ = f̂(0) to be a characteristic value of the variable. The physical idea of the Boussinesq
approximation is that the depth of the layer d is considered small in comparison with the
pressure scale height,Hp = c2s/g, where the isothermal sound speed cs is defined by c2s = p∗/ρ∗;
note, from the equation of state (2f), that the density and temperature scale heights have the
same magnitude as Hp and so it follows that d≪ Hρ, HT .
The reference state is modified by the introduction of a steady, horizontal magnetic field

and an aligned steady shear flow. The field takes the form B0 = B0(z)x̂, where, for non-zero
magnetic diffusivity, B0(z) is a linear function of height z; the flow U0 = U0(z)x̂ results from
the (arbitrary) body force F . These, in turn, introduce a perturbation of the reference state
to form a basic state. Analogous to the hats denoting reference state quantities, we shall use
a subscript zero to denote the perturbations away from the reference state that result from
the imposed magnetic field and shear flow. We define the scale heights HB and HU in terms
of B0 and U0; at this stage we stipulate only that d . HB . Hp and d . HU . Hp. As
the representative value for the magnetic field, we may take B∗ to be the rms value of B0(z)
over the layer. For the velocity field, the physics is of course unchanged by the addition of
a constant flow to U0(z); thus we define U∗ as the rms value of a shear flow in a frame of
reference chosen such that the flow has zero mean. We make the assumption, as in Spiegel and
Weiss (1982), that the Alfvén speed cA = B∗/

√
µ0ρ∗ is small in comparison with the sound

speed cs; this guarantees that the difference between the reference and basic states is small.
On subtracting off the reference state, the ‘0’ variables satisfy the equations

dΠ0

dz
= − gρ0 ,

d2B0

dz2
= 0 , (5a,b)

K
d2T0
dz2

= − η

µ0

(
dB0

dz

)2

− µ

(
dU0

dz

)2

. (5c)

We now consider time-dependent, typically three-dimensional perturbations to the basic
state. On denoting this perturbation of a field variable f by δf(x, t), we may write

f(x, t) = f̂(z) + f0(z) + δf(x, t) , (6)

thus expressing f in the terms of its reference state (hat), the steady perturbation arising
from the imposed field and flow (subscript zero), leading to a basic state, and time-dependent
perturbations away from the basic state (denoted by δ).
On defining ∆f = f0(d)−f0(0) as the change in f0 across the layer, we make the assumption

(cf. Spiegel and Veronis 1960, Corfield 1984) that the size of the time-dependent perturbations
does not exceed that of the jump across the layer, i.e. δf = O(∆f). Furthermore, for vector
fields f , it is convenient to introduce the notation f‖ and f⊥, representing the magnitudes
of the components of the fluctuations parallel and perpendicular to the basic state magnetic
field.
We proceed in a similar fashion to Corfield (1984) by finding appropriate magnitudes for

the perturbations in terms of the basic state. With our focus on buoyancy-driven instabilities,
an appropriate ordering is that the kinetic energy of the transverse flow results from buoyancy
perturbations, i.e.

ρ∗ δu
2
⊥ ∼ δρ gd . (7)

In the hydrodynamic Boussinesq approximation (Spiegel and Veronis 1960), fluctuations in gas
pressure are small, the predominant balance in the equation of state being between tempera-
ture and density fluctuations. The idea underlying magnetic buoyancy is that it is fluctuations
in total pressure that are considered small, with fluctuations in gas pressure therefore being
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comparable with those of magnetic pressure; thus gas pressure variations are retained in the
perturbed equation of state. With this in mind, we adopt the same scaling for total pressure
fluctuations as Spiegel and Weiss (1982), namely

δΠ ∼ δρ gd ∼ δρ

ρ∗

d

Hp
p∗ , (8)

from which it follows that

δp

p∗
= − δpm

p∗
+O

(
δρ

ρ∗

d

Hp

)
. (9)

Thus the density perturbation may be expressed in terms of temperature and magnetic pres-
sure perturbations as

δρ

ρ∗
= −

(
δT

T∗
+
δpm
p∗

)(
1 + O

(
d

Hp

))
. (10)

On the assumption that the magnitude of the magnetic field fluctuations does not exceed that
of the imposed field, the magnetic pressure perturbation may thus be written as

δpm ≈
B∗ δB‖

µ0
∼ δρ

ρ∗
p∗ . (11)

Balancing the two terms of the parallel component of u·∇B provides the following crucial
ordering:

δu⊥ δB‖

d
∼ δu⊥B∗

HB
, implying δB‖ ∼

d

HB
B∗ . (12a,b)

Hence, using (11) and (12b), we obtain a relation between the magnitude of the density
perturbations and that of the basic state magnetic field,

δρ

ρ∗

HB

d
p∗ ∼ B2

∗

µ0
. (13)

Combining the orderings (7) and (13) then provides the consistent scaling of the magnitude
of the perpendicular velocity in terms of the basic state magnetic field,

δu2⊥
c2A

∼ d

HB

d

Hp
. (14)

As shown by Spiegel and Weiss (1982) and Corfield (1984), a significant difference between the
standard Boussinesq equations and the magneto-Boussinesq equations is that the latter nec-
essarily impose a restriction on the perturbation lengthscale L in the direction of the imposed
magnetic field. We now address this issue within our derivation; the arguments advanced to
date are valid irrespective of the value of L.
We expect advection and stretching of the magnetic field to be of comparable importance;

from the perpendicular and parallel components of the induction equation this gives the
scalings

δu⊥ δB⊥

d
∼ B∗ δu⊥

L
and

δu⊥ δB‖

d
∼

B∗ δu‖

L
, (15a,b)

leading, after the use of (12b), to

δB⊥ ∼ HB

L
δB‖ and δu⊥ ∼ HB

L
δu‖ . (16a,b)

Finally, we use the fact that it is physically important to include the effects of magnetic
tension. Balancing inertia against magnetic tension in the momentum equation leads to the



April 18, 2014 Geophysical and Astrophysical Fluid Dynamics BHK-revision˙submitted

6 Velocity shear in the Boussinesq approximation

ordering

ρ∗
δu2⊥
d

∼ B∗

µ0

δB⊥

L
, (17)

and hence, using (12b) and (16a), to

δu2⊥
c2A

∼ d2

L2
. (18)

In deriving (17) we have used the perpendicular component of the momentum equation di-
rectly; balancing the terms in the parallel component and using the expressions (12b) and
(16a,b) for δB‖ and δu‖ respectively leads to the same result. Finally, combining the scal-
ings (14) and (18) provides an important constraint on the horizontal lengthscale, namely

L2 ∼ HpHB . (19)

The above scalings have been derived solely by consideration of the basic ideas of magnetic
buoyancy, without any reference as yet to the shear flow U0(z). Their derivation follows a
more general line of argument to that of Corfield (1984), in the process demonstrating their
validity for magnetic field scale heights in the entire range d . HB . Hp. In the case of
HB ∼ Hp, they are entirely consistent with those of Corfield (1984). As we shall see, for our
future exposition involving the introduction of velocity shear, it is important that we make
no a priori assumption about the magnitude of HB.

3. Incorporating velocity shear

On demanding that velocity shear enters the momentum equation in a significant manner, a
balance between inertia and magnetic tension gives

ρ∗
δu⊥ U∗

HU
∼ 1

µ0

B∗ δB‖

L
. (20)

Similarly, from the induction equation, a balance between advection and stretching of magnetic
field leads to

δu⊥B∗

HB
∼ δB⊥ U∗

HU
. (21)

Equating these two expressions for δu⊥, and making use of the ordering (16a) for the relative
sizes of the magnetic field perturbations, yields the important result,

U2
∗

c2A
∼

H2
U

H2
B

. (22)

In Appendix A, we consider the linear stability analysis of the basic state formed by the
imposition of a shear flow into the magneto-Boussinesq equations of Corfield (1984), i.e.
with L ∼ HB ∼ Hp; the flow is assumed to have scale height HU ∼ d and a characteristic
velocity comparable in magnitude with that of the velocity fluctuations. As such, (U0·∇)
is neglected in favour of (u⊥·∇) in the advective terms, although the shear (through U ′

0)
does appear in both the momentum and induction equations (A.2a,b). However, somewhat
surprisingly, it plays no role in the resulting eigenvalue problem. Similarly, on adopting the
scaling HU ∼ L ∼ HB ∼ Hp, a Galilean transformation can be made such that the system in
Appendix A is again recovered. Thus the näıve introduction of a shear flow into the magneto-
Boussinesq equations does not describe a regime in which the flow can influence the onset of
magnetic buoyancy instabilities.
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In order to involve the velocity shear in a meaningful manner, it is imperative therefore that
two conditions are met. The first is that

HU ∼ d . (23)

The second is that the imposed flow is significant in the advective terms; this requires that
(U0·∇) and (u⊥·∇) be of comparable magnitude, thus forcing a balance between the basic
state velocity and the perpendicular velocity perturbation,

U∗

L
∼ δu⊥

d
. (24)

Henceforth, we shall refer to a shear flow that satisfies both (23) and (24) as being influen-

tial. Combining the two expressions for δu⊥, (18) and (24), provides the following important
ordering for the magnitude of the shear flow in terms of the Alfvén velocity of the imposed
magnetic field,

U2
∗ ∼ c2A . (25)

Whereas the scalings of section 2 are valid for magnetic field scale heights satisfying d .
HB . Hp, the requirement that the imposed shear flow influences the magnetic buoyancy
instability places a tighter restriction on HB. Scalings (22), (23) and (25) lead to the crucial
result that

HB ∼ HU ∼ d . (26)

4. The magneto-Boussinesq velocity shear equations

4.1. Derivation of the equations

Sections 2 and 3 provide the framework required to introduce velocity shear into the magneto-
Boussinesq approximation. We shall now incorporate these ideas into the derivation of an
asymptotically consistent set of governing equations. We focus on an influential shear flow,
with HU ∼ HB ∼ d, and define two small parameters,

ε1 =
d

Hp
and ε2 =

c2A
c2s
, (27a,b)

where ε1, ε2 ≪ 1. Physically, ε1 is a measure of the inverse pressure scale height of the
hydrostatic reference state, whereas ε2, through (13), provides a measure of the amplitude of
the fluctuations driven by magnetic buoyancy. (We note that our ε2 is of the same order of
magnitude as the ε2 of Corfield (1984), defined as δρ/ρ.) It follows from (25) that

U2
∗ ∼ ε2c

2
s . (28)

Using expression (19), we may rewrite the horizontal lengthscale in terms of ε1,

d

L
∼ ε1

1/2 . (29)

We non-dimensionalise T by T∗, p by p∗, ρ by ρ∗, pm by p∗, lengths with d and times with the
sound crossing time across the layer. The condition that motion-induced fluctuations do not
exceed, in order of magnitude, static variations across the layer translates to the requirement
that ε2 . ε1. Following Malkus (1964) and Corfield (1984), we express all variables in terms
of the two small parameters, with non-dimensional variables of order unity denoted by a tilde.
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Based on the scalings derived in section 2, the thermodynamic quantities are expressed as

T (x, t) = T∗

(
1 + ε1

Hp

HT

z

d
+ ε2

∼
T 0 + ε2δ

∼
T (x, t) + · · ·

)
, (30a)

p (x, t) = p∗

(
1 + ε1

z

d
+ ε2

∼
p0 + ε2δ

∼
p (x, t) + · · ·

)
, (30b)

ρ (x, t) = ρ∗

(
1 + ε1

Hp

Hρ

z

d
+ ε2

∼
ρ0 + ε2δ

∼
ρ (x, t) + · · ·

)
, (30c)

where we have linearised the reference state. The magnetic and total pressure are expanded
as

pm(x, t) = ε2p∗
(∼
pm0 + δ

∼
pm(x, t) + · · ·

)
, (31a)

Π(x, t) = ε2p∗
(∼
Π0 + ε1δ

∼
Π(x, t) + · · ·

)
, (31b)

where expression (8) has been used for the ordering of the δ
∼
Π term.

It is convenient to split the velocity and magnetic field into their parallel and perpendicular
components; from expressions (16a,b), (28) and (29) these become

u = ε
1/2
2 cs

(∼
U0 + δ

∼
u‖ + ε

1/2
1 δ

∼
u⊥

)
, (32a)

B = (ε2µ0p∗)
1/2

(∼
B0 + δ

∼
B‖ + ε

1/2
1 δ

∼
B⊥

)
. (32b)

Based on (29), we write

∇‖ =
ε
1/2
1

d

∼
∇‖ , ∇⊥ =

1

d

∼
∇⊥ . (33a,b)

The time scale is determined by the conventional Boussinesq approach of balancing the vertical
acceleration against the buoyancy. Using the scalings for δρ and δu⊥, this gives

∂t = (ε1ε2)
1/2 cs

d
∂ t̃ . (34)

The various expansions (30)–(34) are then substituted into the MHD equations (2a-e). To
simplify the notation, we drop the tildes, write δB = b and drop the δ from the other terms.
After substituting for δp and δρ from equations (9) and (10), and removing terms that arise
from the basic state, the governing equations at leading order become:

(
∂t+(U0 + u)·∇

)
u+ w∂zU0

= −∇⊥Π + (T + pm) ẑ + (B0 + b) ·∇b+ bz∂zB0 + (σ/Ra)
1/2∇2

⊥u , (35a)

∇·u = 0 , (35b)

(
∂t+(U0 + u)·∇

)
b+ w∂zB0

= (B0 + b) ·∇u+ bz∂zU0 + σ−1
m (σ/Ra)

1/2∇2
⊥b , (35c)

∇·b = 0 , (35d)

(
∂t+(U0 + u)·∇

)
((T0 + T ) +D (−p0 + pm)) + wβ

= (σRa)
−1/2∇2

⊥T +Dσ−1
m (σ/Ra)

1/2 ((∂yb‖)2 + (∂zb‖)
2 + 2∂zB0∂zb‖

)

+D(σ/Ra)
1/2

(
(∂yu‖)

2 + (∂zu‖)
2 + 2∂zU0∂zu‖

)
, (35e)
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where the vertical components of the velocity and magnetic field perturbations are denoted by
w and bz respectively. It is worth noting that from the scaling (32b), pm in equations (35a,e)
is given by pm = B0b‖ + b2‖/2; the perturbation to the total pressure is Π = p + pm. The

operator ∇ is defined as

∇ = ∇‖ +∇⊥ . (36)

The various non-dimensional numbers are defined as follows:

σ =
ν

κ
, σm =

ν

η
, Ra = ε2

gd3

νκ
, D =

γ − 1

γ
, (37a–d)

where γ is the conventional ratio of specific heats; σ is the Prandtl number, σm is the magnetic
Prandtl number and Ra is the Rayleigh number (note that our D is equivalent to D−1 in
Corfield (1984)). Ensuring that the diffusion terms do not dominate imposes the restriction

that (σ/Ra)
1/2, σ−1

m (σ/Ra)
1/2 and (σRa)

−1/2 are all O(1). For asymptotic consistency, the
subadiabatic temperature gradient in equation (35e) must be O(ε2), and so we have defined

1

γ

d

dz
ln

(
p̂

ρ̂ γ

)
=

ε2β

d
. (38)

Equations (35) are derived only under the assumption that ε2 . ε1. If ε1 and ε2 are compa-
rable then the subadiabatic gradient is O(ε1), comparable in magnitude with its component
gradients of pressure and density. However, if ε2 ≪ ε1 then the subadiabatic gradient, being
O(ε2), is formally smaller than the pressure and density gradients, and therefore in this case,
equations (35) hold only for atmospheres that are close to adiabatic. Finally we note that equa-
tions (35) may be expressed in an alternative form through the introduction of the variable
V = U0 +u; this leads to a certain simplification, through the combination of terms, though
the dissipation of the basic state velocity U0 must then be accounted for in equations (35a,e).

4.2. Comparison with the equations of Spiegel and Weiss (1982) and Corfield (1984)

There are significant differences between our new system of equations (35) and the equations
derived by Spiegel and Weiss (1982) and Corfield (1984). We have shown that in order to
maintain consistent scalings following the introduction of an influential shear flow, the mag-
netic field scale height HB has to be O(d), considerably smaller than that adopted in Corfield
(1984), namely HB ∼ Hp. Through the scalings derived in sections 2 and 3, this leads to
important differences in the magnitudes of both perturbation and basic state quantities.
The Corfield (1984) ordering of HB ∼ Hp forces L ∼ Hp through expression (19); in turn,

from (16a,b), this implies that for both the flow and field perturbations, the perpendicular
and parallel components have the same magnitude. This is in marked contrast to our system,
in which although the perpendicular components of the flow and field scale as in Corfield
(1984), namely

δu2⊥ ∼ ε1ε2c
2
s and

δB2
⊥

µ0
∼ ε1ε2p∗ , (39a,b)

the parallel components are O(ε
−1/2
1 ) greater. Furthermore, from (15a), the characteristic

strength of the basic state magnetic field B∗ is given by

B2
∗

µ0
∼ L2

d2
δB2

⊥

µ0
∼ L2

d2
ε1ε2p∗ , (40)

thus highlighting a further important difference between the two systems: for our equations,
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governed by the scaling L2 ∼ dHp, expression (40) becomes

B2
∗

µ0
∼ ε2p∗ , (41)

whereas for Corfield (1984) the characteristic field strength B∗ is O
(
ε
−1/2
1

)
greater. Hence

the condition that an imposed shear flow be influential requires an O
(
ε
1/2
1

)
reduction in the

strength of the basic state magnetic field.
Unlike the equations of Spiegel and Weiss (1982), equations (35) now satisfy, at leading

order, both the full incompressibility condition (35b) and the full solenoidal condition on the
magnetic field (35d). Consequently, since the new system is fully incompressible, there is no
longer a next-order correction of ∇·u to the induction equation and hence the induction
equation now conserves ∇· b. Note also that, in contrast to the standard Boussinesq approx-
imation, both Ohmic and viscous heating terms are included in the energy equation (35e),
these terms arising as a consequence of having increased the magnitude of both the parallel
velocity and parallel magnetic field perturbations.

5. Linking the magneto-Boussinesq systems

In the previous section, we derived a new set of equations describing the combined effects of
magnetic buoyancy instability and an influential shear flow, consistent within the magneto-
Boussinesq approximation. As noted above, there are a number of significant differences be-
tween these equations and those of Spiegel and Weiss (1982). It is therefore of interest to
examine how a connection may be made between the two systems. In order to do this, we
again fix HU ∼ d, but choose not to impose the conditions of an influential shear, (23) and
(24). This then allows us to introduce a control parameter q, defined by

HB

Hp
= εq1, (42)

where q satisfies 0 ≤ q ≤ 1 and is a measure of the relative sizes of the scale heights of
magnetic field and pressure. Varying q then allows us to examine how the system of equations
changes from when q = 0 (Spiegel and Weiss 1982, Corfield 1984), in which the velocity shear
has no effect on the onset of instability (see Appendix A), to when q = 1, the case considered
in section 4. In order to keep the magnitudes of the density fluctuations constant as the
parameter q varies, we consider, using (13), basic state magnetic fields of strength

B2
∗

µ0p∗
= εq−1

1 ε2 . (43)

The assumption that the Alfvén speed is much smaller than the sound speed leads to the
inequality ε2 ≪ ε1−q

1 . Following the ideas of sections 2 and 3, we can express the required
strength of the velocity shear and horizontal length scale in terms of the parameter q as

U2
∗ ∼ ε1−q

1 ε2c
2
s ,

d

L
∼ ε

1−q/2
1 . (44a,b)

Although more complicated than the q = 1 expressions of section 4, we can nonetheless proceed
in a similar manner and express the variables in terms of non-dimensional expansions. The
scalar variables are independent of q and are therefore scaled as in (30)–(31); the vector
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quantities may be expanded as

u = (ε1−q
1 ε2)

1/2cs

( ∼
U0 + δ

∼
u‖ + ε

q/2
1 δ

∼
u⊥

)
, (45a)

B = (εq−1
1 ε2µ0p∗)

1/2
( ∼
B0 + ε1−q

1 δ
∼
b‖ + ε

1−q/2
1 δ

∼
b⊥

)
. (45b)

The operators ∇‖ and ∇⊥ are scaled as

∇‖ =
ε
1−q/2
1

d

∼
∇‖ , ∇⊥ =

1

d

∼
∇⊥ , (46a,b)

and we adopt the same q-independent time scale as in (34),

∂t = (ε1ε2)
1/2 cs

d
∂ t̃ . (47)

Performing the same sequence of operations that leads to equations (35), leads to the following
q-dependent mixed-order system of equations:

(
∂t+ε

1−q
1 (U0 + u) ·∇‖ + u·∇⊥

)
u+ w∂zU0

= −∇⊥Π + (T + pm) ẑ

+
(
B0·∇‖ + ε1−q

1 b ·∇‖ + b ·∇⊥

)
b+ bz∂zB0 + (σ/Ra)

1/2∇2
⊥u , (48a)

− ε1
w

Hρ
+ ε1−q

1 ∇‖·u+∇⊥·u = 0 , (48b)

(
∂t + ε1−q

1 (U0 + u)·∇‖ + u·∇⊥

)
b+ w∂zB0

=
(
B0·∇‖ + ε1−q

1 b ·∇‖ + b ·∇⊥

)
u

+ bz∂zU0 −B0 (∇·u) + σ−1
m (σ/Ra)

1/2∇2
⊥b , (48c)

ε1−q
1 ∇‖· b+∇⊥· b = 0 , (48d)

(
∂t+ε

1−q
1 (U0 + u)·∇‖ + u·∇⊥

)
((T0 + T ) +D (−p0 + pm)) + wβ

= (σRa)
−1/2∇2

⊥T + ε1−q
1 Dσ−1

m (σ/Ra)
1/2 ((∂yb‖)2 + (∂zb‖)

2 + 2∂zB0∂zb‖
)

+ ε1−q
1 D(σ/Ra)

1/2
(
(∂yu‖)

2 + (∂zu‖)
2 + 2∂zU0∂zu‖

)
. (48e)

Note that special attention is needed when considering the B0(∇·u) term in (48c), In more
detail, this term takes the form

B0

(
∇‖·u+ εq−1

1 ∇⊥·u
)
, (49)

which, on using (48b), can be written as

εq1B0
w

Hρ
. (50)

When q = 0, the term (50) enters equation (48c) at leading order, as in Corfield (1984).
This substitution can be performed, however, only for q = 0; for all other values of q, this
term is formally smaller than those involving ∇‖·u and ∇⊥·u.
From equations (48), three different systems can be identified, depending on the choice of

q. For q = 0 the system reverts to the magneto-Boussinesq equations of Spiegel and Weiss
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(1982), for which the inclusion of a shear flow has no influence on the onset of instability
(Appendix A). The range 0 < q < 1 produces a very similar system, but with no density
term in the induction equation. For this system, via the same analysis as in Appendix A,
it can again be shown that the shear has no effect on the linearised diffusionless system of
equations. The final system comes from taking q = 1, thereby recovering equations (35). It is
important to remember that increasing q essentially decreases the magnetic field scale height
from HB ∼ Hp, where the variations across the layer are small in comparison with the uniform
component of B0, to HB ∼ d, where both the uniform component and the variations across
the layer are of the same order.

6. Discussion

The principal result of this paper is the derivation of a new set of MHD equations governing
the evolution of magnetic buoyancy instabilities in the magneto-Boussinesq approximation
and in the presence of a horizontal, depth-dependent shear flow. The equations are derived
via an expansion procedure in two small parameters: ε1, the ratio of the layer depth to the
pressure scale height, and ε2, the ratio of the square of the Alfvén speed to the square of the
sound speed. Section 2, which follows the treatment of Corfield (1984) to a certain extent, lays
the foundations for the magneto-Boussinesq orderings in general, without specific reference to
the incorporation of any shear flow. Unlike Corfield (1984) however, we make no assumption
about the magnetic field scale height; as a result, all the orderings are valid for d . HB . Hp.
Section 3, with reference to Appendix A, describes how the näıve incorporation of a shear flow
into the equations of Spiegel and Weiss (1982) and Corfield (1984) (i.e. with HB ∼ Hp) has
no influence on the linear stability problem. In order that the shear flow assumes a non-trivial
role in the magnetic buoyancy instability, two conditions must be met: that HU is O(d) and
that U2

∗ ∼ c2A. For consistency with the scalings determined in section 2, it follows that HB

must also be O(d). The various orderings derived in sections 2 and 3 are applied to the full
MHD governing equations in section 4, yielding the leading order equations (35). Interestingly,
equations (35) also allow us to examine the effects of magnetic buoyancy for a magnetic field
with an O(d) scale height in the absence of velocity shear, a scenario that is excluded from
the equations of Corfield (1984), as identified by Hughes (1985). The transformation between
equations (35) and those of Spiegel and Weiss (1982) and Corfield (1984) can be effected by
increasing the magnetic field scale height from O(d) to O(Hp). Section 5 describes the resulting
changes in the governing equations, identifying three different regimes, each with their own
set of equations: HB ∼ d (equations (35)), HB ∼ Hp (Spiegel and Weiss (1982) and Corfield
(1984)) and a third, intermediate regime.
Finally, it is important to consider the implications of our study to the solar tachocline, and,

in particular, to examine the parameter regimes in which the set of equations (35) is expected
to hold. Let us first consider the magnitudes of the two small quantities in our asymptotic
expansions, ε1 and ε2. The pressure scale height in the tachocline ≈ 0.08R⊙ (Gough 2007).
Estimates of the vertical extent of the tachocline vary a little, according to how it is defined
(see, for example, Miesch 2005), but lie in the range between 0.02R⊙ and 0.05R⊙. Thus
ε1 = d/Hp is certainly less than unity, but is not particularly small. As for the ratio ε2, this
is O

(
103/B2

∗

)
, where B∗ is measured in Gauss (Ossendrijver 2003). Estimates of the mean

toroidal field strength in the tachocline result solely from theoretical considerations, and vary
between 103G and 105G, depending on the theoretical assumptions involved; this certainly
makes ε2 small, in the range 10−7 . ε2 . 10−3.
Given that the magnitudes of ε1 and ε2 for the tachocline suggest, at least a priori, that

a magneto-Boussinesq approach is appropriate, we nonetheless need to examine whether the
tachocline shear flow inferred from helioseismology is influential in the sense of equations (23)
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and (25). Equation (23) specifies that HU ∼ d; this is true of the tachocline, almost by
definition. Expression (25) requires that U∗ be comparable with the Alfvén speed cA. Since
we have a good estimate of U∗ from helioseismological inversions, but no direct knowledge of
the magnetic field strength B∗, it makes more sense to look at this from the other perspective
and to ask what values of B∗ will allow (25) to be satisfied. From the helioseismological results
of Schou et al. (1998), the jump in the angular velocity across the tachocline (at the equator)
is of the order of 20 nHz, which translates into U∗ ≈ 30ms−1. Requiring cA ∼ U∗ determines
the characteristic magnetic field strength as B∗ ≈ 103G. Thus everything ties together very
nicely, suggesting that equations (35) form an appropriate system for the study of magnetic
buoyancy instabilities in the tachocline.
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Appendix A:

The aim of this appendix is to demonstrate how introducing velocity shear in the ‘obvious’
manner into the magneto-Boussinesq equations of Spiegel andWeiss (1982) and Corfield (1984)
has no effect on the linear stability of the diffusionless system.
Suppose that we consider a basic state magnetic field of the form

B0 = B∗

(
1− λz

d

)
x̂ , (A.1)

where λ = O(d/Hp). In addition, we consider an aligned basic state velocity shear U0 =
U0(z)x̂, with scale height HU . We consider separately the two cases of HU = O(d) and
HU = O(Hp).

(i) HU ∼ d

We suppose that the flow U0(z) is an arbitrary function of z. As a consequence of the
Corfield (1984) ordering of L ∼ HB ∼ Hp, the advective terms are O(d/Hp) smaller than the
shear terms and hence are neglected. On following Spiegel and Weiss (1982), by linearising
the governing equations, ignoring all diffusivities, and adopting d as the unit of length and
the Alfvén period d/cA as the unit of time, we obtain the dimensionless equations,

∂tu+ wU ′
0 = −∇⊥Π + ε1bxẑ + ∂xb− λbzx̂, (A.2a)

∂tb− λwx̂ = ∂xu+ bzU
′
0 − ε1wx̂, (A.2b)

where ε1 = d/Hp, ∂x = O(ε1), and where, for simplicity, we have taken β = 0 in the energy
equation and made the substitution T = −pm/(cpρ∗) (cf. equations (40) and (39) in Spiegel
and Weiss (1982)). Since ∇⊥·u = 0 and ∇⊥·b = 0, we may introduce stream and flux
functions, ψ and χ, such that

u =

(
u , − ∂ψ

∂z
,
∂ψ

∂y

)
, b =

(
bx , −

∂χ

∂z
,
∂χ

∂y

)
, (A.3a,b)

where

u(x, y, z, t) = û(z) exp (ikx+ ily + pt) , etc. (A.4)

Substituting expressions (A.4) into the x-component of the momentum equation (A.2a) and
its curl yields, after dropping the hats,

pu+ ilU ′
0ψ = ikbx − ilλχ, (A.5a)

p
(
−l2ψ + ψ′′

)
= ilε1bx + ik

(
−l2χ+ χ′′

)
. (A.5b)

In a similar manner, the induction equation (A.2b) gives

pbx − ilλψ = iku+ ilχU ′
0 − ilε1ψ, (A.6a)

ipχ = −kψ. (A.6b)

On eliminating u between equations (A.5a) and (A.6a), we obtain
(
p2 + k2

)
bx = klU ′

0ψ + il(λ− ε1)pψ + klλχ+ ilpU ′
0χ, (A.7)

which, after substituting for χ from (A.6b), becomes

p
(
p2 + k2

)
bx = il(λ− ε1)p

2ψ + ik2lλψ. (A.8)

Equation (A.5b), after substituting for χ from (A.6b), and equation (A.8) form an eigenvalue
problem for p involving only the functions ψ and bx. The crucial point to note is that U ′

0 does
not appear in these expressions; hence the shear has no influence on the growth rate p.
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(ii) HU ∼ Hp

If the scale height HU is comparable with Hp and HB then the major change to equa-
tions (A.2a,b) is that the advective terms come into play. However, since U0(z) now varies on
a scale very large compared with d, this simply represents, to a first approximation, advection
by a uniform flow. A straightforward transformation therefore recovers equations (A.2a,b)
(with U ′

0 now treated as a constant). Thus, with the ordering HU ∼ Hp ∼ HB, the imposed
shear once again has no bearing on the linear stability problem.


