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Dynamics of a quantum reference frame undergoing selective measurements

and coherent interactions
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(Received 13 May 2010; published 22 September 2010)

We consider the dynamics of a quantum directional reference frame undergoing repeated interactions. We first

describe how a precise sequence of measurement outcomes affects the reference frame, looking at both the case

that the measurement record is averaged over and the case wherein it is retained. We find, in particular, that there

is interesting dynamics in the latter situation, which cannot be revealed by considering the average case. We

then consider in detail how a sequence of rotationally invariant unitary interactions affects the reference frame,

a situation, which leads to quite different dynamics than the case of repeated measurements. We then consider

strategies for correcting reference frame drift if we are given a set of particles with polarization opposite to the

direction of drift. In particular, we find that, by implementing a suitably chosen unitary interaction after every

two measurements, we can eliminate the rotational drift of the reference frame.

DOI: 10.1103/PhysRevA.82.032320 PACS number(s): 03.67.Lx, 73.43.Nq

I. INTRODUCTION

It is common to assume the control fields used to manipulate

quantum systems are of infinite strength and, therefore,

classical. It is possible, however, to relax this assumption, and

to treat them within the quantum formalism [1]—that is, as

systems of bounded size and strength, and to then investigate

the limitations that this finiteness does or does not impose.

From the perspective of quantum computing, this could be

desirable because the inevitable miniaturization of quantum

information processing devices—such as ion trap chips—may

make using small strength control fields a necessity (current

proposals would require hundreds of watts of laser power for

a full-scale quantum computation). From the perspective of

quantum communication, the issue of finite-sized reference

frames raises interesting questions regarding the fact that the

shared references commonly used by the separated parties

can drift, and realigning them requires further resource

expenditure. Finally, there are interesting foundational reasons

for considering finite-sized references [2–5]. An example is the

work on finite-precision measurements, black-hole entropy,

and symmetry deformations [6,7]. Another example, more

pertinent to the work to be presented here, is the work on

quantum clocks—for instance, the Page-Wootters model of a

clock, which has developed into the conditional probability

interpretation of time in quantum gravity [8].

In this paper, we continue a line of investigation [9,10] into

a simple model of degradation of a quantum reference frame

consisting of a large spin system as it repeatedly interacts

with a series of incoming source particles. In Ref. [11],

this program of investigation was initiated by considering

a source of unpolarized spin-1/2 particles, each of which

has its component of spin measured against a reference spin

directional frame, by implementing the optimal measurement

[10] for determining the relative direction between the frame

and the system. An example of such a procedure might be the

measurement of qubits in a BB84 key-distribution protocol

by a finite-strength magnetic field. The conclusion there was

that, in such circumstances, the reference would be useful for

a time (number of uses) that scales quadratically in the size

(i.e., spin) of the reference. This conclusion was shown to be

quite generally true for rotationally invariant source particles

in Ref. [12]. In Ref. [13], the investigation was simplified and

was extended to the case where the source of particles has

some net polarization—such as in a B92-type key distribution,

for example. An interesting result of Ref. [13] was that, in this

instance, the drift of the reference frame was more important to

its degradation than the diffusion caused by the entanglement

with the particles, and now the reference would only be useful

for a time linear in its size.

Both Refs. [13] and [11] considered the case of measuring

the source particles against the reference frame. The results

of Ref. [12] also apply, however, to the case where we use

the reference as a mechanism for doing coherent (unitary)

interactions between the reference and an unpolarized stream

of source particles. In this paper, we consider the case of

degradation when we do coherent interactions between the

reference system and a polarized source of particles. We also

consider how well one might correct for the reference frame

drift in a simple model wherein we are given, in addition to the

polarized set of source particles, a smaller number of particles,

which are known to have a polarization in a direction opposite

to those of the source. We begin, however, by revisiting the

case of using the reference to implement measurements on

a polarized source of particles, exploring in more detail the

dynamics in the case that the measurement results are not

averaged over.

II. EVOLUTION OF THE REFERENCE FRAME UNDER

MEASUREMENT INTERACTIONS

We briefly introduce the formalism for our investigations

by recapping the case of a directional quantum reference

frame (QRF) used for measurement; for the most part, we

are following the formulation of Ref. [13].

In standard quantum measurement schemes, for which we

presume the reference frame to be classical, in order to measure

the spin component S of a particle along a direction n̂, we use
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the projections

Pn =
I2

2
± n̂ · S. (1)

Now, the question arises: What do we mean by a classical

reference frame and in which aspects it is different from a

quantum mechanical reference frame? A QRF is different from

its classical counterpart in two ways. First, due to the inherent

uncertainty in its direction, the measurement results are only an

approximation of what would be obtained using the classical

reference frame. Second, each time the quantum reference

frame is used, it suffers a backaction, which causes the future

measurements to be less accurate.

We model the QRF as a spin-l particle, the spin components

described in the normal manner by an operator L, and consider

it being used to make measurements of the direction of a

series of spin-1/2 particles, each described by an operator S.

A measurement of the relative orientation between the QRF

and one particle is given by a measurement of J 2 = (L + S)2

(the optimal measurement [11] for determining the relative

orientation), that is, projection onto the j = l ± 1
2

irreducible

representations (irreps) as described by projectors,

�± =
1

2

(

I2d ±
4L · S + I2d

d

)

, (2)

with

�+ + �− = I2d , (3)

where d = 2l + 1. To verify this works as an approximate

measurement of the particle’s spin, we then calculate the

partial trace over the reference, initially in a state ρ, which

yields positive operator-valued measure (POVM) operations

corresponding to the two outcomes given by

�±
ρ = TrR [�±(ρ ⊗ I2)] =

1

2

(

I2 ±
4〈L〉 · S + I2

d

)

. (4)

Note that the induced measurement on the source only depends

on the expectation values of angular momentum of the

reference frame, and we can write

�+
ρ =

l + 1

d
I2 + n̂ρ · S,

(5)

�−
ρ =

l

d
I2 − n̂ρ · S,

where

n̂ρ =
〈L〉

l + 1
2

. (6)

As is clear, this induced measurement is an approximation of

what we have in Eq. (1) such that as l approaches infinity this

approximation becomes more and more accurate.

After the reference frame has been used to measure a source

particle, it experiences a backaction that can be described as

a quantum channel, or a completely positive trace-preserving

map [14], which depends on the polarization direction of the

source particles S. Note that, for the moment, we presume the

specific measurement result obtained is ignored. To derive this

map, we consider

E[ρ] = Trs [�+(ρ ⊗ ξ )�+ + �−(ρ ⊗ ξ )�−], (7)

in which ρ is the state of the reference frame and ξ is the state

of the source particle. Using the expressions for �±, we may

express this channel as

E[ρ] =

(

1

2
+

1

2d2

)

ρ +
8

d2
Trs [L · S(ρ ⊗ ξ )L · S]

+
2

d2
[ρ(L · 〈S〉) + ρ(L · 〈S〉)]. (8)

This expression is coordinate independent and as such we can

choose to introduce a background frame in which the source

particles have their spin aligned along the Z axis. In this case,

the state of the sources is given by ξ = 1
2
(I + zσz) so that

〈Sz〉 = z/2 and 〈Sx〉 = 〈Sy〉 = 0, and

E[ρ] =

(

1

2
+

1

2d2

)

ρ +
2

d2

∑

i=x,y,z

LiρLi

+
z

d2
(Lzρ + ρLz + L+ρL− − L−ρL+). (9)

This can be written in the more illuminating form:

E[ρ] =

(

1

2
+

1 − z2

2d2

)

ρ +
2

d2
(Lz + z/2)ρ(Lz + z/2)

+
1 + z

d2
L+ρL− +

1 − z

d2
L−ρL+. (10)

As shown in Ref. [13], the reference frame to leading order

suffers a drift in its orientation due to nonzero polarization in

the measured particles. This drift tends to align the reference

frame with that of the stream of polarized source particles

and constitutes an equilibrium condition in the absence of

depolarization effects.

To analyze the relative orientation between the QRF and the

source particles, we consider an orthonormal frame (x̂ ′,ŷ ′,ẑ′),

obtained from the Cartesian frame (x̂,ŷ,ẑ) via a rotation,

which transforms (Lx,Ly,Lz) → (L′
x(θ ),L′

y(θ ),L′
z(θ )) such

that 〈L′
x(θ )〉 = 〈L′

y(θ )〉 = 0 and 〈L′
z(θ )〉 = rl for some frac-

tional r . Here, r quantifies the polarization of the quantum

reference frame, which is aligned along the direction ẑ′. Since,

by symmetry, the QRF will remain in the X-Z plane, the

transformation is a rotation about the Y axis and takes the

form L′
x(θ ) = Lx cos θ − Lz sin θ,L′

y(θ ) = Ly and L′
z(θ ) =

Lz cos θ + Lx sin θ . In Ref. [13], it was shown that, in the

limit of large l, the map (10) can be approximated to O(1/l)

as

E[ρ] ≈ ρ + i
rz

2l
sin θ [Ly,ρ], (11)

where θ is the angle between the polarization of the sources

(Z axis) and the polarization of the reference frame. Conse-

quently, the measurement process produces an average rotation

of the reference frame through an angle �(θ ) = − rz
2l

sin θ

toward the polarization direction of the sources.

A. Beyond the average map

Equation (10) provides the evolution of the reference frame

due to a measurement process in which we discard the actual

measurement outcome and represents the average evolution

of the reference frame. However, we obtain a more accurate

evolution if we take into account the specific sequence of

measurement outcomes.
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The average map E[ρ] can be written as

E[ρ] = p+E+[ρ] + p−E−[ρ], (12)

where a ± outcome occurs with probability p± and the QRF

evolves according to

E±[ρ] = Trs [�±(ρ ⊗ ξ )�±]/p±, (13)

or more explicitly,

p±E±[ρ] =

(

1

4
±

1

2d
+

1 − z2

4d2

)

ρ ±
z

2d
(ρLz + Lzρ)

+
1

d2

(

Lz +
z

2

)

ρ
(

Lz +
z

2

)

+
1 + z

2d2
L+ρL− +

1 − z

2d2
L−ρL+.

As in the first part of Sec. II, these maps may be approximated

to O(1/l) as

E±[ρ] ≈
ρ

2p±

±
z

4lp±

(ρLz + Lzρ) + i
zr

4lp±

sin θ [Ly,ρ],

where the probability of a plus or minus outcome is p±(θ ) =
1
2

± 1
2
zr cos θ for l ≫ 1.

Recall that we have defined the angle of inclination of the

QRF in terms of vanishing expectation values, in particular,

the relation Tr [L′
x(θ±)E±[ρ]] = 0 defined the angle θ± that the

transformed state E±[ρ] made with the Z axis, while on the

other hand, Tr [L′
x(θ )ρ] = 0 defined the initial angle θ . Since

�± = θ±−θ , we find that �± is determined from the relation

sin �±

sin(�± + θ )
+

zr

2l
cos �±

±
z

2rl2

[

2
〈

L2
z

〉

− cot (�± + θ )〈{Lz,Lx}〉
]

= 0. (14)

The unusual terms are the quadratic expectation values

in the square brackets, which indicate that the dynamics

depends on reference frame observables beyond simply the

polarization. After many measurements, the dependence on

these observables will tend to cancel on average, however,

for a small number of measurements, their influence is of

importance.

The polarizations of the source particle and the QRF

together define a distinguished frame, which is described by

the triple (L′
x(θ ),L′

y(θ ),L′
z(θ )). In this natural frame, we find

that

tan �±

=
− zr

2l
sin θ ± z

rl2 [cos θ〈L′
x(θ )L′

z(θ )〉 − sin θ〈L′
x(θ )2〉]

1 + zr
2l

cos θ ± z
rl2 [cos θ〈L′

z(θ )2〉 − sin θ〈L′
x(θ )L′

z(θ )〉]
,

where we have used that the transformed angular momen-

tum operators obey the usual su(2) commutation relations

[L′
i(θ ),L′

j (θ )] = iǫijkL
′
k(θ ) [15,16]. We now consider two

interesting classes of states, for which more explicit analytic

solutions for �± exist.

1. Partially coherent states

Since a distinguished frame exists for which the QRF

is initially in a state for which 〈L′
x(θ )〉 = 〈L′

y(θ )〉 = 0 and

〈L′
z(θ )〉 = rl, we can restrict to a class of states with the

property that the initial state ρ obeys

Tr [ρL′
i(θ )L′

j (θ )] = 〈l,rl|LiLj |l,rl〉 (15)

for any choice of i and j . These states possess a high degree

of symmetry about their axis of polarization and include, as a

special case, coherent states. In this set of states, we obtain �±

in a form that only depends on its initial angle of inclination

θ ,

�± = −arctan

(

z sin θ{r2 ± [l(1 − r2) + 1]}

2rl(1 ± zr cos θ )

)

. (16)

For r = ±1, we have perfectly coherent states and find that

�± vanishes in the l → ∞ limit, as expected, and the QRF

becomes a fixed classical reference frame. Indeed, for this

perfectly coherent state, we find that �− = 0 for all θ , which

occurs since the rank of the corresponding projector is 2l + 2

and the initial state lies entirely in its support.

However, for −1 < r < 1, we see that as l → ∞ the

rotation angles �± are nonzero, in contrast to the average

map. We find that

lim
l→∞

�± = ±arctan

[

z(r2 − 1) sin θ

2r(1 ± zr cos θ )

]

, (17)

which reflects that the QRF does not have perfect polarization

along its axis.

Indeed, from Eq. (5) it can be seen that for 〈L〉 · S = rlS ′
z(θ )

in the limit l → ∞, the source particles do not undergo a

perfect projective measurement but instead are subject to a

fuzzy measurement with POVM operators �±
ρ = (1/2)(I ±

2rn̂ · S).

For the QRF, the large transverse fluctuations in 〈L′
x(θ )2〉

are affected by the projection �l±1/2 and lead to a nonvanishing

asymptotic rotation of the QRF.

In Fig. 1, we compare our analytical expression (16) with

numerical results for a set of mixed initial states of the form

ρ = p exp[−iβLy]|l,k1〉〈l,k1| exp[iβLy]

+ (1 − p) exp[−iβLy]|l,k2〉〈l,k2| exp[iβLy], (18)

and find excellent agreement. Indeed, this analytic expression

provides a reasonably robust approximation, allowing for a

few percent mixing of a random state to the pure partially

coherent states. In such cases, the analytic expressions tend to

slightly overestimate the angles of rotation.

A convenient subset of these partially coherent

states is given by ρ = exp[−β(r)L′
z(θ )]/Z, where Z =

Tr {exp[−β(r)L′
z(θ )]}. These states correspond to a QRF

partially polarized at an angle θ to the source particles and

with r = − 1
l
∂β ln Z. These states are special in that they are

the highest entropy states subject to these two conditions on θ

and r .

2. Quadratic Bloch states

In general, for an N -dimensional irrep of su(N ), the

generators {Li}, together with the identity operator, span the

space of quantum states and so any state admits a Bloch state

form ρ = aI +
∑

i biLi . These states have similar properties

[17] to the standard Bloch states of a qubit.
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FIG. 1. (Color online) A comparison between a numerical

simulation of the rotation produced by the map E± on a family of

mixed states of the form (18) with the expression �± obtained in

Eq. (16). The state that we have considered in this figure is ρ =

p exp[−iβLy]|l,90〉〈l,90| exp[iβLy] + (1 − p) exp[−iβLy] |l,60〉

〈l,60| exp[iβLy] with p = 0.2 and l = 100.

However, for a spin-l irrep of su(2), these Hermitian

operators no longer span the set of quantum states. Instead,

we must use symmetric polynomials in the generators of the

su(2) algebra to span the full set of states. Furthermore, for any

spin-l irrep there exists a minimal-order polynomial expansion

(e.g., for l = 1/2 the minimal order is 1). Consequently, any

truncated expansion to a lower order will only span a subset

of the full space of states.

A potentially interesting set of states for the spin-l irrep

of su(2), are quadratic Bloch states obtained from a quadratic

combination of su(2) generators

ρ =
1

2l + 1

(

I + R · L +
1

2

∑

a,b

T ab{La,Lb}

)

. (19)

The vector R and the tensor T ab must obey certain conditions

in order that ρ be a positive trace-1 operator, in particular,

T ab is a real symmetric traceless second-rank tensor. Only for

l = 1/2 and l = 1 does this expansion cover the whole set of

states.

For such quadratic states, we may calculate an explicit

form for �± using certain trace identities. The quadratic

terms 〈L′
i(θ )L′

j (θ )〉 receive nonzero contributions from the

T ab components only. They are determined explicitly using

the identity,

Tr [{Li,Lj }{Lk,Lm}] = αlδijδkm + βl(δikδjm + δimδjk),

(20)

where the coefficients αl and βl are given by

αl =
l(l + 1)(2l + 1)[1 + 2l(l + 1)]

15
,

(21)

βl =
l(l + 1)(4l2 − 1)(2l + 3)

15
.

Repeated use of this trace identity gives us that the angles

of rotation for this family of states are given by

tan �±=−
15zr2 sin θ ± z(l + 1)(d2 − 4)T1(θ )

30rl ± z(l + 1)(d2 − 4)T2(θ )
, (22)

with d = 2l + 1 and

T1(θ ) = T xx cos θ sin 2θ − T zz sin θ cos 2θ + T xz cos 3θ,

T2(θ ) = T xx sin θ sin 2θ + T zz cos θ cos 2θ + T xz sin 3θ

being the contributions from the quadratic-order terms in the

state.

As already mentioned, these quadratic Bloch states are

generally a subset of all quantum states. For l = 1/2,1, this

expansion covers the full set of states, however, the analytic

expressions for the rotation angles are a poor approximation

since we are neglecting O(1/l2) terms. As we increase l, the

set of states described by Eq. (19) becomes a smaller and

smaller fraction of all states. In addition, the net polarization

r of these states is generally small, and this means that the

analytic expressions obtained are still very approximate. It is

expected that by including higher-order terms that contribute

to the net polarization r , but do not contribute to the quadratic

expectation values, the expression (22) would have greater

accuracy. We leave this issue for a future investigation.

III. EVOLUTION OF THE REFERENCE FRAME

UNDER A UNITARY INTERACTION

Single spin-qubit rotations are typically performed using an

external classical field that can be considered as some large-

amplitude coherent state within the quantum description. In

practice, the finiteness of the external control field—equivalent

to our reference system—means that the qubit and the field

become entangled, resulting in a slightly imperfect rotation of

the qubit. This was investigated for the case of a two-level atom

interacting with a single-cavity mode initially in a coherent

state in Ref. [18]. Our model is very similar—our reference

spin is essentially starting in a large-amplitude spin-coherent

state. We are interested, however, in the case that it is reused

multiple times for applying single-qubit rotations to different

qubits. As there is no other reference system, it is clear the

interaction Hamiltonian should be rotationally invariant [4],

that is, it should depend only on the relative orientations of the

qubit and the frame. The most natural choice is to consider a

coupling Hamiltonian of the form L · S, which, in the limit of

large l, would yield a standard single-qubit unitary rotation on

the spin.

We consider therefore that the QRF and each incoming spin

are coupled for a time t such that the evolution takes the form

eiL·St . As already discussed, the sequential measurement of

total angular momentum causes the reference frame to rotate

in the X-Z plane, in other words, the expectation value of the

y component of the QRF is always zero during the whole

process, however, we will see that the unitary interaction

produces a rotation around an axis that depends on the precise

duration of the interaction.
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A. Backreaction on the quantum reference frame

First, we write the unitary eitL·S in a simpler form. For this

purpose, we use the equations,

J 2 =

(

l +
1

2

) (

l +
3

2

)

�+ +

(

l −
1

2

) (

l +
1

2

)

�−,

(23)
I2d = �+ + �−,

and obtain that L · S = 1
2
[l�+ − (l + 1)�−]. It is clear from

this expression that, in the l → ∞ classical limit, coherent

interactions with a highly polarized QRF induce rotation about

the spatial axis defined by the observable Z = �+ − �−,

while for finite l, we have that U = �+ + e−iγ �− where

γ = t(l + 1/2).

The effect that the QRF suffers due to a single unitary

interaction U (γ ) is then given by the CP map

Fγ [ρ] = Trs [U (γ )(ρ ⊗ ξ )U (γ )†]

= Trs [(�+(ρ ⊗ ξ )�+] + TrS [(�−(ρ ⊗ ξ )�−]

+ e−iγ Trs [�−(ρ ⊗ ξ )�+]

+ eiγ Trs [�+(ρ ⊗ ξ )�−].

Once again we assume a source particle polarized along the

Z axis and in the state ξ = 1
2
(I + zσz) and obtain that [19]

Fγ [ρ] =
1

2d2
[d2 + 1 + (d2 − 1) cos γ ]ρ

+
4

d2
sin2 γ

2

∑

α

LαρLα

+ iz
4

d2
sin2 γ

2
(LyρLx − LxρLy)

+
2z

d2
sin2 γ

2
(Lzρ + ρLz) + i

z

d
sin γ [Lz,ρ],

(24)

from which we only keep up to O(1/l) terms to obtain the

following expression for the effect of the unitary interaction

on the reference frame:

Fγ [ρ] ≈ ρ +
izr

l
sin θ sin2 γ

2
[Ly,ρ] +

iz

2l
sin γ [Lz,ρ].

(25)

This induces a linear transformation of the initial polarization

vector (〈Lx〉,〈Ly〉,〈Lz〉) sending it to (〈Lx〉F ,〈Ly〉F ,〈Lz〉F )

where 〈Li〉F ≡ Tr [Fγ [ρ]Li], and the new components are

given by

〈Lx〉F = 〈Lx〉 +
z

2l
sin γ 〈Ly〉 −

rz

l
sin θ sin2 γ

2
〈Lz〉,

〈Ly〉F = 〈Ly〉 −
z

2l
sin γ 〈Lx〉, (26)

〈Lz〉F = 〈Lz〉 −
rz

l
sin θ sin2 γ

2
〈Lx〉.

To order O(1/l), this is a rotational map around the

axis (0, 1
r

csc θ cot
γ

2
,1) through an angle �F (γ,θ ) =

z
l

sin
γ

2

√

r2 sin2 θ sin2 γ

2
+ cos2 γ

2
, and in particular, it is

clear that liml→∞ �F (γ,θ ) = 0. This rotational dynamics is

illustrated in Fig. 2, where we perform repeated coherent inter-

actions between the QRF and a stream of source particles.
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FIG. 2. (Color online) 〈Lx〉/l, 〈Ly〉/l, and 〈Lz〉/l. The rotation

induced on the reference frame due to the unitary interaction with the

source particle for l = 16. The source particles are polarized along

the z axis with z = 1 and the QRF initially points along the x axis

θ = π/2. In this figure, N = 500 source particles have been used.

IV. CORRECTING THE DRIFT OF A QUANTUM

REFERENCE FRAME

In this section, we consider certain approaches that allow us

to correct the drift of the reference frame due to the projective

measurement {�±}.
If, in addition to the source of particles S, which are

aligned in the Z direction, we also have access to another

set of particles S̄, which are aligned in the −Z direction, then

our intuition is that we may recover the quadratic scaling of

Ref. [11] by alternating the measurements on systems from

S with measurements on systems from S̄. Since the sequence

of measured particles has zero net polarization, no directional

drift of the QRF occurs.

However, this approach requires the use of an equal number

of corrective S̄ particles as measured particles—but is this the

optimal strategy to eliminate drift? Two different strategies

present themselves, but before discussing them, we first

establish an operational criterion for the usefulness of the QRF.

A. Operational criterion

We wish to define an operational criterion by which to judge

how well the finite-sized QRF does in the task of mimicking a

projective measurement on the source particles.

To judge the quality of the measurement, we follow

Ref. [11] and consider the probability of successfully finding

the correct result l + 1
2

when the test particle is pointing along

+n̂ (the initial direction of the reference frame) or finding the

correct result l − 1
2

when the test particle is pointing along −n̂:

Psucc = 1
2

Tr [�+(ρ ⊗ |n̂〉〈n̂|) + �−(ρ ⊗ | − n̂〉〈−n̂|)]

= 1
2
(1 + n̂ · n̂ρ). (27)

In Ref. [11], it was shown that the number of measurements

a QRF could be used for before Psucc falls below some

threshold scaled quadratically with l if the source of particles

was unpolarized. In Ref. [13], it was shown that the scaling
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FIG. 3. (Color online) Psucc as a function of the number of

interactions for the case in which source particles are polarized along

the z axis (z = 1) and the QRF is initially in the coherent state l = 16

pointing along the x axis (i.e., θ = π/2).

becomes only linear with l if the source of particles being

measured has some net polarization. In Fig. 3, we show the

degradation of the reference frame under a sequence of either

measurement interactions (solid line) or unitary interactions

for various values for γ .

B. Correction via unitary interactions

The first corrective mechanism we consider is to make two

measurements of particles from S and then to implement a

unitary U = e−i2πL·S between the QRF and a particle from S̄.

In Fig. 4, we plot the Z component of angular momentum

of the QRF vs its x component. The blue line is the degradation

with no correction, as considered in Ref. [13]. The red line is

for the case in which we have applied the unitary mentioned

earlier after every two measurements—we observe that this

method helps us to essentially completely correct the rotation

of QRF (the drift toward the polarization of S).
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FIG. 4. (Color online) 〈Lz〉/l vs 〈Lx〉/l for l = 16. The source

particles are polarized along the z axis, and the QRF is initially in the

coherent state pointing along the x axis. The blue dotted line corre-

sponds to the case of sequential measurements, and the red solid line

is for the case of unitary interaction ei2πL·S after two measurements.
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FIG. 5. (Color online) A comparison of probability of success

for obtaining a correct measurement result in three different cases

for l = 16. The dashed line corresponds to the case of sequential

measurements, the dashed-dotted line is for the case in which we

correct the measurement result via applying unitary interactions after

two measurements, and the solid line belongs to the case of correction

via applying unitary interactions after each plus outcome.

To understand why this works, we see from Eq. (25) that the

unitary interaction can generate a rotation about the Y axis of
rz
l

sin θ sin2 γ /2. For the particular choice of γ = π , we have

that the unitary interaction produces a rotation exactly twice

as large as the measurement interaction, while maintaining

the reference frame in the X-Z plane. By using a source particle

from S̄, we can ensure that this rotation acts in the opposite

direction to the drift to equilibrium, and it is easily checked

that

Fπ [E2[ρ]] = ρ + O(1/l2). (28)

An important point to emphasize is that the application of the

unitary interaction not only can correct the polarization drift

to O(1/l2), but also does so without requiring knowledge

of the relative angle θ between the QRF and the source

particles.

For very large l, we have greater freedom regarding when

in the course of a sequence of N measurements the corrective

unitaries are performed. If 1 ≪ N ≪ l, then we have that

p±(θ ) is roughly constant over the course of N measurements.

The actual measurement sequence is highly probable to be a

typical measurement sequence with p+N plus outcomes and

p−N minus outcomes. However, since N ≪ l, the QRF has ro-

tated through a total angle p+N�+ + p−N�− = N�, which

may be corrected with N/2 unitary interactions distributed

arbitrarily between the N measurements.

In Fig. 5, Psucc is plotted against the number of measure-

ments for the two cases mentioned previously. We can clearly

see that the longevity of the QRF is now improved. In this

figure, the horizontal axis is for the number of measurements,

and the particles used to improve the probability of success

are not included, so with the use of particles from S̄, we may

extend the lifetime of the QRF to O(1/l2).
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C. Keeping track of measurement results

None of the work on QRF degradation has considered the

option of keeping track of the measurement results. This has

been primarily for the sake of maintaining a simple pedagogy.

We can now consider the possibility of actively feeding

back individual measurement results to correct the frame’s

drift.

With probability p+, the QRF is transformed as ρ → E+[ρ]

and similarly with probability p− the QRF is transformed as

ρ → E−[ρ]. A measurement history for the reference frame

may be described via �s = (s1,s2, . . . ,sN ), with si = ±. This

sequence of outcomes in term corresponds to an evolution of

the QRF given by E�s[ρ] := EsN
[· · · Es2

[Es1
[ρ]]].

The probabilities for large l are given by p±(θ ) = 1
2
(1 ±

zr cos θ ) where z is the polarization of the source particles

and l is the polarization of the of the reference frame, as

described earlier. Since we are considering O(1/l) effects, we

will assume that r is approximately constant for N ≪ l.

Note that in the context of the preceding measurement his-

tory, the probabilities for each outcome si are not independent,

since p± has angular dependence and so depends on previous

rotations induced by si−1,si−2, . . . .

We may again use the unitary interaction, however, unlike

the case of the average map E , no simple correction exists

for an individual plus or minus outcome for two reasons.

First, the angle of rotation generated by the unitary interaction

decreases monotonically with l and so fluctuations, such

as the ones discussed earlier, may be much too large to

correct.

Second, the unitary rotation goes sinusoidally with the

relative angle θ between the source particles and the QRF,

while the rotations due to the individual outcomes are, in

general, complicated functions of θ . Knowledge of θ would

be needed to tune the unitary interaction correctly. However,

it should be that any auxiliary background reference frame

that we may introduce should not feature in the experimental

considerations and should serve only as a useful intermediate

construct. Information is physical, and so any meaningful

coordinate system must be associated with an actual physical

system.

Of course, one could take the view that a large background

system already exists, and relative to this, we have already

determined the angles of inclinations of both the source

particles and the quantum reference frame and, hence, know

the value for θ . However, in this case, the goal of considering

unitary corrections would then be to preserve the known

state of the QRF in between measurements, as distinct

from providing a reliable reference frame with which one

determines the unknown relative angle with an ensemble of

source particles through repeated measurements.

With knowledge of the relative angle θ , we may tune the

unitary interaction appropriately, using either a source particle

from S or S̄, and correct sufficiently small rotations of the

QRF. However, in the event of large measurement rotations,

the best we can do between individual measurements would

be to perform the largest allowable rotation in the required

direction—numerics indicate that for the two projective

outcomes �± we can always correct one outcome entirely

and the other for π/2 < θ < π .

V. DISCUSSION AND OUTLOOK

In this paper, we have analyzed in some detail the induced

dynamics of a quantum reference frame as it is used to measure

the spins of a sequence of source particles and also used to

implement unitary interactions on the source particles.

We found that the average behavior of the QRF is to

gradually rotate into alignment with the source particles at

an O(1/l) rate. If we pay attention to the induced dynamics

subsequent to a particular measurement outcome, we find that

the dynamics is not so simple and large fluctuations can exist,

which depend on observables quadratic in L. We considered

the restriction to a simple class of initial states for which

the dynamics depends purely on the inclination of the QRF

relative to the source particles. For such states, we found that

fluctuations may persist even in the infinite limit, and which

give nontrivial dynamics. Of course in this limit, there is, on

average, no net rotation of the QRF.

We found that by performing a unitary interaction between

the QRF and source particles every third step, we could

eliminate the O(1/l) directional of the reference frame under

the average map. While we have shown how the rotational

drift of the QRF is correctable via unitary interactions,

the degradation of the polarization is more problematic.

However, since this degradation arises due to the formation

of correlations between the QRF and the source particles, it

should be possible [20] to partially correct this degradation

via interactions that are sensitive to the correlation patterns

present.

Future work might include the issue of parameter estimation

on the state of the source particles. While ordinary projective

measurements possess a degeneracy between the polarization

of the source particles and the relative angle between the

QRF and the particles, the presence of dynamics breaks

this degeneracy and potentially allows a richer measurement

inference.

In the ideal projective measurement case, the measurement

probabilities are given by p± = (1/2)(1 ± z cos θ ), and so

doing a sequence of measurements only gives us the value of

z cos θ . However, in the presence of dynamics, the reference

frame responds differently to the polarization z of the source

and to the relative angle θ with the source. For example,

by allowing the QRF to gradually come into alignment with

the source particles, the measurement pattern is eventually

determined solely by z, while the early-time outcomes encode

the dependence on θ . Such a separation of parameters is a result

of the nontrivial dynamics of the finite quantum reference

frame.

It is also possible to do parameter estimation plus correction

in parallel. Initially, we know nothing of θ and so can take it to

lie uniformly between 0 and π . However, for example, getting

a string of many plus outcomes implies that the relative angle

θ is quite small. Each successive measure outcome we obtain

allows us to update our estimate for θ and in each case we can

use our best estimate to perform a unitary correction, ideally

converging in on a stable distribution and the correct value for

the relative angle.

Alternatively, in the event that we are ignorant of the relative

angle θ , it may be possible to perform a conditional corrective

unitary interaction. The idea is that the source particle that
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has been measured with the QRF encodes the relative angle

between the QRF and the unmeasured particles in its new state.

It may be possible to transfer this θ dependence in a manner

that improves the corrective procedures.

Finally, it would be of interest to extend the analysis we

have conducted here to study how measurement and unitary

interactions behave between a large QRF and higher spin

particles.
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