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Abstract 

Square and other rectangular nano-scale tiling patterns are of contemporary interest for soft 

lithography. Though soft square patterns on a ~40 nm length scale can be achieved with block 

copolymers, even smaller tiling patterns below 5 nm can be expected for liquid crystalline 

phases of small molecules. However, these usually form lamellar and hexagonal 

morphologies and thus the challenge is to specifically design LC phases forming square and 

rectangular patterns, being compatible with industrial standards. Here, we report two distinct 

types of liquid crystalline rectangular tiling patterns occurring in a series of T-shaped p-

terphenyl based bolapolyphiles. By directed side chain engineering sub-3 nm sized 

quadrangular honeycombs with rhombic (c2mm), square (p4mm) and rectangular (p2mm) 

shapes of the cells were formed by spontaneous self-assembly. The rectangular honeycomb 

with p2mm lattice represents a new mode of LC self-assembly in polygonal honeycombs. In 

addition, pentagonal and hexagonal patterns can be obtained by molecular fine tuning.  
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1. Introduction 

 

Liquid crystals (LCs) represent a prominent example of supramolecular materials that have 

been commercialized on a grand scale, especially in display technology.
1,2

 However, they also 

provide access to nano-scale patterning on the sub-10 nm length scale
3,4

 for use in selective 

membranes,
5,6,7

 in soft nanolithography,
8
 for ion conduction,

9
 as well as for organic electronic 

applications.
10,11,12,13,14

 Moreover, LCs provide significant fundamental insights into phase 

transition phenomena and the development of order, chirality
15,16

 and complexity in soft 

condensed matter.
17

 In recent years the complexity of the self-assembled LC superstructures 

has been significantly increased, for example, by reduced molecular symmetry based on 

chirality,
18,19

 by introduction of steric and geometrical frustration,
20,21

 by the transition from 

amphiphilicity to polyphilicity
22,23,24

 and by the incorporation of nano-particles into LC 

templates.
25,26,27

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Liquid crystalline self-assembly of laterally substituted biphenyl based 

bolapolyphiles 1 depending on the lateral chain (R = (O)CnH2n+1) volume. The segregation of 

the lateral chains leads to domain formation which distorts the simple lamellar organization 

(ab) and then leads to polygonal honeycombs (c-f), giant honeycombs formed by end-to-

end connected pairs of molecules (g-j), lamellar phases with coplanar rod alignment (k-m) as 

well as cubic network phases (n) and columnar phases formed by coaxial rod-bundles (o); 

structures (n,o) require branched chains.
17,30

 

 

T-shaped polyphiles composed of a rigid and linear aromatic core, functionalized at each end 

with a glycerol group and laterally with one or two non-polar and flexible chains represent an 

especially successful class of mesogenic materials forming a broad variety of different new 
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LC superstructures.
28,29,30

 For example, the biphenyl based compounds 1/n have been shown 

to form a series of LC honeycombs with different cross-section shapes of the prismatic cells 

ranging from rhombic via pentagonal to hexagonal (Fig. 1c-f).
28 

In these honeycombs the 

hydrogen bonding networks of the glycerols are organized in columns which are connected by 

ribbons of aromatic cores forming the walls of a honeycomb; the resulting cells are filled by 

the lipophilic lateral chains. For molecules with bulkier branched, semiperfluorinated or 

carbosilane chains attached to the biphenyl core giant honeycombs were observed, with some 

double-length walls composed of pairs of end-to-end connected molecules (Fig. 1g-j).
31,32

 

Further increasing the side-chain volume leads to lamellar phases with the rod-like cores lying 

parallel to the layer planes (Fig. 1k-m),
33,34,35,36

 followed by different types of axial rod-

bundle phases with hexagonal or cubic symmetry (Fig. 1n, o).
37,38,39,40

 Recent simulation work 

supported the proposed self-assembly of these polyphilic LC compounds.
41,42,43,44,45,46

 

Among the tiling patterns, rectangular nanoscale patterns on a length scale well below 

that achievable with block copolymers (~40 nm) are of present interest in microelectronic 

industry for soft lithography, because these structures, in contrast to the more common 

hexagonal patterns, are compatible with the industrial standards, as they can produce the x-y 

matrices for devices.
8,47,48 

Though smaller high--low-N-block co-oligomers
3
 and also 

classical liquid crystalline materials involving rod-like or disc-like units
4
 lead to patterns on a 

sub-10 nm length scale,
49,50

 so far predominantly lamellar and hexagonal patterns were 

obtained in this way. Even compounds with a square molecular shape usually form hexagonal 

lattices, because the soft periphery of alkyl chain allows space and time averaged rotational 

disorder around the column long axes. A remarkable exception is provided by porphyrins 

which were shown to organize into square and rectangular columnar LC and soft crystalline 

phases in some cases;
51,52

 here, the aromatic cores are arranged on the square lattice, 

embedded in a continuum formed by the flexible alkyl chains. Soft square patterns with 

inverted structure, i.e. the fluid chains forming the cores and rigid -conjugated rods forming 

a square honeycomb around them, were reported for liquid crystalline assemblies of the above 

mentioned T-and X-shaped polyphiles.
24,53,54,55

 In this case rotational averaging is inhibited by 

the restrictions provided by the network structure of the honeycomb. However, in polyphiles 

of this type, with relatively short rod units, hexagonal and pentagonal honeycombs are 

dominant (Fig. 1e,f),
28,29,30,31

 whereas square cells (Fig. 1d) were only found under special 

circumstances in small temperature ranges.
28,56

  

Herein we present a new series of T-shaped polyphilic compounds 2/n, based on the p-

terphenyl core
53,57,58,59 

and
 
having a single normal alkyl lateral chain CnH2n+1 grafted to the 
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middle benzene ring (see Table 1). In the 2/n series the chain length was varied from n = 5 to 

22. For several compounds of this series with intermediate chain length (n = 8-11) three 

distinct liquid crystalline (LC) quadrangular tiling patterns were found. Beside the previously 

known square and rhombic honeycombs a new rectangular honeycomb with reduced plane 

group symmetry p2mm was discovered. That the distinct structures were observed in a single 

series of compounds depending on lateral alkyl chain length and temperature demonstrates the 

power of lateral chain engineering for precise morphological control of rectangular sub 3nm 

patterns by molecular self-assembly in LC soft matter.
17,29,60,61 

 

 

2. Results and Discussion 

2.1 Synthesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Synthesis of compounds 2/n; Reagents and conditions: (i) 1. Pd(PPh3)4, THF, 

H2O, NaHCO3, reflux, 12 h; 2. NaOH, H2O, 25 °C, 12 h; (ii) K2CO3, DMF, 80 °C, 12 h; (iii) 

PPTS, MeOH, THF, 50 °C, 24 h; for details, see SI.  

 

Compounds 2/n were synthesized as shown in Scheme 1. The key intermediate is the 

p-terphenyl-2�-ol B which was obtained in a Suzuki cross coupling
62

 between the substituted 

benzene boronic acid A
63,64

 and 2,5-dibromophenylacetate
65,66 

followed by hydrolytic 

deprotection of the phenolic OH group.
57

 Etherification of B with n-alkyl bromides yielded 

the acetonides Cn which were then deprotected. The synthetic procedures and analytical data 

of all compounds 2/n are collated in the SI.  
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2.2 Investigation of self-assembly 

 

The obtained compounds were investigated by polarizing microscopy (POM), 

differential scanning calorimetry (DSC) and X-ray scattering (SAXS and WAXS); the details 

of the methods used are given in the SI and the observed LC phases and phase transitions are 

collated in Tables 1, S1 and S6. 

 

Table 1. Data on compounds 2/n.
a 

 

 

 

 

 

2/n T/°C, [∆H/kJ/mol-1] 
d or a, b/nm 

(T/°C) 
ncell nwall 

2/5 Cr 125 [10.2] SmA+ 159 [1.7] Iso 
d1 = 2.14 (150) 

d2 = 2.47 
- - 

2/7 Cr 130 [20.4] SmA+ 137 [1.2] Iso 
d1 = 2.10 

d2 = 2.48 (120) 
- - 

2/8 Cr 137 [16.0] Colrec/c2mm 140 [2.9] Iso 3.91, 3.83 (135) 8.4 2.1 

2/9 
Cr 109 [18.5] Colsqu/p4mm/Colrec/p2mmb 138 [-] Colsqu/p4mm 

154 [4.0] Iso 

2.74 (125) 

2.41 3.13 (127) 

4.1 

4.1 

2.0 

2.1 

2/10 Cr 114 [13.4] Colrec/p2mm 123 [0.2] Colsqu/p4mm 160 [4.7] Iso 
2.68 (145) 

2.39,  3.13 (110) 

3.8 

3.9 

1.9 

2.0 

2/11 Cr 102 [9.1] Colrec/p2mm 122 [0.2] Colsqu/p4mm 162 [4.5] Iso 
2.70 (135) 

2.38, 3.10 (115) 

3.6 

3.7 

1.8 

1.9 

2/12 Cr 102 [9.2] Colrec/p2gg 154 [4.3] Iso 6.88, 6.44 (150) 22.4 2.2 

2/14 Cr 77 [9.6] Colrec/p2gg 160 [5.4] Iso 6.89, 6.46 (115) 20.9 2.1 

2/15 Cr 81 [10.4] Colrec/p2gg 165 [6.1] Iso 6.86, 6.49 (155) 20.8 2.1 

2/16 Cr 64 [9.2] Colhex/p6mm 164 [5.8] Iso 4.26 (160) 

4.34 (100) 

7.4 

7.0 

2.5 

2.3 

2/18 Cr 102 [8.6] Colhex/p6mm 177 [7.2] Iso 4.25 (160) 

4.30 (120) 

6.9 

6.6 

2.3 

2.2 

2/22 Cr 34 [26.2] Colhex/p6mm 183 [6.7] Iso 4.24 (160) 

4.32 (80) 

6.1 

6.0 

2.0 

2.0 
a
Transition temperatures were taken from the first DSC heating scan (10 K min

-1
, peak 

temperatures, see Figure S2); only the highest melting point and the total of all melting and 

Cr-Cr transitions are shown; for these transitions and the phase transitions on cooling, see 

Table S1; Abbreviation: SmA+ = strongly distorted lamellar phase; Colrec/c2mm = rhombic 

LC honeycomb with c2mm symmetry; Colsqu/p4mm = square LC honeycomb; Colrec/p2mm = 

rectangular LC honeycomb; Colrec/p2gg = pentagonal LC honeycomb with p2gg symmetry; 

Colrec/p6mm = hexagonal LC honeycomb; ncell, number of molecules in a unit cell with h 

corresponding to the d-value of the wide angle scattering, nwall = average thickness of the 

honeycomb walls (for details of the calculation, see Table S6). 
b
Colsqu/p4mm/Colrec/p2mm = 

square honeycomb showing surface induced deformation to rectangular honeycombs. 
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2.3 SmA+ phases 

 

As typical for T-shaped polyphiles, compounds 2/n with relatively short lateral chains (n ≤ 7) 

form a lamellar phase, characterized by a highly birefringent fan-like texture between crossed 

polarizers (Fig. 2a).
 
Shearing gives rise to an isotropic appearance in the shear induced 

homeotropic areas (layers parallel to the substrate surface) with additional oily streaks, due to 

defects, thus indicating a uniaxial smectic phase (see inset in Fig. 2a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The SmA+ phase of compound 2/7. (a) Texture at T = 120 °C as observed between 

crossed polarizers, showing the fan-texture in planar alignment; the inset shows the texture 

after shearing, being homeotropically aligned, thus appearing dark with birefringent defects 

(oily streaks); (b) XRD pattern of a surface aligned sample at the same temperature after 

subtraction of the scattering pattern in the isotropic liquid state; (c) scan over the original 

scattering pattern (see Fig. S10) and (d) model of the phase structure, blue = glycerols, gray = 

terphenyls and the white ellipses indicate the disordered domains of the lateral alkyl chains; 

for XRD data of compound 2/5, see Fig. S9. 

 

In the XRD patterns of surface aligned samples (X-ray beam parallel to the horizontal 

surface) the wide angle diffraction is diffuse with a maximum at d = 0.46 nm (using Bragg 

equation) and located on the meridian (Fig.  2b). This indicates a LC phase with the p-

terphenyl long axes predominantly parallel to the surface (planar alignment). In the small 

angle region there are sharp diffraction arcs on the equator, i.e. perpendicular to the direction 

of the diffuse wide angle scattering, with a distance d1 = 2.1-2.2 nm (Fig. 2b). d1 is close to 

the molecular length as measured between the two secondary OH groups of the glycerol units 

(Lmol,min = 2.3 nm; see Fig. S21a). Hence, d1 can be assigned to the layer spacing of a 
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monolayer lamellar structure where the terphenyls are organized on average perpendicular to 

the layer planes (SmA). The slightly reduced d-value compared to the length of the fully 

extended molecule is mainly attributed to the reduced orientational order parameter (some 

random tilt of the terphenyls) due to the distortion of parallel alignment by the lateral chains 

(Fig. 2d). In addition the partial intercalation of the glycerols can reduce layer frustration 

caused by the lateral separation of the terphenyls by the intercalated alkyl side-chains. The 

scattering intensity of the layer reflection is comparatively weak, due to the low electron 

density difference between glycerols and terphenyls (see Figs. 3d and 4d,g).
28,64

 There is an 

additional diffuse small angle scattering blob with a maximum at d2 = 2.5 nm on the meridian, 

i.e. in the direction of the wide angle scattering maximum (Fig. 2b,c). This scattering indicates 

an additional short range in-plane periodicity which is assumed to arise from local 

aggregation of the alkyl chains tethered to the aromatic cores, as previously proposed for 

lamellar phases with strongly distorted layers and termed SmA+ phase (Fig. 2d).
28,64

 The 

alkyl chain domains are still randomly distributed (random mesh phases
67

), hence the small 

angle scattering is diffuse.  

 

2.4 Colrec/c2mm phase - rhombic honeycomb 

 

Compound 2/8 forms a highly birefringent spherulitic-like texture (Fig. 3a) as typical for 

columnar phases, suggesting that the nano-segregated alkyl chain domains now adopt a long 

range 2D periodic order. In the SAXS pattern of an aligned sample (Fig. 3a) the wide angle 

scattering is still diffuse and has its maximum at d = 0.46 nm. In the following this value is 

used as the height (h) of the unit cell. The SAXS pattern can be indexed to a centred 

rectangular 2D lattice (c2mm) with the lattice parameters a = 3.9 and b = 3.8 nm (see Fig. 3e). 

There is thus only a slight distortion from a square lattice. The lattice parameters are close to  

2×Lmol,max where Lmol,max = 2.6-2.7 nm is the molecular length in the most stretched 

conformation between the ends of the primary OH groups (see Fig. S21b). This is in line with 

a honeycomb formed by rhombic cells where a and b are the long and the short diagonal of 

the rhombus. Such structure is corroborated by the electron density (ED) map shown in Fig. 

3d. The high ED areas containing the p-terphenyls and glycerols (blue, purple) form a 

honeycomb with the resulting rhombic prismatic cells filled by the low ED alkyl chains 

(red/yellow/green). As the calculated number of molecules per �unit cell� with h = 0.46 nm 

thickness is ncell = 8.4 (Table 1, for calculation see Table S6), there are about 4 molecules 

forming the walls around each prismatic cell, and therefore, two back-to-back arranged p-
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terphenyls form one �brick� or one stratum of each of the four walls (nwall = 2.1; �double 

walls�, see Fig. 3e,f and Tables 1 and S6).  This c2mm phase can be considered as derived 

from the SmA+ phase by establishment of long-range order caused by the expansion of the 

alkyl domains and their coalescence into nano-segregated columns
64

 (Fig. 3e, f).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The rhombic LC honeycomb (Colrec/c2mm) of compound 2/8: a) Texture (crossed 

polarizers, direction of polarizer/analyzer shown with arrows) at T = 136 °C; b) XRD pattern 

of a surface aligned sample at T = 135 °C after subtraction of the scattering pattern in the 

isotropic liquid state (for original diffraction pattern, see Fig. S11; c) SAXS powder pattern 

(synchrotron source); d) ED map reconstructed from c) (for details, see SI); e) molecular 

models and f) schematic model showing the organization of the molecules.  

 

2.5 Colsqu/p4mm phase � square honeycombs 

 

On cooling from the isotropic liquids, compounds 2/9 � 2/11 also show spherulitic textures in 

areas of planar alignment (columns in sample plane) (Figs. 4c, 5a and S4a).  The dark areas, 

in which the columns are aligned perpendicular to the surfaces, indicate that the columnar 
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phase is uniaxial, i.e. of either hexagonal or square symmetry. On slow cooling the formation 

of rectangular 4-star figures can be observed, which is a first indication of square symmetry of 

the developing lattice (see inset in Fig. 4c). In this mesophase the birefringence is negative as 

confirmed by polarizing microscopy with a -retarder plate (see insets in Fig. 5a), meaning 

that the main -conjugation pathway, i.e. the direction of the terphenyl cores, is perpendicular 

to the column long axis, as is typical for polygonal honeycomb LCs. The SAXS pattern of this 

phase can be indexed to a square p4mm lattice with asqu = 2.7 nm (see Fig. 4a,b). Notably, the 

lattice parameter does not change significantly upon increasing the side-chain length. That the 

parameter asqu is close to the maximum molecular length Lmol,max = 2.6-2.7 nm in all cases, is 

in line with the proposed square honeycomb structure. This structure was corroborated by ED 

reconstruction of high resolution XRD patterns (synchrotron source, see Fig. S8b). As shown 

in Fig. 4d there are square shaped low electron density areas (red to green) assigned to the 

prismatic cell interior containing the alkyl chains. These are framed by a net of high electron 

density squares (blue/purple) formed by terphenyl partition walls connected at the vertices by 

the glycerol groups. As in the c2mm phase, the walls contain on average two terphenyls back-

to-back (nwall ~ 2, see Table 1) which allows all side-chains easy access to the prismatic cell 

interior. The viability of the packing model and the efficiency of space filling is confirmed by 

molecular dynamics simulation (see Fig. S1 and associated explanations). Overall, the 

structures of the c2mm and p4mm phases are very similar, the difference being that the angles 

lock in at 90° in the square phase. The larger volume of the lateral chains of compounds 2/9-

2/11 evidently require the larger volume that a square honeycomb provides. 
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Figure 4. Square and rectangular cylinder phases of compound 2/11: a) temperature evolution 

of the powder SAXS curve (synchrotron source), b) GISAXS pattern of the Colsqu/p4mm 

phase of an aligned sample at T = 140 °C; c) texture (crossed polarizers) at the same 

p4mm at 140 °C

p2mm at 120 °C
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temperature; the inset shows the growth of 4-star figures upon slow cooling from Iso at T = 

162 °C; d) ED map reconstructed from the powder pattern (Fig. S8b); e) GISAXS pattern of 

an aligned sample of the Colrec/p2mm phase at T = 115 °C; (only one orientation is shown, red 

and black lattice represent two mirrored domains respectively); f) texture (crossed polarizers) 

at the same temperature and g) ED map reconstructed from the powder pattern (Fig. S8a); for 

data of 2/10, see Figs. S3a-d and S13. 

 

2.6 Colrec/p2mm phases of compounds 2/10 and 2/11 � rectangular honeycombs 

 

Compounds 2/10 and 2/11 show an additional phase transitions with a small enthalpy 

(0.2 kJ mol
-1

) from this square honeycomb to a low temperature LC phase (Table 1). At this 

transition the birefringence of the spherulitic texture increases and the dark homeotropic areas 

become birefringent with development of a typical 90° crossed stripe pattern (Fig. 4c,f). There 

is no change in the WAXS, which remains diffuse (see Fig. S13), whereas the SAXS pattern 

changes abruptly at this phase transition (Fig. 4a). The diffraction pattern of the low 

temperature phase of 2/11, for example, can be indexed to a non-centred rectangular lattice 

(Colrec/p2mm) with parameters a = 2.38 nm and b = 3.10 nm (Fig. 4e). a is close to the 

molecular length measured between the secondary OH groups in a compact conformation of 

the glycerols (Lmol,min = 2.3 nm, see Fig. S21a), whereas b exceeds considerably the maximum 

molecular length (Lmol,max = 2.6-2.7 nm, see Fig. S21b). However, the area of the p2mm unit 

cell (7.4 nm
2
) remains almost the same or is even slightly increased compared to that of the 

corresponding p4mm phase (7.3 nm
2
), see Table S6.   At the p4mm  p2mm transition  (Fig. 

4d,g) the prismatic cells expand along b and shrinks along a (Table S6). As the cell volume 

does not substantially change at the p4mm - p2mm transition thermal expansion/shrinkage 

could not be the major reason for this phase transition. It is more likely that the transition 

from square to rectangular prismatic cells is caused by an increased trans fraction of the alkyl 

chains at reduced temperature, though the chains remain in a liquid-like fluid state as 

confirmed by the diffuse WAXS (Fig. S13). This supports an anisotropic orientation of the 

chains with increased preference for them to lie parallel and thus supporting a deformation of 

the cells. As the parameter b = 3.1 nm exceed the maximum molecular length of 2.6-2.7 nm, 

the glycerols units of molecules along a have to be intercalated between the polar groups of 

the molecules aligned along b, leading to a strongly elliptical shape of the polar columns 

involving the hydrogen bonding glycerols (Fig. S22). This reduces the parameter a and 

simultaneously increases the number of molecules organized laterally side-by-side in the 

honeycomb wall along the shorter direction a. This enhancement of the walls along a takes 

place on expense of the molecules forming the walls in direction b, thus leading to a slightly 
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different number of molecules in the lateral cross section of the walls along a and b ( Fig. 4g), 

while, the overall average number of molecules per unit cell remains almost the same as in the 

p4mm lattice 

 

2.7  The surface induced Colrec/p2mm phase of compound 2/9 

 

Compound 2/9, being at the boundary between rhombic and square/rectangular prismatic 

cells, behaves differently. Similar to compounds 2/10 and 2/11 a p4mm phase (indicated by 

POM and XRD, see Fig. 5) is found at high temperature and a transition from a uniaxial to a 

birefringent (biaxial) texture is observed by polarizing microscopy on cooling (Fig. 5a,c). 

However, in contrast to compounds 2/10 and 2/11 this optical texture change is neither 

associated with a transition enthalpy (see DSC in Fig. S2d-f) nor with a stepwise change in 

position of the SAXS peaks in the powder pattern recorded on the bulk material on cooling 

(Figs. 5e and S7b); nor is there any change in WAXS, which remains completely diffuse (Fig. 

S12). However, in GISAXS experiments (Fig. 5b,d), where a thin films with predominately 

homeotropic alignment was investigated on silicon surface, additional reflections of a p2mm 

rectangular lattice appear at the transition temperature of 138 °C beside the still strong 

reflections of the square lattice (asqu = 2.74 nm). At 127 C the rectangular lattice parameters 

are a = 3.13 nm and b = 2.41 nm. These parameters are almost the same as measured for 2/10 

and 2/11 (see Table 1). However, it appears that for 2/9 the p4mm  p2mm transition requires 

the support by surface anchoring, whereas the bulk structure remains p4mm. Obviously, the 

shorter chains of 2/9 provide a weaker driving force for deformation of the square honeycomb 

and we propose that the higher p4mm symmetry could be maintained by some out-of-plane 

distortion of the otherwise flat honeycomb lattice. Various modes of �escape in the third 

dimension� have been found in the soft LCs on different length scales to resolve the effects of 

frustration. It would appear that at the surfaces the honeycomb could be pinned to the polar 

substrate sufficiently by its glycerol groups that the out-of-plane distortion is suppressed 

strongly and the square lattice is deformed to escape steric frustration. The improved parallel 

alignment of the alkyl chains achieved in the rectangular lattice supports the p4mm-p2mm 

transition.  
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Figure 5. The rectangular LC honeycombs of compound 2/9. a,c) Textural changes as 

observed for the Colsqu/p4mm phase upon cooling between crossed polarizers, showing the 

emergence of birefringence in the optically isotropic areas (columns perpendicular to the 

surfaces) due to the transition to Colrec/p2mm; the insets in a) show birefringent domains with 

-retarder plate and the slow axis in the direction SW-NE, indicating negative birefringence. 

b,d) GISAXS patterns at different temperatures, showing in b) the p4mm phase and in d) the 

coexistence of p4mm and p2mm in the surface films; e) temperature dependence of the lattice 

parameter in the p4mm phase between 145 and 105 °C; f,g) schematic models of the p4mm 

and p2mm phases; for additional data, see Figs. S6 and S7. 

 

2.8 Pentagonal and hexagonal honeycombs of compounds 2/12 � 2/22 

 

For compounds 2/12 - 2/15 with still larger lateral chains the square honeycombs cannot 

accommodate the chain volume and instead formation of another rectangular columnar phase 

is observed, this time with p2gg symmetry. This lattice representing a honeycomb composed 

of slightly deformed pentagonal prismatic cells (Fig. 6a,c,e).
68

 While a honeycomb composed 

of distorted pentagons can also form a square lattice with p4gm symmetry, when the chains 
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are not quite large enough to fill the required space the symmetry is reduced from p4gm to 

p2gg
28,56  

and
 
a and b parameters converge as chain length increases (Table 1).  

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

Figure 6. The pentagonal and hexagonal honeycombs. a,b) Textures; c,d) 2D-SAXS patterns 

of aligned samples with indexation, and e,f) schematic models of the LC honeycombs. a) 

Colrec/p2gg phase of compound 2/14 at T = 157 °C; c) Colrec/p2gg phase of 2/12 at T = 150 

°C; b) Colhex/p6mm phase of 2/16 at T = 165 °C; d) Colhex/p6mm phase of 2/16 at T = 160 °C; 

in c and d) alignment is planar; the inset in d) shows the WAXS pattern of a sample with 

homeotropic alignment as obtained upon very slow cooling; in all cases the X-ray beam is 

parallel to the substrate. The texture in b) shows black areas with homeotropic alignment, 

other highly birefringent spherulitic domains in a) and b) have planar alignment); for 

additional data, see Figs. S5, S14-S20 and Table S6. 

 

Compounds 2/16 - 2/22 with the longest chains form the hexagonal columnar phase 

(Fig. 6b,d,f). The hexagonal lattice parameter is around ahex = 4.3 nm for all of these 

compounds, corresponding to ahex = 3Lmol as is typical for hexagonal honeycomb LCs. For 

the hexagonal phase of 2/16 the alignment of the honeycombs can be either planar (Fig. 6d) 

or, upon very slow cooling (<0.1 K min
-1

), homeotropic, as confirmed by the 2D SAXS 

patterns (see inset in Fig. 6d and Figs. S17, S18). This demonstrates that uniform alignment of 

(a) (b)

(c) (d)

(e) (f) 

 p2gg  p6mm

 p2gg  p6mm

(20)

(10)

(11)

P

A 

P

A

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 15

macroscopic domains of the polygonal honeycomb LCs, either planar or homeotropic, can be 

achieved by changing preparation conditions. 

 

3. Summary and Conclusions 

 

The T-shaped p-terphenyl based bolapolyphiles 2/n show a sequence of six different 

LC phases depending on chain length and temperature. With increasing lateral chain length 

the random mesh lamellar phase (SmA+) is replaced by a series of successive LC 

honeycombs with rhombic (c2mm), square/rectangular (p4mm/p2mm), pentagonal (p2gg) and 

hexagonal (p6mm) cells. However, no triangular honeycomb is found between SmA+ and the 

quadrangular heneycombs. The reason might be that the tight 60° vertices in the triangular 

cells, if formed by the relatively short p-terphenyls, are difficult to access by the lateral alkyl 

chains; such corners would likely present entropic depletion regions. Only for longer rod-like 

units this effect becomes sufficiently insignificant to allow the formation of stable triangular 

honeycombs.
24,69,70

  This unfavourable acute angle effect might also explain why the rhombic 

honeycomb (c2mm) is found in only one homologue and has an almost square shape. 

Compared to the biphenyl based bolapolyphiles 1/n involving shorter aromatic cores (Fig. 1b-

f),
28,29,30

 here for terphenyls, to keep the equivalent area-to-circumference ratio, the different 

honeycomb types are shifted towards longer alkyl chains (e.g. pentagons: from 10n12 to 

12n15; hexagons: from n≥12  to  n≥16). The deformation of the square honeycombs to a 

rectangular one  (p2mm) is also attributed to increasing anisotropy due to growing 

contribution of straight and parallel all-trans segments at lowered temperature. These 

rectangular honeycombs represent a new type of LC honeycombs, expanding the range of 

existing liquid crystalline quadrangular tilings.
28,64,71

  For the two compounds with longer 

chains (n = 10,11) the temperature dependent square symmetry breaking is spontaneous, 

whereas for shorter chains (n = 9) it requires additional surface anchoring. 

Overall, liquid crystalline square and rectangular tiling patterns on a sub-3 nm scale 

with potential for application in soft nano-lithography were obtained by molecular design. 

This work provides a proof of concept by using model T-shaped molecules based on a simple 

p-terphenyl unit which can be extended to other -conjugated systems. These quadrangular 

soft arrays of -conjugated aromatics could also be of potential interest for the morphological 

design and patterning of self-assembled organic electronic materials.  
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