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ABSTRACT

The Lesser Caucasus mountains sit on a transition within the Arabia–Eurasia collision zone be-

tween very thin lithosphere (<100 km) to the west, under Eastern Anatolia, and a very thick litho-

spheric root (up to 200 km) in the east, under western Iran. A transect of volcanic highlands running

from NW to SE in the Lesser Caucasus allows us to look at the effects of lithosphere thickness var-

iations on the geochemistry of volcanic rocks in this continental collision zone. Volcanic rocks from

across the region show a wide compositional range from basanites to rhyolites, and have arc-like
geochemical characteristics, typified by ubiquitous negative Nb–Ta anomalies. Magmatic rocks

from the SE, where the lithosphere is thought to be thicker, are more enriched in incompatible trace

elements, especially the light rare earth elements, Sr and P. They also have more radiogenic
87Sr/86Sr, and less radiogenic 143Nd/144Nd. Across the region, there is no correlation between SiO2

content and Sr–Nd isotope ratios, revealing a lack of crustal contamination. Instead, ‘spiky’ mid-

ocean ridge basalt normalized trace element patterns are the result of derivation from a
subduction-modified mantle source, which probably inherited its subduction component from sub-

duction of the Tethys Ocean prior to the onset of continent–continent collision in the late Miocene.

In addition to the more isotopically enriched mantle source, modelling of non-modal batch melting

suggests lower degrees of melting and the involvement of garnet as a residual phase in the SE.

Melt thermobarometry calculations based on bulk-rock major elements confirm that melting in the

SE must occur at greater depths in the mantle. Temperatures of melting below 1200�C, along with

the subduction-modified source, suggest that melting occurred within the lithosphere. It is pro-
posed that in the northern Lesser Caucasus this melting occurs close to the base of the very thin

lithosphere (at a depth of �45 km) as a result of small-scale delamination. A striking similarity be-

tween the conditions of melting in NW Iran and the southern Lesser Caucasus (two regions be-

tween which the difference in lithosphere thickness is �100 km) suggests a common mechanism of

melt generation in the mid-lithosphere (�75 km). The southern Lesser Caucasus magmas result

from mixing between partial melts of deep lithosphere (�120 km in the south) and mid-lithosphere
sources to give a composition intermediate between magmas from the northern Lesser Caucasus

and NW Iran. The mid-lithosphere magma source has a distinct composition compared with the

base of the lithosphere, which is argued to be the result of the increased retention of metasomatic

components in phases such as apatite and amphibole, which are stabilized by lower temperatures

prior to magma generation.
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INTRODUCTION

The Arabia–Eurasia collision zone is one of the very few

places on Earth where it is possible to study active vol-

canism associated with a continent–continent collision
event. The geodynamic processes that drive volcanism

remain unresolved, with numerous and sometimes

conflicting models for its origin (Pearce et al., 1990;

Keskin, 2003; Gö�güş & Pysklywec, 2008; Faccenna et al.,

2013). Most of the volcanism in the region is located on

the Anatolian–Armenian–Iranian Plateau, a broad

uplifted region to the north and east of the Arabian fore-
land, with an average elevation of over 2 km (Şengör

et al., 2008; Priestley & McKenzie, 2013). The lithospher-

ic structure of this plateau is considered to show a

strong contrast between very thin mantle lithosphere in

the west (below Eastern Anatolia), and very thick

mantle lithosphere in the Zagros Core to the SE (Fig. 1),

below western Iran (Priestley et al., 2012).

The Lesser Caucasus mountains sit close to the edge

of the Zagros Core region, and therefore close to a tran-

sition from thick to thin lithosphere. The region thus

provides an opportunity to look at the influence of litho-
spheric thickness on the geochemistry of collision-

related magmas. Figure 1 shows the four volcanic high-

lands considered in this study, which form a NW–SE

transect almost orthogonal to contours of lithospheric

thickness from Priestley et al. (2012), which increase

from NW to SE. It should be noted that the resolution

on these lithospheric thickness estimates is limited by

the 30–50 km vertical resolution of the seismic tomog-

raphy data (McKenzie & Priestley, 2008). The Priestley
et al. (2012) model is used because it is likely to give

better local resolution in the Lesser Caucasus region

than other global lithospheric thickness studies

(Priestley & McKenzie, 2006, 2013).

Volcanic rocks from the SE of this transect, where

the lithosphere is thought to be thicker, are known to be

more potassic than volcanic rocks from the NW

(Meliksetian, 2013). This study provides the first com-
plete geochemical dataset for volcanic rocks from the

SE of the Lesser Caucasus. This dataset includes a com-

plete range of compositions from basanite to rhyolite,

which are used to evaluate the extent to which crustal

contamination is an important component of magma

petrogenesis. We then compare the geochemistry of

the more primitive mafic volcanic rocks between the

NW and SE of the Lesser Caucasus, and the mecha-

nisms by which thicker lithosphere in the SE might in-
fluence the geochemistry of volcanic rocks found there.

To indicate how thicker mantle lithosphere might influ-

ence the composition of magmas, volcanic rocks from a

region of very thick lithosphere (>200 km) in NW Iran

(Fig. 1; Allen et al., 2013) are used as an end-member

comparison of melting in a thick lithosphere regime.

GEOLOGICAL BACKGROUND

Pre-collision geological history
The evolution of the Arabia–Eurasia collision zone, as a

part of the Alpine–Himalayan orogenic belt, is a conse-

quence of the closure of the Neotethys Ocean (Rolland,

2017, and references therein). The pre-Miocene geology

of the territory of Armenia and the Lesser Caucasus

(Fig. 2), like much of the interior of the Anatolian–
Armenian–Iranian Plateau, is a complex amalgamation

of a series of terranes (microplates), which accreted to

the Eurasian continental margin during the closure of

the Tethys Ocean (Hosseinpour et al., 2016; Rolland,

2017). The north and east of Armenia include rocks

associated with the Mesozoic to early Cenozoic volcanic

arc of the Lesser Caucasus (Mederer et al., 2013), an

eastern continuation of the Pontides of Anatolia. The
Pontide and Lesser Caucasus arcs together formed the

active southern margin of the Eurasian Plate (Yilmaz

et al., 2000). Figure 3 illustrates the various stages of

Fig. 1. Terrane map of the Caucasus region with inset showing
the location of the Caucasus mountains. The major tectonic
blocks are labelled, which from north to south are: Greater
Caucasus, Kura Basin, Pontides–Lesser Caucasus (LCA)–Alborz
Mesozoic–early Cenozoic arc, Taurides–Anatolides–South
Armenian Block (SAB)–Cimmeria microcontinent terranes,
East Anatolian Accretionary Complex (EAAC), Bitlis Mountains
and the Arabian foreland. Terrane boundaries are after Neill
et al. (2015). Red triangles denote the locations of major com-
posite volcanoes. The locations of volcanic highlands that are
used for the geochemical comparison that forms the focus of
this study are shown by the coloured fields: 1, Shirak and Lori
(Neill et al., 2013, 2015); 2, Gegham (I. P. Savov, unpublished
data); 3, Vardenis; 4, Syunik. New data for this study are from
volcanic highlands 3 and 4. These volcanic highlands are close
to parallel to major tectonic boundaries in the collision zone.
Volcanic rocks from NW Iran referred to in the text are from the
region labelled at the bottom of the map. Contours of litho-
spheric thickness from Priestley et al. (2012) are shown in red;
numbers give lithospheric thickness in kilometres. The ‘Zagros
Core’ refers to the region of maximum lithosphere thickness in
the collision zone.

200 Journal of Petrology, 2019, Vol. 60, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article-abstract/60/2/199/5232225 by guest on 27 M

arch 2019



closure of the Neotethys Ocean. During the Mesozoic

there were probably several subduction zones that con-

tributed to the closure of the northern and southern

Neotethys basins (Fig. 3, panels 1 and 2; Galoyan et al.,

2009; Rolland et al., 2010, 2012; Sosson et al., 2010;

Karao�glan et al., 2013, 2016; Mederer et al., 2013; Topuz

et al., 2013a, 2013b, 2014; Hässig et al., 2015).

The Sevan–Akera suture zone is defined by several

(probably North Neotethys-derived) ophiolite com-

plexes (Fig. 2). The ophiolites were obducted onto the

South Armenian block (SAB) at 88–83 Ma (Galoyan

et al., 2007; Rolland et al., 2010; Sosson et al., 2010).

The SAB (Fig. 2) is a microcontinental fragment com-

posed of Proterozoic metamorphic basement and its

sedimentary cover (Şengör, 1984; Rolland et al., 2009),

which rifted from the Arabian margin in the early

Mesozoic (Şengör, 1984; Jrbashian et al., 1996) and is

probably continuous with the Taurides–Anatolides of

Anatolia (Rolland et al., 2016) and the Cimmerian ter-

rane of Iran (Stampfli et al., 2013). Ophiolite obduction

was followed by accretion of the SAB to the Pontide–

Lesser Caucasus arc at 50–80 Ma (Rolland et al., 2009;

Sosson et al., 2010), marking the closure of the North

Neotethys. Northward subduction of the South

Neotethys continued until ‘soft’ collision of Arabia with

the Bitlis–Poturge terrane and SAB in the late Eocene–

early Oligocene (Fig. 3, panel 3; Rolland et al., 2012;

Karao�glan et al., 2013). Hard collision was delayed until

the Pliocene, following the Kura Basin closure to the

north (Fig. 3, panel 4; Rolland, 2017).

The numerous subduction zones illustrated in Fig. 3

would have added slab-derived material to large parts

of the mantle wedge beneath the present-day collision

zone. It has been suggested that this signature of a

subduction-modified mantle has been widely inherited

by the post-collisional volcanic rocks in the Arabia–

Eurasia collision zone (Pearce et al., 1990; Keskin et al.,

1998; Keskin, 2003; Allen et al., 2013; Oyan et al., 2017).

Post-Miocene volcanism and tectonics
The widespread volcanism occupies a wide zone across

the collision zone (Fig. 1), arguing against any single

subducting slab driving magma generation. Elevated

topography of 1–2 km is observed across the collision

zone; however, the deep lithospheric structure that

might isostatically support this elevated topography

shows strong contrasts between the east and west. In

the west, a low seismic velocity anomaly in the upper-

most mantle below the East Anatolian Plateau (Al-Lazki,

2003; Angus et al., 2006; Zor, 2008; Gök et al., 2011;

Koulakov et al., 2012; Skolbeltsyn et al., 2014) has been

used to suggest that the mantle lithosphere is very thin

under Eastern Anatolia, such that the high topography

is not isostatically supported. Based on the fairly uni-

form crustal thickness (�40 km; Angus et al., 2006) and

the very thin lithospheric mantle, both the current

Fig. 2. Geological map of the major geological units of the Lesser Caucasus mountains within the territory of Armenia. After
Kharazyan (2005), Mederer et al. (2013) and Neill et al. (2015). The volcanic highlands that form the focus of this study are num-
bered: 1, Shirak and Lori; 2, Gegham; 3, Vardenis; 4, Syunik. The bold black line shows the Pambak–Sevan–Syunik strike-slip fault
zone.
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structure of this western part of the Plateau and the

associated volcanism have been attributed to a slab

break-off event (Keskin, 2003, 2007; Şengör et al., 2003,

2008). Given the later onset of eruptions, and the more

alkaline nature of magmas in the south (Pearce et al.,

1990; Keskin et al., 1998), it has been postulated that the

slab that broke off and thereby fuelled recent volcanism

was a north-dipping South Neotethys slab below the

Bitlis Suture (Keskin, 2003).

In contrast, relatively fast seismic velocities in the

upper mantle under western Iran suggest that a thick

lithospheric root isostatically compensates the high top-

ography in the southeastern part of the collision zone,

termed the ‘Zagros Core’ (Priestley & McKenzie, 2006,

2013; Priestley et al., 2012). There is no evidence in NW

Iran of the coupled spatio-temporal variability in volcan-

ism seen in Eastern Anatolia, such that instead of slab

break-off, it has been postulated that the volcanism is

driven by small-scale lithospheric dripping or amphi-

bole breakdown melting (Allen et al., 2013; Kaislaniemi

et al., 2014; Lechmann et al., 2018).

As can be seen in Fig. 1, the Lesser Caucasus is

located close to the boundary between these two tec-

tonic regimes. The transect of volcanic highlands thus

provides a key opportunity to understand the effect of

lithospheric thickness on the composition of mantle-

derived magmas in a continental collision zone.

Geology and geochronology of collision-related
volcanism in the Lesser Caucasus
Three major styles of volcanic activity can be observed

in the Lesser Caucasus. The first of these is relatively

low-volume eruptions from mostly small eruptive

centres in monogenetic volcanic fields. In both the

north and south of the Lesser Caucasus, this style of

volcanism becomes increasingly dominant in the most

recent eruptive products (Fig. 4; Connor et al., 2011;

Neill et al., 2013). Second, large composite volcanoes

are also found throughout the Lesser Caucasus. In the

central Lesser Caucasus, such a volcano is Aragats

(Connor et al., 2011), and in the south the smaller strato-

volcanoes Tskhouk and Ishkhanasar (Fig. 4) dominate

Fig. 3. Illustration of the progressive closure of the oceanic domains that separated Arabia from Eurasia during the Mesozoic, after
Rolland (2017). SAB, South Armenian Block; SAB–BP, South Armenian Block–Bitlis Poturge terrane. The movement of the Bitlis
Poturge terrane from Arabia to the South Armenian Block is not shown in these figures but occurs between panels 1 and 2.
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the landscape. Such large volcanoes (4090 m altitude,

�70 km diameter in the case of Aragats), capable of

generating many caldera collapse eruptions, are

required to produce the ignimbrites that are widespread

throughout the Lesser Caucasus. Finally, large

fissure-fed ‘flood basalt’ style lava flows are found pre-

dominantly in some of the older (�3–2�05 Ma) volcanic

successions (Sheth et al., 2015).

Previous geochronological studies have constrained

the ages of the volcanic deposits upon which this study

focuses as being late Pliocene or younger. All of the

samples analysed for geochemistry from the NW of the

transect have ages of 2�5 Ma or younger, based on cor-

relations of the oldest ‘valley series’ lavas of Neill et al.

(2015) with sediments containing mammalian fossils

(Kharazyan, 1983), and a K–Ar age of 2�5 Ma for one

such ‘valley series’ lava in the Shirak province of NW

Armenia in the northern Lesser Caucasus (Chernyshev

et al., 2002). Volcanic rocks from further south were all

collected from Quaternary volcanic highlands, which

form monogenetic volcanic fields and so have an even

more restricted age range. A limited number of ages

from the Syunik volcanic highland (number 4 in Figs 1

and 2) suggest that volcanism ranges from 1�3 to

0�11 Ma, based on two Ar–Ar ages of pumice layers in

diatomaceous sediments (Joannin et al., 2010), along

with K–Ar ages of local lava flows that overlie the sedi-

ments (Ollivier et al., 2010). Archaeological evidence

from 14C dating of petroglyphs and burial places around

the youngest lavas in Syunik suggests that volcanism

may extend to within the last 5 kyr (Karakhanian et al.,

2002). These ages are very similar to the estimated age

span of the Gegham volcanic highland (highland 2 in

Figs 1 and 2) of 1�2–0�02 Ma (Lebedev et al., 2013). In

summary, the complete age span of the volcanic rocks

studied for geochemistry in this study is <3 Myr, and it

is likely that the present-day structure of the lithosphere

can be used as an interpretive framework for all

samples.

SAMPLING

Whereas recent work (Neill et al., 2013, 2015) has

provided important new geochemical data for

collision-related volcanism in the northern Lesser

Caucasus, our study presents the first comprehensive

dataset for mafic volcanic rocks from the southern part

of the Lesser Caucasus (Table 1). All samples are from

the Vardenis and Syunik volcanic highlands (highlands

3 and 4 in Figs 1 and 2). Table 1 gives the coordinates

for all the mafic samples in the Vardenis and Syunik vol-

canic highlands. Figure 4 shows the newly completed

45°50'0'’E 46°0'0'’E 46°10'0'’E 46°20'0'’E 46°30'0'’E

39°30'0'’N

39°40'0'’N

39°50'0'’N

STRATIGRAPHY
Holocene

Alluvium

Basaltic trachyandesite

Upper Pleistocene
Glacial/ fluvioglacial
deposits
Basanites-trachyandesites-
phonotephrites

Middle Pleistocene
Basanite- phonotephrite-
basaltic trachyandesite

Lower Pleistocene
Basaltic trachyandesite-
Trachyandesite

Upper Pliocene - Lower
Pleistocene

Basaltic trachyandesite-
Trachydacite

Rhyolite and Obsidian

Upper Pliocene

Goris strata breccia

Diatomaceous sediments
Pre- Upper Pliocene

Volcanic- sedimentary
succession

Lower Miocene
Granodiorites,
granosyenites

Monogenetic volcanic
centre
Crater rims of
stratovolcanoes

Active and inferred faults

Main road

Structural and other features

Fig. 4. Geological age map of the Syunik volcanic highland (field 4 in Figs 1 and 2), based on the work of Sergei Karapetyan, Ruben
Jrbashyan and Gevorg Navasardyan of the Institute of Geological Sciences at the Armenian National Academy of Sciences. Red
dashes, monogenetic volcanic centres; red and white dashes, crater rims of Ishkhanasar and Tskhouk stratovolcanoes; faint red
lines, active faults; bold red line, main road. A PDF version of this map is provided as Supplementary Data C.
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geological map of the Syunik volcanic highland; a PDF

version is provided as Supplementary Data C (supple-

mentary data are available for downloading at http://

www.petrology.oxfordjournals.org). The map shows

that even in this small area there is a wide range of vol-

canic structures and rock compositions, including large

andesite–dacite stratovolcanoes, small basaltic scoria

cones and rhyolitic monogenetic domes, often with ob-

sidian flows. Sampling in the region covers the com-

plete stratigraphic range of the map, but there was a

bias towards the younger eruptive centres so as to col-

lect the least altered samples for geochemical analysis.

There is as yet no such similar geological map of

Vardenis available; however, the sampling was similar-

ly comprehensive in terms of rock compositions and

stratigraphic range. The studied rock types range from

basanite to rhyolite, although Table 1 includes data for

only the most mafic samples, which form the main

focus of this study. The complete dataset (including the

more felsic samples) can be found in Supplementary

Data A.

METHODS

Major and trace elements
Sample preparation was done at the University of

Leeds. Rock samples (60–100 g) were crushed in a

TEMA agate mill. The agate was cleaned extensively be-

tween the crushing of each sample, including pre-

contamination of the agate by the crushing of 50 g of

sample, which was then discarded. Bulk-rock major and

trace element analysis of samples from this study was

Table 1: Major and trace element compositions of mafic volcanic rocks from the Vardenis and Syunik volcanic fields in the southern
Lesser Caucasus

Volcanic field: Vardenis Vardenis Vardenis Vardenis Vardenis Vardenis Vardenis Vardenis Vardenis
Sample: 6.27.08 7.29.08 7.30.08 7.32.08 2.1.12 1.1.13 1.2.13 3.2.13 3.3.13
Eruptive type: Lava Lava Bomb Lava Lava Lava Lava Lava Lava
Latitude: 40�0905 40�14205 40�0768 40�07712 40�10283 40�02458 40�08497 40�05927 40�07163
Longitude: 45�414 45�6192 45�51587 45�5256 45�39072 45�83628 45�83638 45�79923 45�78805
Elevation (m): 2257 2101 2340 2280 2188 2347 2375 2538 2539
Lab. analysis:* RH RH ACME RH ACME ACME ACME ACME ACME

SiO2 51�62 50�94 53�96 52�87 52�17 51�71 51�93 52�81 51�60
TiO2 1�20 1�34 1�01 1�23 1�11 1�39 1�38 1�29 1�37
Al2O3 16�31 16�37 16�47 16�93 17�40 17�31 17�39 16�42 17�23
Fe2O3 (tot)† 9�61 9�69 6�82 9�49 7�77 8�34 8�39 7�87 8�25
MnO 0�13 0�14 0�12 0�14 0�13 0�13 0�13 0�14 0�13
MgO 6�23 6�36 4�08 4�40 4�60 4�15 4�12 4�03 4�12
CaO 8�54 8�43 7�97 7�93 8�27 7�34 7�32 7�49 7�34
Na2O 3�93 4�54 4�36 4�61 4�62 4�52 4�61 4�65 4�85
K2O 2�27 2�00 3�37 2�13 2�76 3�08 3�08 3�11 3�13
P2O5 0�52 0�72 0�61 0�77 0�95 1�23 1�23 0�97 1�21
Total 98�45 99�56 99�49 99�56 100�25 100�09 100�34 99�62 99�66
LOI 0�59 0�35 0�75 0�61 0�7 0�27
Mg# 56�2 56�5 54�2 47�9 54�0 49�6 49�3 50�4 49�7
Ni 77�6 86�8 18�8 45�9 32�8 12 32 7�1 23�1
La 39 57 52 58 84 64 96 21 79
Ce 76 99 91 102 148 112 180 35 151
Pr 9�0 10�8 9�9 11�0 16�3 12�1 20�6 3�7 16�8
Nd 37 41 34 42 57 41 73 13 59
Sm 6�6 7�3 5�5 7�6 8�0 6�4 10�0 2�5 8�9
Eu 1�9 2�1 1�5 2�1 2�2 1�7 2�6 0�8 2�4
Gd 5�0 5�8 4�5 5�9 6�1 5�0 7�4 2�5 6�7
Tb 0�8 1�0 0�6 1�0 0�7 0�7 0�8 0�4 0�8
Dy 3�6 4�3 3�7 4�7 3�8 3�5 4�5 2�1 4�5
Ho 0�7 0�8 0�7 0�9 0�7 0�6 0�7 0�4 0�8
Er 1�9 2�2 2�0 2�3 1�7 1�8 1�9 1�3 2�3
Tm 0�3 0�4 0�3 0�4 0�3 0�3 0�3 0�2 0�3
Yb 2�0 2�5 1�9 2�4 1�6 1�7 1�7 1�2 2�1
Lu 0�3 0�4 0�3 0�4 0�3 0�3 0�3 0�2 0�3
Ba 778 754 768 707 1098 881 1184 563 1162
Hf 3�4 4�1 4�4 4�1 4�3 4�5 4�6 2�8 4�4
Nb 18�9 28�3 22�2 31�6 8�2 27�6
Rb 67�7 41�1 56�9 35�4 57�3 42�5
Sr 1161 1217 845 1142 1890 1026 2084 495 1932
Pb 15�9 18�23 14�43
Ta 1�1 1�1 0�9 1�0 1�2 1�2 1�5 0�6 1�2
Th 6�3 5�7 11�8 5�9 9�4 9�4 5�9 6�6 6�9
U 1�5 1�5 3�3 1�2 1�9 2�4 1�4 1�6 1�7
Zr 141 188 187 187 195 209 213 114 210
Y 19�4 24�9 19�9 26�8 18�9 18�5 21�2 12�5 23�6

(continued)
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done at ACME Labs by Bureau Veritas minerals, in

Vancouver, Canada, and at Royal Holloway University,

London.
For analysis at ACME Labs, samples were heated to

1000�C to determine loss on ignition (LOI), and then

fused in a platinum–gold crucible with a lithium tetrabo-

rate flux. The resulting fusion beads were then analysed

by X-ray fluorescence (XRF) for major elements. Two in-

ternal ACME standards reproduced expected values to

better than 3% (for all oxides >1 wt %). Trace element

concentrations were determined by inductively coupled

plasma mass spectrometry (ICP-MS) on the fused beads

after digestion in nitric acid. Analysis of Ni concentra-

tions involved digestion in aqua regia at 95�C. Two in-

ternal ACME standards reproduced expected values to

better than 10% for trace elements. Values for internal

and external standard data are shown in

Supplementary Data A.
Analysis at Royal Holloway was by inductively

coupled plasma optical emission spectroscopy (ICP-

OES) for major elements and some high-abundance

trace elements (Sr, Zr, Ni) and ICP-MS for low-abun-

dance trace elements. Major element analyses followed

the methods described by Walsh et al. (1981) and

Garbe-Schönberg (1993). The relative standard devi-

ation on the external standards NIM-G, NIM-L, BHVO-1,

RGM-1 and STM-1, as well as internal standards, was

better than 5% (for all oxides >1 wt %). Trace elements

were analysed after HNO3–HF–HClO4 digestions. Prior

to analysis, samples were spiked with 5 ng ml–1 of in-

dium (In) and rhenium (Re) for internal standardization.

For analytical quality control, five international

Table 1: Continued

Volcanic field: Vardenis Vardenis Vardenis Syunik Syunik Syunik Syunik Syunik Syunik
Sample: 4.02.15 5.06.15 6.03.15 1.4A.08 2.6.08 2.7.08 2.8.08 2.9.08 2.10.08
Eruptive type: Lava Lava Lava Scoria Bomb Bomb Lava Bomb Lava
Latitude: 40�17904 39�96908 39�98746 39�44133 39�48285 39�4587 39�4601 39�48452 39�46787
Longitude: 45�6186 45�68293 45�61326 46�08888 46�2693 46�24037 46�26768 46�2177 46�25762
Elevation (m): 1956 2872 3454 1876 1969 1849 1958 2107 1956
Lab. analysis:* ACME ACME ACME RH RH RH RH RH RH

SiO2 51�51 51�47 53�73 50�52 53�23 50�44 51�74 51�58 47�08
TiO2 1�33 1�52 1�08 1�43 1�12 1�32 1�14 1�07 1�31
Al2O3 16�77 16�47 17�09 16�31 17�11 16�82 16�26 16�49 14�39
Fe2O3 tot† 8�57 8�60 7�60 9�97 8�65 9�31 8�75 8�46 11�45
MnO 0�14 0�14 0�13 0�14 0�13 0�14 0�13 0�13 0�15
MgO 6�15 4�56 4�06 5�20 4�15 4�44 4�77 4�71 11�65
CaO 8�33 8�59 7�24 8�74 6�87 8�16 8�61 7�03 9�83
Na2O 4�66 4�20 4�79 4�36 5�03 5�12 4�76 4�90 3�29
K2O 2�04 2�26 2�75 2�73 3�20 3�25 2�89 3�33 1�19
P2O5 0�73 0�93 0�90 1�02 0�96 1�12 1�00 0�93 0�53
Total 100�41 99�46 99�78 99�40 99�59 99�20 99�17 97�78 99�74
LOI 0�06 0�62 0�27
Mg# 58�7 51�2 51�4 50�8 48�8 48�6 51�9 52�5 66�8
Ni 16�3 18�8 23�7 49�9 52�4 45�0 56�7 85�1 275�5
La 89 75 75 89 95 99 93 89 32
Ce 167 138 132 170 172 193 175 159 66
Pr 19�4 15�7 14�5 18�8 18�0 21�4 18�7 16�8 8�3
Nd 68 58 50 73 67 84 72 63 34
Sm 9�9 8�6 8�0 11�3 10�3 12�7 11�1 9�5 6�5
Eu 2�7 2�4 2�0 2�9 2�7 3�3 2�9 2�6 1�8
Gd 7�7 7�1 5�8 8�0 7�5 8�7 7�7 7�0 4�9
Tb 0�9 0�8 0�7 1�1 1�0 1�2 1�1 1�0 0�9
Dy 4�6 4�6 3�8 4�3 4�0 4�3 4�0 3�7 4�0
Ho 0�7 0�9 0�7 0�8 0�7 0�8 0�7 0�7 0�8
Er 2�1 2�4 2�0 2�0 2�0 2�0 1�9 1�8 2�1
Tm 0�3 0�3 0�3 0�3 0�3 0�3 0�3 0�3 0�4
Yb 2�0 2�1 1�8 2�0 2�0 2�0 1�9 1�9 2�2
Lu 0�3 0�3 0�3 0�3 0�3 0�3 0�3 0�3 0�4
Ba 1171 947 962 1109 1057 1220 1107 1192 430
Hf 5�5 4�5 4�3 4�5 5�1 4�9 5�4 4�7 3�0
Nb 28�3 20�0 25�8
Rb 47�9 37�4 43�4
Sr 1899 1537 1411 2003 1722 2531 1998 2050 1073
Pb 15�2 18�0 16�7 17�5 19�9 9�0
Ta 1�2 1�0 1�0 1�6 1�8 1�7 1�7 1�6 0�7
Th 7�1 6�9 7�1 6�5 8�2 6�8 8�4 7�8 2�6
U 1�6 1�5 1�4 1�4 1�7 1�5 1�5 1�7 0�7
Zr 245 202 215 199 234 224 246 220 126
Y 21�9 25�0 21�4 23�3 23�4 24�1 20�6 20�5 22�2

(continued)
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reference materials were analysed: NIM-G, NIM-L,

BHVO-1, RGM-1 and STM-1. The standards analysed as

unknowns generally gave trace element concentrations

that deviated by <15% from literature values; the

results of these measurements are reported in

Supplementary Data A.

Sr–Nd isotopes
Thermal ionization mass spectrometry (TIMS) was used

for the analysis of 87Sr/86Sr and 143Nd/144Nd. Strontium

(Sr) and neodymium (Nd) were extracted from unspiked

rock powders that were dissolved in an HNO3:HF acid

mixture (1:4), followed by conventional ion-exchange

chromatographic techniques at the University of Leeds.

Sr and Nd isotope ratios were measured on a

ThermoScientific Triton multi-collector mass

spectrometer running in static mode. The normalization

value for fractionation of 87Sr/86Sr was 86Sr/88Sr ¼
0�1194; that of 143Nd/144Nd was 146Nd/144Nd ¼ 0�7219.

Instrument errors for determinations of 87Sr/86Sr and
143Nd/144Nd are reported as the standard error, 2r (i.e.

two standard deviations about the mean using 200–240

measurements). External precision (2r) for Sr and Nd

isotopic ratios from successive replicate measurements

of primary standards was better than 35 ppm for the

NIST SRM-987 International Reference Standard

(87Sr/86Sr ¼ 0�710260 for nine runs averaged, with a

standard deviation of 1�1�10-5) and better than 25 ppm

for the La Jolla Nd International Reference Standard

(143Nd/144Nd ¼ 0�511842 for 11 runs averaged, with a

standard deviation of 2�5� 10-5). USGS standard BHVO-

1 was also run as a validation material throughout the

Table 1: Continued

Volcanic field: Syunik Syunik Syunik Syunik Syunik Syunik Syunik Syunik Syunik
Sample: 5.21.08 6.24.08 6.25.08 4.16.10 8.02.15 8.03.15 8.04.15 8.05.15 8.06.15
Eruptive type: Lava Scoria Bomb Lava Bomb Bomb Lava Bomb Lava
Latitude: 39�75548 39�68745 39�68745 39�56577 39�42896 39�4141 39�49615 39�49431 39�50412
Longitude: 45�85745 45�91403 45�91403 46�21687 46�27307 46�28308 46�24583 46�24621 46�20926
Elevation (m): 2871 2514 2514 2731 1896 1603 2168 2185 2237
Lab. analysis:* RH RH RH RH ACME ACME ACME ACME ACME

SiO2 53�46 48�97 48�91 53�53 49�16 51�58 52�01 45�80 50�11
TiO2 1�05 1�56 1�60 1�13 1�43 1�21 1�12 1�58 1�14
Al2O3 16�41 16�28 16�37 17�08 16�91 16�65 16�68 14�92 15�92
Fe2O3 tot† 8�62 10�06 10�14 8�48 9�03 7�66 7�26 9�56 7�28
MnO 0�13 0�14 0�14 0�12 0�14 0�13 0�13 0�16 0�13
MgO 4�84 4�77 4�66 4�02 5�37 4�29 4�54 7�77 4�44
CaO 7�12 8�63 8�81 7�71 8�66 8�01 7�23 10�02 8�60
Na2O 4�45 4�47 4�02 4�75 4�23 4�48 4�31 4�30 4�78
K2O 3�02 3�03 3�07 3�20 2�54 3�14 3�24 2�64 3�75
P2O5 0�92 1�30 1�36 0�93 1�24 1�06 0�98 1�27 1�18
Total 99�15 98�19 98�05 100�10 99�83 99�76 99�60 98�90 98�42
LOI 0�98 1�41 1�92 0�73 0�88
Mg# 52�7 48�4 47�6 48�4 54�1 52�6 55�3 61�7 54�7
Ni 66�9 38�3 38�6 37�5 66�3 25 66�3 117�1 19�9
La 85 97 98 82 101 94 94 75 103
Ce 150 194 198 152 197 175 177 158 190
Pr 15�9 21�8 22�1 16�0 23�1 20�0 19�6 19�6 21�3
Nd 60 86 87 60 81 71 68 75 76
Sm 9�4 13�2 13�5 9�0 11�7 9�7 9�5 11�0 10�4
Eu 2�4 3�3 3�4 2�4 3�1 2�6 2�5 3�0 2�8
Gd 7�0 8�9 9�3 6�5 8�0 6�8 6�6 7�6 7�4
Tb 1�1 1�2 1�3 0�8 0�9 0�8 0�7 0�9 0�9
Dy 4�1 4�5 4�7 3�9 4�6 4�0 3�8 4�7 4�3
Ho 0�8 0�8 0�8 0�8 0�7 0�7 0�7 0�8 0�7
Er 2�0 2�1 2�1 2�1 1�9 1�7 1�8 2�1 1�9
Tm 0�3 0�3 0�3 0�3 0�3 0�3 0�3 0�3 0�3
Yb 2�1 1�9 2�0 1�6 1�7 1�7 1�6 1�9 1�7
Lu 0�4 0�3 0�3 0�2 0�3 0�2 0�3 0�3 0�3
Ba 1102 1176 1211 1152 1181 1180 1363 1093 1705
Hf 4�3 4�7 4�6 4�3 4�5 4�5 4�6 3�7 4�7
Nb 24�5 37�8 28�4 31�1 24�1 31�8
Rb 37�0 34�9 43�0 46�7 31�3 53�3
Sr 1585 2358 2576 1827 2150 2161 2198 2325 2812
Pb 15�7 17�2 23�2
Ta 1�3 1�7 1�8 0�9 1�4 1�2 1�4 0�9 1�4
Th 8�3 6�1 6�0 5�5 6�6 6�6 7�9 3�6 7�8
U 1�4 1�4 1�3 1�0 1�4 1�2 1�5 0�8 1�9
Zr 192 198 198 201 204 217 244 166 236
Y 23�0 24�3 23�5 23�6 21�7 19�5 20�0 23�4 21�1

(continued)
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run period for both 87Sr/86Sr and 143Nd/144Nd. Once cor-

rected to an NIST SRM 987 preferred value of 0�710246

using the accompanying primary standard measure-

ment, all measurements of 87Sr/86Sr for BHVO-1 repro-

duce a literature value of 0�703475 to within 2r (Weis

et al., 2006). All measured 87Sr/86Sr ratios were cor-

rected to the literature NIST SRM 987 only. For Nd iso-

topes, all samples were corrected to the literature value

of BHVO-1 (0�512986) giving an average correction of

0�00002. The total chemistry blanks for Sr and Nd were

negligible during the period of measurements (0�4 ng

for Sr and 0�3 ng for Nd).

PETROGRAPHY

Southern Lesser Caucasus volcanic rocks are generally

very fresh, with generally low LOI values (usually <1%)

for the majority of mafic samples (Table 1). The ground-

mass can sometimes contain minor amounts of clay

minerals, but in many cases it is very fresh, with small

pockets of volcanic glass present in a minority of sam-

ples (Table 2).

Tephrites, trachybasalts and trachybasaltic ande-

sites from Syunik always contain phenocrysts

(>0�3 mm) of clinopyroxene, and may have olivine,

amphibole and apatite phenocrysts. Clinopyroxene is

Table 1: Continued

Volcanic field: Syunik Syunik Syunik Syunik Syunik Syunik Syunik Syunik Syunik
Sample: 8.07.15 9.01.15 9.02.15 10.01.15 10.02.15 10.03.15 11.02.15 11.3.15 11.04.15
Eruptive type: Bomb Plug Bomb Bomb Lava Scoria Lava Scoria Lava
Latitude: 39�50771 39�53042 39�51419 39�64401 39�64359 39�6413 39�62041 39�63605 39�63671
Longitude: 46�20948 46�22106 46�23795 46�102 46�10184 46�10138 46�02615 46�03841 46�04296
Elevation (m): 2314 2738 2608 2811 2693 2614 2321 2536 2542
Lab. analysis:* ACME ACME ACME ACME ACME ACME ACME ACME ACME

SiO2 49�81 51�60 47�68 47�89 51�35 51�44 49�60 47�27 48�67
TiO2 1�37 1�22 1�78 1�26 1�48 1�46 1�25 1�80 1�73
Al2O3 16�80 17�40 15�80 15�58 16�93 16�91 16�87 15�49 15�86
Fe2O3 tot† 8�15 8�20 10�07 8�14 8�96 8�92 8�49 10�07 9�77
MnO 0�13 0�13 0�15 0�14 0�14 0�14 0�14 0�15 0�14
MgO 4�55 4�42 6�28 4�45 4�78 4�79 5�09 5�97 5�65
CaO 8�29 7�51 9�54 9�64 8�23 8�07 8�48 9�87 9�69
Na2O 4�62 4�50 4�24 4�47 4�85 4�81 4�87 4�50 4�37
K2O 3�50 3�06 2�10 3�87 2�11 2�13 2�75 2�52 2�49
P2O5 1�17 1�26 1�14 1�54 0�81 0�82 1�27 1�17 1�12
Total 98�91 99�94 99�68 97�74 99�93 99�9 99�19 99�04 100�06
LOI 1�07 0�49 0�77 0�55 0�18 0�29 0�22 0�08 0�44
Mg# 52�8 51�6 55�3 52�0 51�4 51�5 54�3 54�0 53�4
Ni 29�6 41�6 60�8 12�1 34 35�8 49 41�7 35
La 98 104 75 102 61 64 95 88 86
Ce 193 189 151 195 115 114 175 187 175
Pr 22�7 21�2 18�0 22�9 12�9 13�0 20�3 22�3 20�9
Nd 82 72 68 81 48 47 71 82 77
Sm 11�7 10�1 10�4 11�6 8�0 7�6 10�0 11�7 10�7
Eu 3�0 2�7 2�9 3�1 2�3 2�4 2�7 3�1 2�9
Gd 7�6 7�7 8�1 8�6 6�9 7�1 7�1 8�6 7�8
Tb 0�9 0�9 0�9 0�9 0�8 0�9 0�8 0�9 0�9
Dy 4�6 4�8 4�9 4�8 5�0 4�9 4�4 4�8 4�6
Ho 0�7 0�7 0�8 0�8 0�9 0�9 0�7 0�7 0�8
Er 1�9 2�1 2�0 2�1 2�6 2�5 1�8 2�0 1�9
Tm 0�3 0�3 0�3 0�3 0�4 0�4 0�3 0�3 0�3
Yb 1�7 1�8 2�0 2�0 2�4 2�3 1�7 1�7 1�7
Lu 0�2 0�3 0�3 0�3 0�4 0�4 0�2 0�2 0�3
Ba 1446 1201 1022 1795 924 915 1301 1151 1105
Hf 4�6 4�3 4�0 4�5 5�1 4�8 3�9 3�9 4�0
Nb 28�8 31�3 21�9 28�7 19�4 20�5 23�2 33�4 32�6
Rb 44�2 41�5 26�9 51�2 34�0 33�7 33�2 33�8 34�1
Sr 2504 2032 2128 2889 1413 1363 2185 2348 2131
Pb
Ta 1�2 1�2 0�9 1�1 0�8 0�8 1�0 1�3 1�2
Th 5�1 6�0 3�2 7�1 4�8 4�9 5�5 5�5 5�8
U 1�1 1�1 1�0 1�1 1�0 1�1 1�0 1�3 1�2
Zr 210 218 177 202 240 235 169 190 186
Y 20�3 22�3 24�0 25�0 26�6 26�3 21�6 22�0 22�3

*Laboratory where samples were analysed: ACME, ACME labs, Bureau Veritas minerals, Vancouver, Canada; RH, Royal Holloway
University, UK.
†Royal Holloway major element data report Fe as FeO*, which was recalculated to Fe2O3 (tot) by dividing by a factor of 0�89981.
Totals are the original totals prior to Fe2O3 (tot) recalculation.
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ubiquitous and normally occurs as glomerocrysts

(Fig. 5f). Some samples have abundant olivine micro-

phenocrysts (Fig. 5d) and phenocrysts (up to 600 lm),

although olivine is generally restricted to the most

mafic samples (low-silica trachybasaltic andesite or

more mafic). Amphibole phenocrysts are common (up

to 2 cm), and occur across the compositional range

(Fig. 5a). In several samples amphibole is absent, or

partially resorbed (Fig. 5c), owing to disequilibrium

conditions prior to eruption. The apatite phenocrysts

can reach up to 2 mm in size in some cases (Fig. 5b).

The common occurrence of hydrous minerals, such as

amphibole and apatite, is noteworthy in comparison

with the volcanic rocks from the northern and central

Lesser Caucasus, where such mineral phases are less

common, certainly in the most mafic samples (Connor

et al., 2011; Neill et al., 2013). Typical groundmass in

mafic volcanic rocks from Syunik is composed of

plagioclase, clinopyroxene, and Fe–Ti oxides, with vol-

canic glass in some scoria samples. It should be noted

that plagioclase is present only in the groundmass and

is not a phenocryst phase.

More evolved high-silica trachybasaltic andesites,

trachyandesites and trachytes from Syunik show the

appearance of abundant plagioclase phenocrysts. In

some cases, these plagioclase crystals (up to 2 mm)

show evidence of multiple stages of crystallization with

distinct core to rim zonation (Fig. 5e). Amphibole also

becomes a more common phenocryst phase, whereas

clinopyroxene is less dominant. The groundmass is in-

creasingly dominated by plagioclase. Rhyolites are

common in the northern part of Syunik, where they

commonly form obsidian flows.

In Vardenis all samples are trachybasaltic andesites

or more evolved, and plagioclase is always a pheno-

cryst phase. In one trachybasaltic andesite (Table 2,

sample 6.3.15), biotite is also a phenocryst phase.

Rhyolites from Vardenis commonly have biotite, plagio-

clase, quartz and potassium feldspar as phenocrysts,

and a groundmass composed of quartz and potassium

feldspar.

From the occurrence of different minerals in the

range of rock types we sampled across the Syunik and

Vardenis volcanic highlands (34 samples; Table 2), it is

possible to suggest a general order of crystallization

for both areas, which would probably have been: oliv-

ine þ Fe–Ti oxides 6 apatite; clinopyroxene þ Fe–Ti

oxides 6 olivine 6 amphibole; clinopyroxene þ

Table 2: Phenocryst and groundmass minerals for volcanic rocks from the southern Lesser Caucasus

Sample Field Volcano/place Eruptive type Rock name Mg# Phenocrysts Groundmass

6.27.08 V Khrbekner Lava TBA 56�2 ol, cpx, plag plag, cpx, ox
4.1.12 V Tsovak pyroclastic flow Pumice R 17�3 kspar, plag, qtz glass
5.1.13 V Smbatasar Lava TA 50�9 cpx, plag, amph plag, ox, cpx
5.1.15 V Geghagar tuff Ignimbrite R 44�5 kspar, plag, phlog, qtz glass
5.3.15 V Porak Lava TA 53�9 cpx, plag plag, cpx, ox
5.4.15 V Zhiligyol Lava TA 51�1 cpx, qtz (xen) plag, glass, ox, cpx
5.5.15 V Vent W of Zhiligyol Plug R 17�6 kspar, plag, bio, qtz altered
5.9.15 V Lake Al-Lich Plug Tr 29�5 plag, phlog, kspar, cpx kspar, qtz, ox, cpx
6.3.15 V Torgomayr Lava TBA 51�4 cpx plag, bio, ox
7.2.15 V Dome E of Trdatanist Plug R 25�4 kspar, qtz, plag, bio altered
7.4.15 V S slopes of V upland Lava TA 54�8 cpx, amph (pseud), plag plag, cpx, ox, glass
7.5.15 V S slopes of V upland Lava TBA 54�0 cpx, plag, amph plag, cpx, ox, ol
1.4C.08 S Garusar Scoria TBA 50�8 cpx, amph plag, cpx, ox
2.5.08 S Shinuayr Bomb TBA 50�5 cpx, amph, ol glass, plag, ox, cpx
2.6.08 S Morutumb Bomb TBA 48�8 cpx, amph, ol, ap plag, glass, cpx, ox
2.7.08 S Yerakov Blur Bomb PTe 48�6 amph, cpx glass, plag, ox, cpx
2.9.08 S Pokr Chobanasar Bomb TBA 52�5 cpx, amph, ol plag, cpx, ox
2.10.08 S Barurtumb Lava B 66�8 ol, cpx plag, cpx, ox
5.21.08 S Berd Lava TBA 52�7 ol, cpx plag, ox
6.24.08 S Tekblur Scoria PTe 48�4 cpx glass, plag
3.10.10 S Unit 7 Lava Tr 42�5 plag, cpx, amph (pseud) plag, ox, cpx
3.11.10 S Unit 7 Lava TA 46�5 cpx, amph (pseud) plag, ox, cpx
4.19.10 S Ishkhanasar Lava TA 44�5 plag, amph plag
5.5.12 S Tshkhouk Lava TA 50�0 cpx, plag, ox plag, ox, cpx
8.2.15 S Khozazblur Bomb TB 54�1 cpx, ol plag, cpx, ox
8.3.15 S Verjiblur Bomb TBA 52�6 cpx, amph plag, cpx, ap
8.7.15 S Marakhlasar Scoria PTe 52�8 amph, cpx glass, plag
9.1.15 S Spiovblur Plug TBA 51�6 cpx, amph, plag, ol, ap plag, cpx, ox
9.2.15 S Chobanasar Bomb TB 55�3 cpx, ol, amph (pseud) plag, cpx, ox
10.2.15 S Kyorpasar Lava TBA 51�4 aphyric plag, cpx, ol, ox
10.3.15 S Mets Yerkvoryak Scoria TBA 51�5 plag, ol, cpx, ox glass
10.6.15 S Mets Yerkoryak Scoria TBA 51�6 cpx glass, plag, cpx, ox
11.1.15 S Quarry, Shaqi village Lava TBA 46�3 plag, cpx plag, cpx, ox
11.3.15 S Sherepasar Scoria Te 54�0 cpx, ol, amph plag, glass, cpx, ox

Volcanic field abbreviations: V, Vardenis; S, Syunik. Mineral abbreviations: ol, olivine; cpx, clinopyroxene; plag, plagioclase; ox,
Fe–Ti oxide; kspar, potassium feldspar; qtz, quartz; amph, amphibole; bio, biotite; ap, apatite. Mineral texture abbreviations: xen,
xenocrystic; pseud, pseudomorphic. Rock names: B, basalt; R, rhyolite; TB, trachybasalt; TBA, trachybasaltic andesite; TA, tra-
chyandesite; Tr, trachyte; Te, tephrite–basanite; PTe, phonotephrite.
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plagioclase þ Fe–Ti oxides 6 amphibole 6 phlogopite;

plagioclase þ potassium feldspar þ Fe–Ti oxides 6

phlogopite. The predominant focus of this study is on

the mechanism of mantle melting, which requires the

effect of fractional crystallization to be minimized. Only

primitive samples with <54 wt % SiO2 and >4 wt %

MgO are used to investigate questions of magma

petrogenesis. These samples will probably all have

only fractionated mafic minerals, with no significant

feldspar fractionation.

RESULTS

Major element characteristics
Across the Lesser Caucasus there is a great diversity in

the compositions of the volcanic rocks within each vol-

canic highland, with most showing a complete compos-

itional range from basalt to rhyolite (Fig. 6). Rhyolites

are also present in the northern Lesser Caucasus

(Karapetian et al., 2001), although they were not
sampled for the Neill et al. (2013) study. Southern

Lesser Caucasus samples, with Syunik being the most
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Fig. 5. Representative back-scattered electron images (a–c) and photomicrographs (d–f) of collision-related volcanic rocks in the
southern Lesser Caucasus. (a) Unaltered amphibole (Amph) phenocryst in trachybasaltic andesite scoria from Syunik.
Groundmass composed of clinopyroxene, plagioclase and oxides. (b) Large apatite (Ap) phenocryst >1 mm in diameter, with oxide
inclusions in trachybasaltic andesite lava, Syunik. (c) Large amphibole phenocryst with overgrowing plagioclase (Plag) grains in tra-
chybasaltic andesite lava from Vardenis. The rim of the amphibole is broken down into oxides and clinopyroxene. (d) Crossed
polars (XPL) image of olivine (Ol) phenocrysts in trachybasalt lava from Syunik. (e) XPL image of plagioclase phenocryst in trachy-
basaltic andesite lava with sharp compositional boundary between the core and rim (in extinction) of this crystal. (f) XPL image of
clinopyroxene (Cpx) glomerocryst in trachyandesite sample from Vardenis.
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extreme, have more alkaline compositions compared

with those from the north, with the largest Na2O and

K2O variations between north and south in the most

mafic samples (Fig. 6). Southern Lesser Caucasus sam-

ples are also more potassic when compared with their

northern counterparts (shoshonitic versus calc-alkaline

series; Fig. 7a). As well as being more alkaline, mafic

southern Lesser Caucasus samples extend to lower

SiO2 contents.

On some major element variation diagrams, such as

MgO versus SiO2 (Fig. 7b), the trends are fairly similar

for northern and southern Lesser Caucasus samples.

However, other elements, notably P, display a signifi-

cant geographical gradient in concentration for the

most mafic samples, from 0�4 wt % P2O5 in the north to

as high as 1�6 wt % in the south (Fig. 7c).

Trace element characteristics
Mid-ocean ridge basalt (MORB)-normalized trace elem-

ent patterns all show profiles typical of subduction-

related volcanic rocks, with positive anomalies for Ba,

K, Pb and Sr and negative anomalies for the high field

strength elements (HFSE) Nb, Ta and Ti (Fig. 8).

Superimposed on this is an additional enrichment in in-

compatible trace elements, in particular the light rare

earth elements (LREE; Fig. 9), Sr, Ba and P, which

becomes increasingly pronounced to the south of the

transect. Owing to the LREE enrichment, as well as a

more moderate depletion in heavy rare earth elements

(HREE), REE profiles become increasingly steep

towards the south (Fig. 9), with CI-normalized La/Yb

ratios of five in the northern Lesser Caucasus compared

with values as high as 40 in the south.
These additional enrichments do not resemble those

of typical intra-plate ocean island basalts (OIB), which

show uniform enrichments in all the most incompatible

trace elements, rather than the larger enrichments seen

in the LREE relative to the HFSE (Fig. 8e), as exemplified

by Ta and La in Fig. 7e and f, respectively. These add-

itional enrichments are seen most clearly in volcanic

rocks from NW Iran (Fig. 8e), a region of very thick litho-

sphere—up to 220 km (Priestley et al., 2012). In Fig. 8a–d

we show that the variations in the composition of

basalts within individual volcanic highlands are small,

relative to the variations in composition between the

highlands. Both the ubiquitous subduction (‘arc’) signa-

tures and additional enrichment are highlighted in

Fig. 10. All samples plot above the mantle array, typical

for rocks from volcanic arcs. However, the samples

from the southern Lesser Caucasus have higher Th/Yb

and Ta/Yb relative to their northern counterparts

(Fig. 10). Volcanic rocks from the thick lithosphere

Zagros Core region of NW Iran again plot as a compos-

itional end-member.

Given that amphiboles are relatively common in the

southern Lesser Caucasus rocks, it should be noted that

low Y (amphibole fractionation) trends dominate the Y

versus SiO2 plot for these rocks (Fig. 7d). Samples from

further north, in which anhydrous mineral assemblages

are more common, show both high Y (anhydrous as-

semblage) and low Y (hydrous) fractionation trends.

Sr–Nd isotope systematics
The Sr–Nd isotope compositions of the southern Lesser

Caucasus samples are shown in Table 3. 87Sr/86Sr

varies from 0�7043 to 0�7047, whereas eNd varies from

þ2�2 to þ4�2. All mafic volcanic rocks from the Lesser

Caucasus plot along the mantle array, with composi-

tions more enriched than normal (N)-MORB but more

depleted than Bulk Earth (Fig. 11). In general, those

samples from the SE have higher (more radiogenic)
87Sr/86Sr, and less radiogenic eNd than those samples

from the NW, defining a steep gradient on the Sr–Nd

isotope diagram (Fig. 11). A few samples plot away

from this trend to higher 87Sr/86Sr (see Crustal contam-

ination section of Discussion). Lesser Caucasus volcanic

rocks are isotopically more depleted than volcanic rocks

formed above very thick lithosphere in NW Iran

(>200 km; Priestley et al., 2012). They are also more

depleted than volcanic rocks from the Lake Van area,

which commonly display significantly more variable

Sr–Nd isotope compositions (not shown), probably be-

cause those magmas interacted extensively with contin-

ental crust during ascent (Pearce et al., 1990; Şen et al.,

2004; Ozdemir et al., 2006; Oyan et al., 2017).

Fig. 6. Total alkalis vs silica classification diagram for volcanic
rocks from the Lesser Caucasus mountain chain. Classification
boundaries are from Cox et al. (1979), Le Bas et al. (1986) and
Le Maitre et al. (1989). Data for Syunik and Vardenis are from
this study, whereas Shirak and Lori data are from Neill et al.
(2013, 2015), in this and all subsequent figures. Gegham data
are from I. P. Savov et al. (unpublished data). Abbreviations for
classification fields are as follows: B, basalt; BA, basaltic andes-
ite; A, andesite; D, dacite; R, rhyolite; TB, trachybasalt; TBA, tra-
chybasaltic andesite; TA, trachyandesite; Tr, trachyte; Te,
tephrite/basanite; PTe, phonotephrite.
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DISCUSSION

Crustal contamination
Volcanic rocks produced within the thicker lithosphere

of the southern Lesser Caucasus have higher concentra-

tions of incompatible trace elements, more radiogenic
87Sr/86Sr, and lower 143Nd/144Nd ratios. All of these fea-

tures could be produced by crustal contamination dur-

ing magmatic evolution, as has been suggested for

various parts of Eastern Anatolia, where assimilation of

radiogenic ancient continental crust gives 87Sr/86Sr

ratios of up to 0�7065 and marked variation of these

ratios with SiO2 (Pearce et al., 1990; Keskin et al., 2006).

All Sr–Nd isotope ratios for the Lesser Caucasus volcan-

ic rocks show small variations compared with what

would be expected if the magmas had been contami-

nated by continental crust. The crust in the Lesser

Caucasus is composed of a mixture of felsic meta-

morphic basement (South Armenian Block), arc volcan-

ic rocks and Mesozoic–Cenozoic sediments (Fig. 2).

Only the arc-related volcanic rocks would have similar

isotope compositions to the collision-related magmas,

such that assimilation of any of the other lithologies

would alter, often dramatically, the isotope composition

of the host magma. The majority of samples show in-

significant variability in 87Sr/86Sr and 143Nd/144Nd with

SiO2 within individual volcanic highlands (Fig. 12), sug-

gesting that isotope ratios are not being modified sig-

nificantly during magma evolution and storage in the

crust prior to eruption. The lack of isotopic variability

with SiO2 content suggests that assimilation of South

Armenian Block crust (Fig. 2), which with a basement
87Sr/86Sr ratio of �0�7303 (Baghdasaryan & Ghukasyan,

1985) should be easily identified, is unlikely. Similarly,

assimilation of sedimentary material is also unlikely,

given typical Tethyan (Mesozoic) flysch 87Sr/86Sr of

0�7112 (Prelevi�c et al., 2008).

One sample from the Syunik volcanic highland (1-

4A-08), which was sampled from a scoria cone contain-

ing large (centimetre-sized) felsic xenoliths entrained

within the trachybasaltic andesite scoria, has trace

element and isotopic characteristics indistinguishable

from the other mafic samples. The Sr–Nd isotope com-

position of one of the xenoliths (sample 1-4B-08;

Table 3) is also shown in Fig. 12, and is only slightly

Fig. 7. Selected major and trace elements plotted versus SiO2. (a) K2O; (b) MgO; (c) P2O5; (d) Y; (e) Ta; (f) La. All major elements are
recalculated to 100% on an anhydrous basis. Symbols and data sources are as in Fig. 6.
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elevated in 87Sr/86Sr (0�7049) above that of the

Quaternary basalts, suggesting that an unrealistically
high degree of assimilation would have to occur for the

composition of the magma to be significantly affected.

The 143Nd/144Nd (0�5128) is indistinguishable from

Syunik basalts. It is likely that the felsic xenolith is coge-

netic with the trachybasaltic andesite scoria host. It pro-

vides evidence that basaltic magmas in the southern
Lesser Caucasus are interacting with felsic igneous

rocks in the crust, which have a similar origin, rather

than interacting with ancient crust, which would have

strongly affected the Sr–Nd isotope ratios.
The curved patterns for major element variations

versus SiO2, including MgO (Fig. 7b), P2O5 (Fig. 7c) and

Al2O3 (not shown), suggest that the rhyolites are

derived from extreme degrees of magmatic differenti-

ation, rather than being crustal melts. These rhyolites

also do not appear to be mixtures between primitive
magmas and continental crust (Rudnick & Gao, 2003).

The Rb and Sr contents of a rhyolite from Syunik are

Fig. 8. MORB-normalized trace element patterns of mafic end-member samples for the Shirak and Lori (a), Gegham (b), Vardenis
(c), and Syunik (d) volcanic highlands, which correspond to regions 1–4 in Fig. 1, respectively. The selected samples are the three
samples with the highest MgO content (wt %) in each volcanic highland. Data sources are as in Fig. 6. For comparison, the total
range of ‘basalts’ (<52% SiO2) from the Syunik volcanic highland is shown in (a) and (b) as the pale green field. The total range of
Shirak and Lori basalts is shown as a gold field in (c) and (d). (d) also shows the composition of a Syunik rhyolite (diamonds) and
bulk continental crust (stars) for Rb, K and Sr, to demonstrate whether these rhyolites are likely to be formed by assimilation and/or
melting of continental crust. Composition of the continental crust is from Rudnick & Gao (2003). The total compositional variability
is illustrated in (e), where averages from the geographical extremes (Shirak in the north and Syunik in the south) are compared.
Also shown here is a sample from Kurdistan, NW Iran from Allen et al. (2013), formed from melting in a region of very thick litho-
sphere. Normalization factors are from Sun & McDonough (1989). The average composition of continental arc basalt is from
Kelemen et al. (2003).
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actually more extreme relative to the basalts than aver-

age continental crust (Rb more strongly enriched, Sr

more strongly depleted in the rhyolite; Fig. 8d). K2O is

more enriched in the rhyolite than in the basalts, where-

as continental crust has lower K2O than continental

crust (Fig. 8d). The lack of evidence for extensive as-

similation of continental crust in the petrogenesis of the

rhyolites suggests that these processes are likely to be

unimportant in the petrogenesis of the more primitive

magmas.
It is also possible that the magmas may have been

contaminated by Mesozoic–Paleogene arc crust (Fig. 2)

on their ascent, as has been suggested for the northern

Lesser Caucasus in some isolated cases (Neill et al.,

2015). The similar Sr–Nd isotope compositions of these

arc rocks (Mederer et al., 2013) to the collision-related

magmas mean that assimilation could be ‘cryptic’, with-

out obvious modification of Sr–Nd isotope ratios. Given

the arc-like incompatible trace element geochemistry of

Lesser Caucasus volcanic rocks, arc–crust assimilation

is unlikely to significantly alter trace element composi-

tions, although it is possible that such assimilation

could explain some of the spread in the southern Lesser

Caucasus data. The average composition of Mesozoic

arc rocks from the southern Lesser Caucasus (Kapan

Zone) is shown in Fig. 10 (Mederer et al., 2013). The Th/

Yb ratio of the arc rocks is elevated above the mantle

array similar to the post-collisional Lesser Caucasus

samples. However, the low Ta/Yb ratios of these arc

rocks make them unlikely candidates to explain the

more enriched composition of southern Lesser

Caucasus magmas.
There are a few examples of elevated 87Sr/86Sr ratios

in evolved samples above the background range. In

most cases, it seems that the Nd isotopes are unaffect-

ed. Some ancient arc samples from the Kapan zone,

southern Lesser Caucasus, have very high initial
87Sr/86Sr, but 143Nd/144Nd does not vary significantly in

the same samples (Mederer et al., 2013). Extensive as-

similation of such material would be required to explain

the elevated 87Sr/86Sr of these samples. Worthy of note,

however, are the very high Rb/Sr ratios (7–23) in these

rhyolites—sometimes 1000� greater than those of typ-

ical basalts (Table 1). Whereas decay of 87Rb over the

Fig. 9. Chondrite-normalized REE profiles for Plio-Pleistocene mafic volcanic rocks from the Lesser Caucasus for Shirak and Lori
(a), Gegham (b), Vardenis (c) and Syunik (d) volcanic highlands. The total compositional variability is illustrated in (e), where sam-
ples from Syunik and Shirak are compared. Normalization factors are from Sun & McDonough (1989). Data sources are as in Fig. 6.
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relatively short timeframe (<2 Myr) since cooling and

crystallization of lavas will have negligible effects on

the 87Sr/86Sr of basaltic rocks, such high Rb/Sr ratios

mean that post-crystallization decay will have a signifi-

cant effect for rhyolites (Fig. 12a). Indeed, minimum

ages for the rhyolites of between 0�6 and 1�4 Ma are suf-

ficient to give initial 87Sr/86Sr within the range observed

for basalts. As such, even in these rhyolites, crustal con-

tamination may have played an unimportant role in

magma evolution. It should be noted that the lower Rb/

Sr ratio of the felsic xenolith (0�12) means that its ele-

vated 87Sr/86Sr ratio was probably present during em-

placement of the host Quaternary mafic magma.

In summary, assimilation of crustal rocks with mark-

edly distinct geochemistry is unlikely, and although as-

similation of igneous rocks with similar petrogenetic

origins cannot be precluded, such processes would be

incapable of driving the enrichment in incompatible

trace element concentrations and Sr–Nd isotope ratios

observed from north to south in the volcanic rocks of

the Lesser Caucasus. The lack of evidence for crustal

contamination, along with the gradient in Sr–Nd isotope

ratios in Fig. 11, requires that there must be variation in

the composition of the mantle source.

Subduction modification of the mantle source in

the Lesser Caucasus
All mafic samples show distinct negative Nb–Ta and Ti

anomalies (Fig. 8), and positive spikes in Ba, K, Pb and

Sr in normalized trace element patterns, such that the

overall patterns, if not the absolute concentrations, are

typical of arc magmas. In the absence of evidence for

widespread crustal contamination, it is likely that these

features are inherited from the mantle source. Collision

between Arabia and Eurasia was preceded by subduc-

tion of various Tethyan ocean basins along several con-

vergent margins (Fig. 3). These subducting slabs would

probably have contributed slab material to the mantle

below the collision zone.

Following the approaches of Hofmann (2003) and

Turner et al. (2017), Fig. 13 illustrates how the ratios Ba/

La, Ce/Pb, Sr/Nd and Nb/U in mafic samples (<54 wt %

SiO2, >4 wt % MgO) vary with latitude. These ratios

show little variation within all MORB and OIB, but are

much more variable in volcanic arc rocks owing to the

subducted slab contribution, such that they can be used

here as proxies. In all of the plots in Fig. 13 these ratios

deviate from those of MORB or OIB, demonstrating the

presence of a slab component in their mantle source.

These ratios do not show consistent variability between

the volcanic highlands (Fig. 13), although Sr/Nd ratios

are slightly elevated to the south (Fig. 13c) and the Nb/U

ratio reaches a minimum (highest slab contribution) in

the central Lesser Caucasus. The lack of a consistent

trend in these ratios between volcanic highlands means

that the slab contribution is likely to be fairly uniform.

Although mixing between a depleted mantle source

and the likely composition of subducted sediment (e.g.

Tethyan flysch; Prelevi�c et al., 2008) comes close to

explaining the Sr and Nd isotopic composition of the

least enriched samples in Fig. 11, such mixing is unable

to explain the trend towards the higher 87Sr/86Sr and

lower 143Nd/144Nd seen in the SE. This enrichment in

the southern Lesser Caucasus must therefore be driven

by some other process. Pre-collision subduction events

have probably imparted a subduction signature on the

mantle source across the Lesser Caucasus. However,

the geochemical gradient between volcanic rocks of the

northern and southern Lesser Caucasus cannot be

explained by differences in the composition or size of

the slab contribution to the mantle source.

Modelling the conditions of mantle melting
It is possible to investigate how a thicker lithosphere

affects the conditions of melting by using the approach

of Shaw (2005) to forward model the composition of the

samples using a non-modal batch melting model

(Table 4), with the equation

Fig. 10. Th/Yb vs Ta/Yb variations in the volcanic rocks of the
Lesser Caucasus. Mantle source array and enrichment vectors
are after Pearce (1983). Lesser Caucasus data sources are as in
Fig. 6. NW Iran data are from Allen et al. (2013). Fractional crys-
tallization (FC) vector: from basalt to andesite uses a 50%
amphibole þ 50% clinopyroxene assemblage and basaltic melt
partition coefficients; from andesite to rhyolite uses a 50%
plagioclase þ 50% amphibole assemblage and andesite melt
partition coefficients. The vector has a starting composition as
the most mafic sample. Partition coefficients for Ta are: clino-
pyroxene–basalt ¼ 0�017; amphibole–basalt ¼ 0�05; amphi-
bole–andesite ¼ 0�21; plagioclase–andesite ¼ 0�03. For Th:
clinopyroxene–basalt ¼ 0�007; amphibole–basalt ¼ 0�05;
amphibole–andesite ¼ 0�16; plagioclase–andesite ¼ 0�01. For
Yb: clinopyroxene–basalt ¼ 0�28; amphibole–basalt ¼ 0�59;
amphibole–andesite ¼ 1�25; plagioclase–andesite ¼ 1�25. All
partition coefficients are from the GERM database (earthre-
f.org/GERM/). The average compositions of Mesozoic arc rocks
from the Kapan zone arc rocks are from Mederer et al. (2013).
The grey box labelled BCC is the composition of bulk continen-
tal crust from Rudnick & Gao (2003).
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Cl

C0
¼ 1

D þ Fð1� P Þ (1)

where Cl is the concentration of an element in the liquid,

C0 is the concentration of that element in the source, D

is the element’s bulk partition coefficient, F is the frac-

tion of melting, and P represents the partitioning of the

element into the melt according to the proportion in

which each mineral enters the melt. None of the sam-

ples in the region are in equilibrium with mantle olivine,

so all must have undergone some fractional crystalliza-

tion between last equilibration with the mantle and

eruption. This is accounted for by assuming 8% frac-

tional crystallization of an assemblage composed of

90% olivine and 10% spinel [following the approach of

Shaw (2005)]. From equation (1) we can see that there

are three parameters, each of which can be varied to

generate the trace element concentration of the most

primitive southern Lesser Caucasus samples. First, the

fraction of melting (F) could vary, affecting the concen-

tration of all incompatible trace elements. Second, if the

modal mineralogy is changed then the partitioning of

elements between source and melt [D and P in equation

(1)] will change. Third, the concentration of elements in

the source rock (C0) could be changed.

Our approach is to take the equivalent model of Neill

et al. (2015) for the most geochemically depleted sam-

ples from the northern Lesser Caucasus and iteratively

vary two of these parameters to attempt to reproduce

the average composition of primitive basalts in the

south. Variations in the mineralogy of the melt source

are simplified to spinel versus garnet peridotite melting.

Spinel peridotite modal mineralogy and melting pro-

portions are from Shaw (2005) and Neill et al. (2015),

Table 3: Sr–Nd isotope compositions for Pleistocene lavas from the southern LC

Rock type 87Sr/86Sr 62r (�10–6) 143Nd/144Nd 62r (�10–6) eNd

Vardenis
4.2.15* TBA 0�704356 10 0�512802 12 3�20
5.3.15* 0�704461 8 0�512803 10 3�22
5.6.15 TBA 0�704505 12 0�512789 10 3�24
5.9.15 Tr 0�704506 12 0�512805 10 3�26
6.3.15 0�704429 8 0�512796 10 3�08
1.1.13* TBA 0�704432 10 0�512808 10 3�32
1.2.13* TBA 0�704420 8 0�512781 6 2�79
3.3.13* TBA 0�704399 12 0�512798 10 3�12
5.1.13 0�704351 8 0�512805 6 3�26
5.2.13 0�704181 8 0�512836 10 3�86
6.2.13 TBA 0�704455 8 0�512815 8 3�45
6.27.08 TBA 0�704307 12 0�512783 12 2�83
7.29.08 TBA 0�70433 8 0�512799 14 3�51

Syunik
8.3.15 TBA 0�704438 8 0�512785 8 2�87
8.4.15 TBA 0�704466 8 0�512794 9 3�04
8.5.15 Te 0�704615 8 0�512779 10 2�75
8.6.15 PTe 0�704553 10 0�512779 12 2�75
9.1.15 TBA 0�704439 10 0�512803 8 3�22
9.2.15 TB 0�704407 14 0�512801 8 3�18
10.1.15 PTe 0�704660 10 0�512761 10 2�40
10.2.15 TBA 0�704262 10 0�512856 10 4�25
10.3.15 TBA 0�704245 10 0�512821 10 3�57
11.1.15 TA 0�704378 10 0�512806 8 3�28
11.2.15 PTe 0�704595 12 0�512781 11 2�79
11.3.15 Te 0�704277 12 0�512795 5 3�06
5.5.12 TA 0�704432 10 0�512783 10 2�83
2.3.10 R 0�704425 8 0�512788 8 2�93
3.10.10 Tr 0�704419 8 0�512796 4 3�08
3.11.10 TA 0�704530 10 0�512783 4 2�83
4.19.10 TA 0�704330 8 0�512801 12 3�18
1.4A.08 TBA 0�704317 6 0�512792 10 3�00
1.4B.08 (xenolith) G 0�704981 32 0�512797 12 3�10
2.7.08 PTe 0�704440 10 0�512797 7 3�10
2.8.08 TBA 0�704381 10 0�512799 10 3�14
2.10.08 B 0�704396 14 0�512827 12 3�69
4.15A.08 R 0�705207 6 0�512783 8 2�83
4.18A.08 R 0�704857 8
5.20A.08 R 0�705482 14 0�512770 14 2�57
5.21.08 TBA 0�704475 9 0�512767 10 2�52
6.26.08 TA 0�704273 8

Rock type abbreviations are as in Fig. 6 and Table 2. All Sr ratios are normalized to NIST SRM 987, and all Nd ratios are normalized
to La Jolla corrected BHVO-I (see Methods). Epsilon values are calculated for the present day using (143Nd/144Nd)CHUR ¼ 0�512638
for Chondritic Earth (Jacobsen & Wasserburg, 1980).
*Samples from the east side of the Sevan–Akera suture (see text for discussion).
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respectively, whereas for the garnet peridotite they are

from Thirlwall et al. (1994) and Allen et al. (2013), re-

spectively (Table 4). Varying the fraction of melting is

self-explanatory. Remaining disparities between the

model and observed trace element concentrations are

likely to be due to differences in the composition of the

mantle source. The different stages of melt modelling

are shown in Table 4.

REE chemistry is used to obtain a qualitative under-

standing of the changing conditions of melting between

the northern and southern Lesser Caucasus (Fig. 14). In

Fig. 14a, two vectors are plotted, which show how the

composition of the magmas should change with the de-

gree of melting versus source mineralogy (presence or

absence of garnet) and/or changes in source compos-

ition. Davidson et al. (2013) showed that REE partition-

ing between clinopyroxene and basaltic magma means

that melting curves for peridotite will be very steep on a

Dy/Dy* versus Dy/Yb plot. The assumption that clino-

pyroxene is a residual phase is reasonable given the

low degrees of melting (3% or less) previously esti-

mated for the northern Lesser Caucasus (Neill et al.,

2015). Amphibole is also likely to be an important re-

sidual phase given the positive correlation between Dy/

Dy* and Ti/Ti* (the size of the Ti anomaly in Fig. 8; not

shown here). It is unclear from Fig. 14a whether garnet

in the mantle source, or a LREE-enriched source is

responsible for the high Dy/Yb ratio in southern Lesser

Caucasus samples. Both should give vectors close to

horizontal in Fig. 14a, as both changes will steepen the

REE profile rather than changing its curvature
(Davidson et al., 2013). The southern Lesser Caucasus

samples have lower HREE abundances than samples

from the north (Fig. 9). HREE all behave incompatibly

during melting of spinel peridotite (Table 4), such that

lower degrees of melting as suggested by the lower Dy/

Dy* ratio should only increase the concentration of

HREE. Therefore, garnet as a residual phase during
melting must explain at least some of the increase in

Dy/Yb in Fig. 14a. In Fig. 14b, the northern Lesser

Caucasus samples sit close to the spinel peridotite melt-

ing curve, but the southern Lesser Caucasus samples

are intermediate between the spinel and garnet melting

curves, suggesting melting of a mixed source involving
both garnet and spinel peridotite. This could be a conse-

quence of polybaric melting across the spinel–garnet

Fig. 11. eNd vs 87Sr/86Sr for volcanic rocks from the Lesser
Caucasus. Bulk Earth value and mantle array are after
Rollinson (1993). NW Iran data are from Allen et al. (2013); this
region has very thick lithosphere, estimated to be >200 km by
Priestley et al. (2012). Mixing line shown between depleted
MORB mantle (DMM) and Tethyan flysch (Prelevi�c et al., 2008):
DMM [Sr] ¼ 21 ppm, [Nd] ¼ 1�35 ppm, 87Sr/86Sr ¼ 0�7028,
143Nd/144Nd ¼ 0�5131; Tethyan flysch [Sr] ¼ 349�2 ppm, [Nd] ¼
25�9 ppm, 87Sr/86Sr ¼ 0�7112, 143Nd/144Nd ¼ 0�512107.

Fig. 12. (a) 87Sr/86Sr vs SiO2 (wt %) for all samples across the
Lesser Caucasus. Fractional crystallization is denoted by a hori-
zontal arrow labelled FC. The dashed line labelled 87Rb decay
refers to the effect of post-crystallization radioactive decay in
rocks with very high Rb/Sr ratios (see text for discussion). The
crustal xenolith was collected in association with sample 1-4A-
08 in the Syunik volcanic highland. It has a granitic texture. (b)
143Nd/144Nd vs SiO2 (wt %).
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transition at �75 km depth (Robinson & Wood, 1998),

suggesting melting at greater depths in the south.

Returning to the partial melting model, the melt frac-

tion was estimated on the basis that the Nb concentra-

tion (Table 4) is not affected by the mineralogy of the

source rock, and assuming that its concentration in the

source rock is constant along the transect. Utilizing this

assumption gives 3% melting in the north, versus 1%

melting in the south (Fig. 15). The proportions of garnet

peridotite and spinel peridotite that contribute to the

total mantle source are estimated from the Hf and Yb

concentrations. Both elements are assumed to have

constant concentrations in the mantle source because

HFSE and HREE would be less affected by metasomatic

events that could alter the source composition. The best

fit to the Hf and Yb data is a magma source that is 65%

garnet peridotite and 35% spinel peridotite (Fig. 15).

Across the Lesser Caucasus, as lithosphere thickness

increases, the degree of melting decreases and melting

occurs at greater depths, with garnet as a residual

phase for a significant portion of the melting interval.

However, the model is still unable to explain the high

concentrations of several of the LREE (La, Gd and Dy;

Fig. 15, black line), and requires changes in the compos-

ition of the mantle source with lithospheric thickness as

well.

To understand how melting is occurring, it is import-

ant to understand where magma is forming with re-

spect to the lithospheric structure. For this, we have

used major element thermobarometry to estimate the

conditions of last equilibration between magmas and

the mantle.

Pressure and temperature of melting
To calculate these intensive parameters, we use the

parameterizations of Plank & Forsyth (2016), based on

the major element chemistry of primitive magmas,

building on the work of Lee et al. (2009). These calcula-

tions are for magmas produced from a peridotite man-

tle source at pressures below 3 GPa (Plank & Forsyth,

2016). The temperature (T) dependence of Mg partition-

ing between olivine and melt (Roeder & Emslie, 1970)

and the pressure (P) dependence of silica activity in

melts co-saturated in olivine and orthopyroxene

(Carmichael et al., 1970) are exploited to give the

equations

T ¼ 1264�5þ 7�85ðMg4Si2O8Þ þ
8545

Si4O8
� 5�96ðAl16�3O8Þ

� DTH2O � DTCO2

(2)

Fig. 13. The latitudinal variation in the ratios Ba/La (a), Ce/Pb (b), Sr/Nd (c) and Nb/U (d) of mafic volcanic rocks along the Lesser
Caucasus mountain chain. These ratios are nearly invariant in MORB and OIB (shaded fields), but arc basalts show substantial vari-
ability in these ratios [CAB (continental arc basalt), with arrows showing the ranges across several arcs from Kelemen et al. (2003)].
As such, they are a proxy for slab input, and show a uniform input across the Lesser Caucasus. After Turner et al. (2017).
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P ¼

lnðSi4O8Þ � 4�045þ 0�0114ðFe4Si2O8Þ
þ 0�00052ðCa4Si2O8Þ2 þ 0�0024ðMg4Si2O8Þ

 !

�336�3T –1 � 0�0007T 1=2
:

(3)

All major element oxides are calculated in mol % as

described by Lee et al. (2009), except that they are cal-

culated on an anhydrous basis. The two terms DTH2O

and DTCO2
DTCO2

account for the lower temperature and

higher pressure melting in the presence of volatiles as

follows:

DTH2O ¼ 40�4ðH2OÞ � 2�97ðH2OÞ2 þ 0�0761ðH2OÞ3 (4)

DTCO2
¼ ðSiO2Þ � 50�3

0�12ð�1�067Þ (5)

where H2O and SiO2 are in wt %. To use these equa-

tions, the composition of the primary melt must be

known. Given that no samples from the Lesser

Caucasus have Mg# > 67, it is clear that all the studied

samples have undergone some degree of fractional

crystallization. If only olivine has fractionated, then it is

a simple process to add olivine incrementally to the

melt until it is in equilibrium with mantle olivine of Fo90

(Lee et al., 2009). If, however, other phases, such as

amphibole or clinopyroxene, have also fractionated,

then this calculation becomes non-trivial. In a study on

the collision-related volcanism of Anatolia, McNab et al.

(2018) took 8�5 wt % bulk-rock MgO as a reasonable

lower limit for magmas that have fractionated only oliv-

ine. Only two such samples exist in the Lesser

Caucasus, and it is likely that they have both been

affected by olivine accumulation rather than being truly

primitive melts. Instead, the complete sample suite

from the Shirak and Lori, and Syunik volcanic highlands

(1 and 4 in Fig. 1) is used to project back to the likely

composition at 8�5 wt % MgO of two end-member

primitive magmas for the Lesser Caucasus. This correc-

tion is shown in Supplementary Data B.

To calculate the pressures and temperatures of melt-

ing, two magma composition parameters must be con-

strained: Fe3þ/RFe and water content. The water

content of the primary magma has a large effect on the

temperature estimate through equation (4) (�25�C per

wt %), but a smaller effect on the pressure estimate

(�30 MPa per wt %). The presence of hydrous mineral

Table 4: Parameters used for non-modal batch melt modelling

Lithology OL OPX CPX AMPH SP GRNT Sum

Spinel peridotite Source mode 0�794 0�123 0�03 0�042 0�011 0 1
Melt mode 0�15 0�15 0�22 0�42 0�06 0 1

Garnet peridotite Source mode 0�569 0�212 0�077 0�026 0 0�116 1
Melt mode 0�05 0�19 0�28 0�06 0 0�42 1

La Gd Dy Yb Zr Hf Nb
Starting composition 0�5869 0�321 0�317 0�202 7 0�172 0�3635

Kd values La Gd Dy Yb Zr Hf Nb
Olivine 0�0001 0�00076 0�0014 0�00364 0�004 0�006 0�0002
Orthopyroxene 0�0002 0�0128 0�0261 0�0986 0�005 0�01 0�0005
Clinopyroxene 0�054 0�4 0�442 0�427 0�13 0�2 0�0077
Amphibole 0�086 0�64 0�707 0�683 0�156 0�24 0�2
Spinel 0�0004 0�00042 0�0004 0�00053 0�005 0�01 0�001
Garnet 0�01 0�498 1�06 4�03 0�12 0�23 0�00054

Melting models La Gd Dy Yb Zr Hf Nb
1. 3% melting spinel

peridotite (Neill
et al., 2015)

Initial 17�3 5�3 4�9 2�7 169�0 3�6 10�0

After 8% fractionation 18�8 5�8 5�3 2�9 183�6 3�9 10�9
2. 1% melting spinel

peridotite
Initial 39�5 6�8 5�9 3�2 299�9 5�6 20�2

After 8% fractionation 42�9 7�3 6�5 3�5 325�9 6�1 21�9
3. 1% melting garnet

peridotite
Initial 34�0 2�8 1�7 0�4 175�3 2�8 23�1

After 8% fractionation 37�0 3�1 1�9 0�4 190�5 3�1 25�1
4. 1% melting of 65%

garnet peridotite
35% spinel
peridotite

Initial 35�9 4�2 3�2 1�4 218�9 3�8 22�1

After 8% fractionation 39�1 4�6 3�5 1�5 237�9 4�1 24�0
Most primitive Syunik

sample for
comparison

74�8 7�6 4�7 1�9 166�0 3�7 24�0

The source modes for spinel and garnet peridotite are from Shaw (2005) and Thirlwall et al. (1994) respectively. Melt modes are
from Allen et al. (2013) and Neill et al. (2015). The starting composition of the mantle source is the same as that used by Neill et al.
(2015). Partition coefficients are from Ionov et al. (2002), except for those for garnet, which come from McKenzie & O’Nions (1991)
and Adam & Green (2006). The most primitive Syunik sample used for comparison is 8-5-15. OL, olivine; OPX, orthopyroxene; CPX,
clinopyroxene; AMPH, amphibole; SP, spinel; GRNT, garnet.
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phases in mafic rocks (as opposed to only in more

evolved samples), only in the southern Lesser

Caucasus (Fig. 5), suggests higher water contents in the
south. Based on previous studies of amphibole perido-

tite xenoliths (Thirlwall et al., 1994; Ionov & Hofmann,

1995), it is assumed that the mantle source contains be-

tween 2 and 10 modal % amphibole, which is assumed

to contain 2 wt % H2O, such that the mantle source

could have up to 0�2 wt % H2O. Using Ce partition coeffi-

cients for water during mantle melting (Thirlwall et al.,

1994; Dixon et al., 2002; Ionov et al., 2002), and the melt-

ing models shown in Table 4, gives 2–7 wt % H2O for

southern Lesser Caucasus primary magmas, and 1–

4�6 wt % for the north.

As only ferrous iron substitutes in olivine, a higher

Fe3þ/RFe increases the apparent melt Mg#, and so

reduces the amount of olivine addition required to pro-

duce the primary magma, the MgO content of the pri-

mary magma, and thus the calculated pressure and

temperature. The Fe3þ/RFe ratio varies from a minimum

of 0�1 in MORB (Cottrell & Kelley, 2011) to as high as 0�3
in some arc basalts (Brounce et al., 2014). Given the ubi-

quitous arc-type geochemical signatures in Lesser

Caucasus volcanic rocks, we take 0�25 as a conservative

estimate of the Fe3þ/RFe ratio (Brounce et al., 2014).
It should be noted that equations (2) and (3) will give

meaningful estimates of the pressure and temperature

of melting only if the mantle source is peridotitic, be-

cause the parameterizations assume the melt is satu-

rated in both orthopyroxene and olivine (Plank &

Forsyth, 2016). The use of these equations on magmas

derived from a pyroxenite source would yield meaning-

less results. Figure 16 shows that for Lesser Caucasus

and NW Iran samples, pyroxenite is not a major compo-

nent of the mantle source. Pyroxenite partial melts have

much higher Ni/MgO ratios. As magmas fractionate,

those derived from a peridotite source should evolve

along a trajectory below the dashed line in Fig. 16,

whereas those from a pyroxenite source would plot

above the line.

Fig. 14. (a) Dy/Dy* vs Dy/Yb after Davidson et al. (2013). The two arrows depict the expected vectors from changing the fraction of
melting or source mineralogy or composition. The vector for a lower fraction of melting is after Davidson et al. (2013, fig. 4), based
on melting of an olivine–pyroxene–amphibole-dominated mantle source. The presence of garnet in the magma source should fol-
low a horizontal vector after Davidson et al. (2013, fig. 5). (b) Dy/Yb vs La/Yb, melting curves based on the modal mineralogies,
melting modes, and partition coefficients given in Table 5.

Fig. 15. N-MORB-normalized concentrations of Nb, La, Zr, Hf,
Gd, Dy and Yb for the average of mafic samples from Syunik
volcanic highland (green line) and several non-modal batch
melting models that attempt to explain these trace element
concentrations. Melting models: spinel peridotite at 3% melt-
ing (yellow dashed line), 1% melting of spinel peridotite
(dashed black line), 1% melting of garnet peridotite (black con-
tinuous line) and 1% melting of a source composed of 65% gar-
net peridotite and 35% spinel peridotite (bold dash–dot line).
The blue dashed line represents a magma derived from the
same 65% garnet peridotite source, with 4% apatite dissolved
in the melt. Apatite composition is for magmatic apatite from
Western Turkey of Prelevi�c et al. (2015).
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Based on our water content estimates, southern

Lesser Caucasus magmas last equilibrated with the

mantle at between 1198 and 1292�C, whereas northern

Lesser Caucasus magmas last equilibrated at between

1174 and 1267�C. Given the observation that amphibole

is likely to be a residual phase in the mantle source (see

previous section), it is likely that melting was occurring

at temperatures close to the amphibole dehydration sol-

idus, because amphibole is likely to completely break

down within a few tens of degrees centigrade of cross-

ing the dehydration solidus (Green & Falloon, 2005;

Mandler & Grove, 2016). As such, it is likely that the

minimum temperatures of these ranges are the more

realistic. Using these temperatures gives pressure esti-

mates of 2�1 GPa (�75 km) in the southern Lesser

Caucasus, and 1�2 GPa (�45 km) in the north. These esti-

mates are shown in Fig. 17, along with the position of

the amphibole dehydration solidus. Southern Lesser

Caucasus magmas are produced deeper, but at similar

temperatures to those in the north.

The parameterizations first developed by Lee et al.

(2009) were designed to expand the applicability of

basalt melt geothermobarometry beyond mid-ocean

ridge systems to any setting involving the melting of

terrestrial peridotite. Both our modelled major element

compositions and the pressure and temperature calcu-

lated fall within the experimental range of the dataset of

Lee et al. (2009), and to this extent our approach is

justified.

However, the presence of metasomatic phases such

as amphibole in the mantle source means that the pres-

sures and temperatures calculated here must be inter-

preted with caution. Alkaline volcanic rocks from

monogenetic volcanic fields in Western Mexico,

geochemically similar to those from volcanic highlands

in the Lesser Caucasus, have very high Fe3þ/RFe ratios

and whole-rock Mg# in excess of the �72 value normal-

ly assumed to be in equilibrium with mantle peridotite

(Carmichael et al., 1996). The effects of a potential

underestimation of both Fe3þ/RFe and the amount of

olivine addition required to produce the primary

magma will tend to counteract each other, where the

former would give an overestimation of temperature,

and the latter an underestimate. In the case of Western

Mexico, both of these observations are ascribed to the

incongruent melting of phlogopite (Carmichael et al.,

1996), which does not seem to be a major metasomatic

phase in the Lesser Caucasus mantle (see the section

‘How does thicker mantle lithosphere influence the

composition of the mantle source?’ below).

Even if these issues are relevant to the Lesser

Caucasus, the constraint provided by the position of the

amphibole dehydration solidus shows the temperature

estimates provided here to be reasonable, although

some of the �50�C disparity with the dehydration sol-

idus could be explained by these issues. The sensitiv-

ities of the pressure estimate to Fe3þ/RFe (–0�2 GPa per

0�1 increase), primary melt Mg# (þ0�5 GPa per 10% in-

crease) and estimated temperature (þ0�1 GPa per

100�C) are all small. The pressure estimate is primarily

based on silica activity in a system co-saturated in oliv-

ine and orthopyroxene. Given the indications from

Fig. 16, and reasonably successful trace element model-

ling of partial melting of a peridotite mantle source, it

seems likely that these pressure estimates are robust.
Further constraints on the thickness of the crust are

required to interpret these results. Crustal thickness is

estimated using the formulations of Hu et al. (2017),

which link the Sr/Y and (La/Yb)N ratios of intermediate

magmatic rocks from continental collision zones with

the crustal thickness. The basis of this technique is the

Fig. 16. Ni/MgO vs SiO2 in primitive Lesser Caucasus and NW
Iran bulk-rock samples (<54% SiO2, >4% MgO), after Allen
et al. (2013). Pyroxenite melting should generate compositions
above the bold red dashed line (Sobolev et al., 2005). Primary
melts of peridotite and pyroxenite (from Hawaii), after Sobolev
et al. (2005). FC, fractional crystallization. Syunik, Shirak and
Lori and NW Iran data are shown with the same symbols as in
other figures.

Fig. 17. Depth vs temperature of melting for the northern
Lesser Caucasus and southern Lesser Caucasus. Also shown
are the anhydrous peridotite solidus (1100�Cþ3�5�C km–1) after
Plank & Forsyth (2016), the wet solidus (amphibole present)
after Green & Falloon (2005), and samples from East Anatolia
with low K/Nb (red circles) from McNab et al. (2018). The pres-
sures and temperatures of melting of NW Iran magmas were
calculated for this study assuming Fe3þ/RFe of 0�25 and melt
water contents of 7 wt %, as were used for the southern Lesser
Caucasus estimate. (See text for discussion.)
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polarizing effects different fractionating mineral

assemblages have on the Sr/Y and (La/Yb)N ratios in

shallow versus deep storage reservoirs. To the nearest

5 km, we estimate crustal thickness as 45 km in Shirak

and Lori, 55 km in Gegham, and 60 km in both Vardenis

and Syunik.
The depth of melting in the northern Lesser

Caucasus is very similar to the �45 km Moho depth,

possibly suggesting the presence of a very thin mantle

lithosphere. It is instructive to compare this result with

recent estimates of melting conditions in neighbouring

Eastern Anatolia from McNab et al. (2018). East

Anatolian magmas can be split into high K/Nb (>500)

and low K/Nb types. Low K/Nb magmas generally have
OIB-like geochemistry, and are considered to be directly

derived from melting of the convecting mantle, which is

apparently anomalously hot in the region, plotting to

the right of the ambient mantle adiabat (Fig. 17), at a

much higher temperature than any temperatures mod-

elled for the northern Lesser Caucasus. This can be

interpreted as northern Lesser Caucasus magmas being

derived from the lithosphere, and not the convecting

mantle.
Deeper melting in the south is associated with

thicker crust, but magma generation is occurring at

much shallower depths than the >100 km lithosphere–

asthenosphere boundary estimated by Priestley et al.

(2012). The depth of melt equilibration is much deeper

than the anhydrous solidus, confirming the need for a

volatile-enriched lithospheric mantle root.

These P–T conditions of melting can be compared
with estimates made for this study of the melting condi-

tions of samples from NW Iran, based on the data of

Allen et al. (2013). The P–T conditions of melting of NW

Iran volcanic rocks were estimated using the same

Fe3þ/RFe and water contents as for southern Lesser

Caucasus magmas (0�25 wt % and 7 wt %, respectively).

This is on the basis that the geochemistry of NW Iran

magmas is similar to that of southern Lesser Caucasus
magmas (Fig. 8), and both formed in a thicker litho-

sphere regime. Most of the magmas in NW Iran formed

under similar conditions to southern Lesser Caucasus

magmas, with a small subsidiary group of samples that

formed at shallower depths, similar to northern Lesser

Caucasus magmas, possibly representing magmas that

re-equilibrated with the mantle at the base of the crust

during their ascent to the surface.
The melting depth in both the southern Lesser

Caucasus and NW Iran is significantly shallower than

the estimated lithospheric thicknesses. One possible ex-

planation for what these melting conditions represent

could be a thermal maximum in a back-bent non-linear

geothermal gradient (Fig. 17). In recently thickened oro-

genic lithosphere, this type of kinked profile is probably

more realistic than the linear geothermal gradient more
typical of a cratonic region (Mather et al., 2011).

It is worth noting that these differences in melting

conditions probably reflect variations in the location of

magma generation today, and are not the product of

temporal changes in lithosphere structure. This is be-

cause, in Fig. 8, the trace element compositions of

basalts from each volcanic highland are distinct, with

each having a fairly narrow range of trace element com-

positions, despite all the volcanic highlands spanning

an age range >1 Myr, and with the Gegham and Syunik

highlands thought to have very similar timespans of ac-

tivity (Joannin et al., 2010; Lebedev et al., 2013).

Geodynamic implications
Using constraints from geochemistry and the estimated

pressures and temperatures of melting, it is possible to

develop a model of how melting occurs under the

Lesser Caucasus region. It seems clear that a majority

of melting is taking place in the lithosphere for two rea-

sons. First, all samples display an arc-type geochemis-

try. Subduction ceased around 35 Ma (Rolland et al.,

2012), such that these arc signatures will probably be

preserved only in the lithosphere. It is possible that the

mantle lithosphere retains phases such as amphibole

and rutile, which, if equilibrated with the magmas, are

sufficient to impart the arc-type geochemical signature

(Allen et al., 2013). Second, both northern and southern

Lesser Caucasus magmas appear to be produced at sig-

nificantly lower temperatures than the low K/Nb mag-

mas of Eastern Anatolia, which are thought to be

derived from the convecting mantle (McNab et al.,

2018), such that the Lesser Caucasus magmas either

have re-equilibrated in colder lithosphere or are entirely

derived from the lithosphere.

Based on the smooth trend in 87Sr/86Sr versus
143Nd/144Nd in Fig. 11 and the gradational changes in

trace element patterns (Fig. 8), it appears that magmas

are produced from melting of two source types in vary-

ing proportions. If these two source types reflect geo-

chemical end-members, one would be typified by the

northern Lesser Caucasus volcanic rocks, whereas the

other end-member would be most clearly seen in NW

Iran.

Unfortunately, constraints on the lithospheric thick-

ness are very limited for the northern Lesser Caucasus

(Fig. 1), with the Priestley et al. (2012) model showing

only that it is <100 km. Taking a typical conductive geo-

thermal gradient for this lithosphere, melting would be

expected to occur close to the lithosphere–astheno-

sphere boundary. Mantle–melt equilibration close to

the base of the crust (Fig. 17) suggests that the litho-

sphere is very thin. If this were the case it is likely that

there would be some melting of the convecting mantle

based on elevated mantle Tp in the region (McNab

et al., 2018). However, such a thin lithosphere would

make it difficult to insulate the crust from heating, such

that more crustal contamination would be expected. As

was noted above, this mantle source type appears also

to be present in the southern Lesser Caucasus, where

the lithosphere is sufficiently thick to suppress melting

of anhydrous convecting mantle, but where melting of

a hydrous lithospheric source would still be possible. It
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is likely that this magma type is derived from melting of
the base of the lithosphere in response to small-scale

convective removal, as suggested by Neill et al. (2015).

This is shown in Fig. 18a as melt zone 1, with small por-

tions of lithosphere being delaminated. This type of de-

lamination is suggested to occur because a very small

amount of water (a few hundred ppm) left over from
previous subduction lowers the viscosity of the mantle

sufficiently to allow more vigorous convection to render

the lithosphere–asthenosphere boundary unstable
(Kaislaniemi et al., 2014). Small-scale convective re-

moval is preferred over catastrophic large-scale delam-

ination because volcanism in the Lesser Caucasus is

generally small-scale and sustained, with no evidence

of crustal contamination, consistent with a continuous,

less invasive process. Although this magma type is a
mixing component in the southern Lesser Caucasus, it

is not seen in NW Iran because the lithosphere is too

Fig. 18. (a) Geodynamic model of magmatism showing the lithosphere and upper mantle across the Lesser Caucasus. Crustal thick-
ness is estimated on the basis of formulations relating the Sr/Y and (La/Yb)N ratios in intermediate volcanic rocks to Moho depth
(Hu et al., 2017). Data filtering follows the approach outlined by Hu et al. (2017). Each volcanic highland has a range of Moho depth
estimates of around 20 km. For both the Sr/Y and (La/Yb)N the median value for each volcanic highland is taken and then the two
values are averaged to give an estimate of crustal thickness. Lithosphere thickness estimates are from Priestley et al. (2012). It is
noted that they only estimate thicknesses where the lithosphere is >100 km, so the lithospheric thickness in the NW is schematic
after Neill et al. (2015). Melting at the wet peridotite solidus lower depth limit is on the basis of upwelling convecting mantle at
1300–1400�C Tp, which would lead to the wet solidus being crossed at �140 km depth (Green & Falloon, 2005). Also shown are the
two melting zones (labelled 1 and 2) that are discussed in the text. Melting zone 1 is along the base of the lithosphere, and is sug-
gested to be in response to small-scale convective removal of the lithosphere. Melting zone 2 is in the mid-lithosphere. (b) Sketch
of the lithospheric structure of NW Iran and the location of melting in the mid-lithosphere. (c) Schematic illustration of the thermal
relaxation of a kinked geothermal gradient leading to melting in the mid-lithosphere from initial underplating at time t0, through
thermal evolution at time t1, to establishing a cratonic geotherm by time t2.
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thick for wet or dry melting at its base (Green & Falloon,

2005; Priestley et al., 2012). As the lithosphere is thick-

ened, the degree of melting in response to convective

removal will decrease as the wet peridotite solidus is

approached with depth (Fig. 18a), which may help to ex-

plain the lower degrees of melting in the south.
The second melting zone is the sole magma source

for volcanic rocks in NW Iran (Fig. 18b). Despite very dif-

ferent lithosphere thicknesses, both NW Iran and south-

ern Lesser Caucasus magmas formed under similar

conditions within the lithosphere (Fig. 17). It is sug-

gested that continental collision could have led to the

formation of a kinked geothermal gradient (Fig. 18c). A

linear craton-style geothermal gradient is likely to be

unrealistic for orogenic lithosphere (Allen et al., 2013). It

has been suggested that orogenesis may proceed by

underthrusting of mantle lithosphere from the oncom-

ing plate (e.g. Willett et al., 1993). In this case under-

thrusting of Arabian mantle lithosphere, with its own

pre-existing geothermal gradient, may lead to a kinked

geothermal gradient with the kink forming along the

subduction plane between overlying Eurasian litho-

sphere and underlying Arabian lithosphere. Upon initial

collision, this kink will be very sharp (t0 in Fig. 18b), but

over time the gradient will thermally relax (t1) towards a

gradient that resembles the one characteristic for cra-

tons (t2). This thermal relaxation would heat the litho-

sphere just under the kink, which would previously

have been cool. Dewatering and melting of this horizon

would follow, which is what we argue we see in our P–T

estimates of magma generation in Fig. 17. Given the

lower degrees of melting in the southern Lesser

Caucasus, it appears that this mechanism develops

only low-degree melts.

To summarize, in the northern Lesser Caucasus

magma is generated by small-scale delamination

events heating the base of the lithosphere. This process

also occurs in the southern Lesser Caucasus, but at

greater depths. Magmas generated by this mechanism

mix with a second type of magma produced in the mid-

lithosphere from thermal relaxation of a kinked geo-

therm. Further south, in NW Iran, melting of the base of

the lithosphere is suppressed owing to the depth being

too great even for wet melting. However, melting in the

mid-lithosphere continues.

How does thicker mantle lithosphere influence
the composition of the mantle source?
The gradient in Sr–Nd isotope ratios in Fig. 11, along

with a lack of evidence for crustal contamination,

requires that there be some variation in the compos-

ition of the mantle source. One possibility is that mag-

mas are tapping different lithosphere domains.

Northern Lesser Caucasus magmas are exclusively

found on Mesozoic arc lithosphere (Fig. 2), whereas

southern Lesser Caucasus magmas are on South

Armenian Block lithosphere, or else are very close to

the suture. However, crossing such lithospheric sutures

would probably result in a step-change in isotope

ratios, rather than the smooth gradation observed in

the Lesser Caucasus. A minority of samples from the

Vardenis volcanic highland (Figs 1 and 2) are thought to

be on the east (Mesozoic arc) side of the suture; these

are shown by an asterisk in Table 3. As Table 3 shows,

these samples have Sr–Nd isotope compositions indis-

tinguishable from those of other Vardenis samples,

suggesting that the suture zone is not a major dividing

line in isotope composition. This suggests that melting

zone 2 in the mid-lithosphere has a different compos-

ition from melting zone 1 at the base of the lithosphere.

In this discussion on the nature of the mantle sources,

only the most mafic samples (>4 wt % MgO, <54%

SiO2) are used to try and minimize the effects of frac-

tional crystallization on trace element contents.

The lower crust is thought to behave as a weak layer

during continental collision (Bürgmann & Dresen,

2008). This could lead to some lower crust being incor-

porated into the mantle lithosphere perhaps during

underthrusting of Arabian lithosphere, as has been sug-

gested for numerical models of other collision zones

such as the Himalayas (e.g. Toussaint et al., 2004; Li

et al., 2011). This could lead to the addition of lower

continental crust (LCC) to melting zone 2 in the middle

of the lithosphere, and hence enrichment of the mantle

source of the southern Lesser Caucasus. Incorporation

of LCC into the mantle source could result in significant

enrichments in all of the most incompatible trace ele-

ments, as in Fig. 8e, given the much higher concentra-

tions of most incompatible trace elements in the lower

crust relative to the primitive mantle (Sun &

McDonough, 1989; Rudnick & Gao, 2003).

The La/Nb ratios of the least enriched samples from

the northern Lesser Caucasus and the same ratio esti-

mated for the LCC (Rudnick & Gao, 2003) provide a

Fig. 19. La/Nb vs latitude for primitive volcanic rocks in the
Lesser Caucasus. The least enriched Shirak and Lori samples
have a La/Nb ratio of �1�6. Fraction of melting and garnet vs
spinel peridotite melting have a limited effect on this ratio.
Lower continental crust (LCC) has a La/Nb ratio with a similar
value of around 1�6 (Rudnick & Gao, 2003). Therefore if LCC is
enriching the melt source, the La/Nb ratio should be close to
invariant.
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serendipitous coincidence, with both around 1�6
(Fig. 19). Given that La/Nb is unaffected by melting and

crystallization (i.e. both elements have similar bulk par-

tition coefficients with respect to the melt) regardless of

source mineralogy (Ionov et al., 2002; McKenzie &

O’Nions, 1991), any variations in the La/Nb ratio should

reflect variations in the source La/Nb. If the lower crust

was responsible for the source enrichment, La/Nb

should be near-constant along the transect. Samples

from the southern Lesser Caucasus have much higher

La/Nb ranging from 2�5 to 5 (Fig. 19), which cannot be

explained by the addition of average LCC.

However, it is worth noting that several estimates of

the composition of individual lower crust sections do

give higher La/Nb of up to 4�9 (Weaver & Tarney, 1984;

Villaseca et al., 1999; Jagoutz & Schmidt, 2013), such

that the involvement of lower crust in the southern

Lesser Caucasus magma source cannot be precluded.

Lithospheric mantle that is significantly shallower

than the lithosphere–asthenosphere boundary (melting

zone 2) is expected to be colder than the deep litho-

sphere (melting zone 1) prior to any heating, even if the

lithosphere does have a kinked geothermal gradient

(Fig. 17). These lower temperatures should stabilize

minerals such as amphibole and phlogopite, which can

retain chemical components derived from mantle meta-

somatism (Luth, 2003; Frost, 2006; and references there-

in). In the deep lithosphere, these components would

be subject to upward mobilization by fluid release fol-

lowing dehydration at higher pre-melting temperatures.

Underthrusting of Arabian lithosphere, as suggested in

Fig. 18, would also introduce a new lithospheric do-

main, which could have a different composition (includ-

ing isotopically) from the Eurasian lithosphere.

If this metasomatic material is responsible for the

enrichments in the southern Lesser Caucasus, then it

must have a composition capable of producing those

most enriched melts. La/Yb and Sr/Y are two ratios that

increase most dramatically with latitude, as shown in

Fig. 20a and b. Both of these ratios show excellent cor-

relations with P2O5 content (Fig. 20c and d) within all

Lesser Caucasus samples. The La/Yb ratios and P2O5

contents of the NW Iran samples (interpreted to be pure

melting zone 2 magmas) appear as end-members on

the Lesser Caucasus mixing line (Fig. 20d), suggesting

that apatite may be a metasomatic phase in the host

rock of melting zone 2 (Fig. 18). This is consistent with

the presence of large apatite crystals in some southern

Lesser Caucasus samples (up to 2 mm across; Fig. 5b).

It is also consistent with previous suggestions that

metasomatic apatite may be an important phase in the

Iranian subcontinental lithospheric mantle (Pang et al.,

2013). As was shown in Fig. 15, it is difficult to produce

such high LREE concentrations (shown by La in Fig. 15)

simply by lower degrees of melting or more garnet in

the mantle source. Apatite is soluble in melts with a low

Fig. 20. Sr/Y and La/Yb show strong variations between the northern and southern Lesser Caucasus as shown in (a) and (b). Both
of these ratios show strong correlations with P2O5 (wt %) (c, d); r¼0�89 in both cases. NW Iran data in (c) and (d) represent melting
in a region of very thick lithosphere [data from Allen et al. (2013)].
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SiO2 content (Watson, 1980), such that apatite may sim-

ply be added to the initial modelled melt composition,

as shown by the blue dashed line in Fig. 15, producing a

much improved agreement with natural southern

Lesser Caucasus samples.

Although apatite can explain the enrichment in

LREE, it cannot explain the large enrichment in other

elements such as Ba, which probably requires wider

metasomatic reworking. Two minerals that could ex-

plain this enrichment in Ba are amphibole and phlogo-

pite. As Fig. 21 shows, the high Ba/Rb ratio favours

amphibole as the major metasomatic phase in the

source of both the Lesser Caucasus and NW Iran mag-

mas. However, in both the southern Lesser Caucasus

and NW Iran there are a minority of samples for which

phlogopite could be an important metasomatic phase. It

is noteworthy that the presence of phlogopite in the

mantle source is indicated in a minority of cases for

Vardenis, but not Syunik (Fig. 21), given that biotite is

found as a phenocryst phase only in mafic samples

from Vardenis (see Petrography section). The presence

of these metasomatic signatures in the southern Lesser

Caucasus and NW Iran is consistent with melting zone 2

being host to apatite, amphibole, and occasionally

phlogopite prior to melting.

Sr/Y is a ratio that does not follow a simple mixing

pattern. It increases across the Lesser Caucasus, but is

actually lower in NW Iran compared with the southern

Lesser Caucasus. This ratio probably reflects the in-

volvement of garnet in the mantle source (Defant &

Drummond, 1990), which should become dominant at

greater depths. In NW Iran, all melting is occurring in

the mid-lithosphere; however, in the southern Lesser

Caucasus magmatism is driven by melting in both the

mid-lithosphere and at the base of the lithosphere

(Fig. 18). This means that in the southern Lesser

Caucasus, the average depth of melting may actually be

greater than in NW Iran, despite the thinner lithosphere,

leading to the mantle source being more dominated by

garnet, increasing the Sr/Y ratio of the resulting

magmas.

High Sr/Y ratios have been associated with adakites

and the melting of oceanic slabs (Defant & Drummond,

1990). Adakitic signatures have been seen in some vol-

canic suites from NW Iran (e.g. Ghalamghash et al.,

2016), suggesting that the Iranian enriched signature

could somehow derive from slab melting. These ada-

kites are generally andesites and dacites. The more

primitive NW Iran lavas of Allen et al. (2013) and the

southern Lesser Caucasus lavas have higher Y contents

than true adakites, and it is likely that the adakite-like

compositions of andesites and dacites are derived from

fractional crystallization processes (e.g. Chiaradia et al.,

2009), rather than slab melting.

Melting zone 2 does appear to have a more enriched

composition than melting zone 1, as demonstrated by

signatures of the metasomatic minerals apatite and

amphibole in magmas derived from the southern

Lesser Caucasus and NW Iran. However, variations be-

tween the chemistry of the northern and southern

Lesser Caucasus volcanic rocks do not just reflect mix-

ing of source reservoirs, but also changes in the degree

of melting (lower degree of melting will increase La/Yb

and Sr/Y ratios), and the mineralogy of the melt source

(garnet in the melt source of the southern Lesser

Caucasus also increases Sr/Y and La/Yb). The multiple

parameters controlling the trace element composition

of Lesser Caucasus volcanic rocks mean that variations

between the northern Lesser Caucasus, southern

Lesser Caucasus and NW Iran are often non-linear.

SUMMARY AND CONCLUSIONS

Magmas generated in the thicker lithosphere of the

southern Lesser Caucasus have higher incompatible

trace element concentrations, higher 87Sr/86Sr ratios

and lower 143Nd/144Nd ratios than volcanic rocks from

the northern Lesser Caucasus. A lack of consistent vari-

ation between the isotope compositions of basalts and

rhyolites and SiO2 suggests that crustal contamination

is unimportant in generating the enriched geochemis-

try. The negative Nb–Ta anomalies, and enrichments in

large ion lithophile elements and LREE are instead likely

to be produced by partial melting of a subduction-

modified mantle source. This subduction component is

uniform across the Lesser Caucasus and is probably

inherited from Mesozoic (Tethyan) slab subduction

prior to continental collision. The more enriched geo-

chemistry of southern Lesser Caucasus rocks is the re-

sult of lower degrees of melting, an increased

proportion of garnet in the mantle source, and also a

distinct mantle source composition.

The temperatures of melt formation in the mantle

are all less than 1200�C, which when compared with the

much higher temperatures for magmas formed in the

asthenosphere below nearby Eastern Anatolia suggests

that magma generation occurs in the lithosphere, which

is also consistent with the ubiquitous subduction

Fig. 21. Rb/Sr vs Ba/Rb for Lesser Caucasus and NW Iran sam-
ples, after Furman & Graham (1999). (See text for discussion.)
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signature. Very similar conditions of melt generation in

NW Iran and the southern Lesser Caucasus, as well as

several similarities in geochemistry, suggest a common

magma generation mechanism in the mid-lithosphere,

despite very different lithospheric thicknesses. This

magma type appears to mix in the southern Lesser

Caucasus with magma from a second source, which

probably originates at the base of the lithosphere. This

latter magma source is the sole site of magma gener-

ation in the northern Lesser Caucasus, where melting

occurs at the base of an �50 km thick lithosphere. In the

southern Lesser Caucasus melting occurs at �75 km

depth, significantly shallower than the estimated

120 km thickness of the lithosphere. Melting in the mid-

lithosphere occurs as a result of relaxation of a kinked

geothermal gradient, whereas melting at the base of

the lithosphere is the result of small-scale delamination

events. This latter melting mechanism proceeds only

until the point where the lithosphere becomes too thick

to melt at its base, even if the mantle peridotite is

hydrated. The enriched composition of the mid-

lithospheric mantle source could be derived from the in-

corporation of weak lower crust during collision.

However, several signatures of the metasomatic miner-

als amphibole, apatite and occasionally phlogopite sug-

gest that the enriched nature of the mantle source in the

mid-lithosphere is derived from the increased retention

of metasomatic components in hydrous minerals prior

to the post-collisional magmatism.

Interestingly, it appears that a melt source exists at

somewhat less than 100 km depth regardless of the

lithospheric thickness across the Anatolian–Armenian–

Iranian plateau. This is consistent with the geophysical

observations of Maggi & Priestley (2005), which show a

low shear wave velocity at around 100 km depth below

the entire plateau. Further work on understanding the

interplay between lithospheric thickness and melt gen-

eration in continental collision zones would benefit

from detailed tomographic work in the critical region of

the Lesser Caucasus to help us better understand how

the thickness of the lithosphere varies along this moun-

tain range. Investigations of the petrogenesis of primi-

tive magmatic rocks from NW Iran could elucidate

whether thermal relaxation of a kinked geothermal gra-

dient is a viable mechanism to generate magma in the

mid-lithosphere. Studies of stable fluid-sensitive iso-

tope systems such as O and B would help decipher the

nature and role of inherited subduction components in

the generation of collision-related magmas.
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Rolland, Y., Hässig, M., Bosch, D., Meijers, M. J. M., Sosson, M.,
Bruguier, O., Adamia, S. & Sadradze, N. (2016). A review of
the plate convergence history of the East
Anatolia–Transcaucasus region during the Variscan:
insights from the Georgian basement and its connection to
the Eastern Pontides. Journal of Geodynamics 96, 131–145.

Rollinson, H. R. (1993). Using Geochemical Data. London:
Routledge.

Rudnick, R. L. & Gao, S. (2003). Composition of the continental
crust. In: Holland, H. D. & Turekian, K. K. (eds) The Crust.
Treatise on Geochemistry, Vol. 3. Amsterdam: Elsevier, pp.
659–723.
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Anatolian high plateau as a mantle-supported, north–south
shortened domal structure. Geophysical Research Letters
30, 8.1–8.4.
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