
This is a repository copy of Dynamic scheduling of aircraft landings.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/139291/

Version: Accepted Version

Article:

Bennell, JA orcid.org/0000-0002-5338-2247, Mesgarpour, M and Potts, CN (2017) 
Dynamic scheduling of aircraft landings. European Journal of Operational Research, 258 
(1). pp. 315-327. ISSN 0377-2217 

https://doi.org/10.1016/j.ejor.2016.08.015

© 2016 Elsevier B.V. Licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Dynamic Scheduling of Aircraft Landings

Julia A. Bennella,∗, Mohammad Mesgarpourb, Chris N. Pottsb

aSouthampton Business School, CORMSIS, University of Southampton, Southampton SO17 1BJ, UK
bSchool of Mathematical Sciences, CORMSIS, University of Southampton, Southampton SO17 1BJ, UK

Abstract

This paper considers the scheduling of aircraft landings on a single runway. There are
time window constraints for each aircraft’s landing time, and minimum separation times
between consecutive landings, where the separation times depend on the weight classes of
the two landing aircraft. A multi-objective formulation takes account of runway through-
put, earliness and lateness, and the cost of fuel arising from aircraft manoeuvres and
additional flight time incurred to achieve the landing schedule. The paper investigates
both the static/off-line problem where details of the arriving flights are known in advance,
and the dynamic/on-line problem where flight arrival information becomes available over
time. Under dynamic scheduling, the algorithm makes periodic updates to the previous
schedule to take into account the aircraft that are newly available. We investigate dynamic
programming and local search implementations for the static and dynamic problem using
random test data and real data from London Heathrow airport.

Keywords:

runway scheduling, dynamic programming, local search, online problem

1. Introduction

According to projections, air transportation demand is expected to grow annually at

rates between three and five percent in spite of the recent economic recession. Increasing

traffic causes high congestion in the terminal areas, holding delays for arriving aircraft

and long queues at the holding departure areas. Given the current congestion levels in the

busier airports, accommodating further flights presents a significant challenge. Airport

runway capacity is often a limiting factor when creating plans to offer additional flights at

an airport. This is because improvements to the management of en-route air traffic have

shifted the bottleneck from en-route airspace to the airport (Soomer and Franx, 2008), and

more specifically to the runway. Although airport capacity can be increased by building

a new runway, making the best use of the existing runway(s) through careful scheduling

may reduce the need to improve the infrastructure. In this paper, our focus is on the

∗Corresponding author
Email addresses: J.A.Bennell@soton.ac.uk (Julia A. Bennell), C.N.Potts@soton.ac.uk (Chris N.

Potts)

Preprint submitted to European Journal of Operational Research July 4, 2016



efficient scheduling of landing aircraft, or specifically the aircraft landing problem (ALP).

This is a significant sub-problem of the more general scheduling and routing of aircraft

in the terminal manoeuvering area including the resolution of potential aircraft conflicts

(Samà et al, 2014).

One of the main factors affecting runway usage is the enforcement of minimum sep-

arations between landing aircraft that arise from safety considerations. Wake vortices

are rotating masses of air that are generated by aircraft as a consequence of their lift.

They can provide a hazard for a following aircraft if it is within a certain distance. Wake

vortices are bigger if they are created by a larger aircraft. Moreover, they have a greater

impact when the following aircraft is lighter than the leading aircraft. Thus, the required

minimum separations between aircraft depend on the weight class of the leading and fol-

lowing aircraft. Consequently, effective scheduling will aim to avoid a light aircraft landing

immediately after a heavy aircraft.

In addition to issues of safety, which is the responsibility of air traffic controllers

(ATCs), there are other stakeholders with an interest in how aircraft landings are sched-

uled. Punctuality is a concern for airlines and airports. Airport operations such as gate

assignment and baggage handling require careful planning in advance, and delays to an

aircraft landing may have a detrimental effect on similar operations for subsequent aircraft.

Airlines also prefer schedules that minimize the cost of fuel, and governments typically

have targets for reducing CO2 emissions. Long queues and additional manoeuvres by

aircraft to create a landing sequence may increase emissions. ATCs organize the landing

of aircraft to meet safety requirements and maximize throughput. Ideally, the aims of all

of the various stakeholders would also be taken into account when scheduling the landings

of aircraft.

Bennell, Mesgarpour, and Potts (2011) provide an extensive review of airport runway

scheduling, which includes numerous studies on the aircraft landing problem. However,

most of the research on scheduling aircraft landings deals with the static or off-line problem

in which all aircraft to be scheduled are known at the outset. However, ATCs work in

a dynamic or on-line environment where new aircraft enter the controller’s airspace over

time. In this dynamic problem, decisions about the landing of earlier aircraft have to

be made without knowledge of those that may enter the airspace at a later time. Any

system that is designed to support the decision making of ATCs should therefore consider

the dynamic problem. Further, a solution of the static problem is not of interest from

an operational perspective, although it can be used for planning or as a component of an

algorithm for the dynamic problem.

Another shortcoming of many studies in the literature is that the models do not address

all of the important issues in a practical decision-making environment. For example, the

2



objective functions within these models typically do not address the concerns of all of

the stakeholders, and some of the important operational constraints are often missing.

Further, the solution approaches often have excessively long run times relative to the

almost instantaneous response required in a decision support system that could be of use

to ATCs. Finally, many of the algorithms have not been tested using real data.

In view of the above discussion, there is a need for a model that operates in a dynamic

environment and considers more of the constraints that arise in practice. Moreover, the

model should adopt a multi-objective approach that considers the interests of the different

stakeholders. Our aim is to develop a model that meets these requirements, and to design

a dynamic/on-line scheduling algorithm that produces solutions sufficiently quickly that

it would be of benefit to ATCs.

The remainder of this paper is organized as follows. In Section 2, we provide some

background about air traffic control, and review the main contributions from the literature

on algorithms to schedule aircraft landings. Section 3 provides a complete description of

the aircraft landing problem, including the constraints, objective function, the assump-

tions made, and a statement of how the static/off-line and the dynamic/on-line problems

differ. Our algorithms for the static and dynamic problems are described in Section 4. A

computational evaluation of these algorithms is undertaken in Section 5 using real data

from London Heathrow airport and randomly generated data sets. Finally, Section 6

contains some concluding remarks.

2. Preliminaries

2.1. Air traffic control

An Air Traffic Management (ATM) system aims to assure the safe and efficient move-

ment of aircraft from the origin to the destination airport. Safety is achieved by ATCs

issuing suitable instructions to pilots to ensure that there are sufficient lateral and ver-

tical separations between all aircraft. These instructions may be for the pilot to change

direction, ascend or descend, or to change speed.

ATCs work at the airport traffic control tower, terminal airspace control centre and

en-route control centre. The airport control tower is responsible for ground traffic, and

take-off and landing within about 5 nautical miles of the airport and 3000 ft above ground

level. The terminal airspace control centre handles departures and arrivals up to 40

nautical miles and 10,000 ft from the airport. Finally, the en-route control centre deals

with traffic outside the terminal manoeuvring area.

Each aircraft has an unconstrained landing time, which is the time that it would land

when there are no other aircraft to impede its progress to the runway. The unconstrained

3



landing time is determined by the arrival planner system after the aircraft enters the range

of the relevant radar. A natural landing sequence is based upon ordering the aircraft in

non-decreasing order of their unconstrained landing times. We refer to this sequence as

first-come-first-served (FCFS). However, the FCFS sequence may create unnecessarily long

separations if aircraft of different weight classes fill successive positions in the sequence.

Recall that there are minimum separation times to ensure that wake vortices do not

create a safety hazard, and these times depend on the weight classes of the leading and

the following aircraft. Thus, the FCFS sequence is typically modified by the controllers

to reduce the average separation time between aircraft as far as possible.

There are manoeuvres that ATCs can use to change a landing sequence. Vectoring

is the most common manoeuvre to shift an aircraft to a later position in the sequence.

Rather than flying a direct route, the aircraft changes direction, and then after a given

time it rejoins its original route. Aircraft can also be directed to change their speed in

order to achieve certain landing times.

Dear (1976) introduces the concept of constrained position shifting. Under constrained

position shifting, an aircraft cannot move more than ρ positions from its position in the

FCFS sequence, where ρ is a given maximum position shift. Constrained position shifting

has two purposes. First, it avoids a situation where an aircraft is continually moved

towards the end of the landing sequence due to its characteristics (for example, it might

be a light aircraft, which are less common and require a larger separation time when

following a medium or heavy aircraft). Second, it helps to avoid an ATC’s workload from

becoming unmanageable. With large deviations from the FCFS sequence, a controller will

have to issue frequent instructions to pilots in order to perform the manoeuvres necessary

to achieve the desired landing sequence. As an alternative to constrained position shifting,

Bennell, Mesgarpour, and Potts (2011) suggest that adopting maximum time shifting,

where an aircraft’s landing time cannot deviate by more than a given amount from its

unconstrained landing time, is preferable. Because the density of air traffic varies during

the day, applying constraints on time shifts avoids the variability in a flight’s delay that

can occur when using constraints on position shifts.

The scheduling of aircraft landings is a dynamic/on-line process. A controller can

design a landing schedule only for those aircraft that have entered the relevant airspace

sector. When more aircraft enter the controller’s sector, the landing schedule can be

updated. However, those aircraft sufficiently close to the runway should retain their

landing times as defined by the current schedule. Aircraft further from the the runway

can be rescheduled, although significant changes to the landing schedule are normally

restricted to those aircraft that are furthest away from the runway.

4



2.2. Literature review

In this section, we review the main algorithmic contributions for scheduling aircraft

landings. Assume that there are n aircraft whose landings are to be scheduled. A schedule

specifies the respective landing times LT1, . . . ,LTn of these aircraft.

As shown by Beasley et al (2000), the ALP can be formulated as a mixed-integer

program. Moreover, the close relationship with machine scheduling problems has been

noted and exploited by Brentnall (2006). Artiouchine et al (2008) also model as a single

machine scheduling problem and study the complexity of the problem. We can regard

the problem as one of sequencing the aircraft, because the actual landing times are easily

computed once the sequence is known.

A variety of authors employ dynamic programming as a solution approach. Many of

these studies assume that aircraft within a weight class can be sequenced, typically by

establishing that there exists an optimal solution to the ALP that always satisfies this

property. The ALP then reduces to one of merging the individual sequences constructed

for the different weight classes, with dynamic programming providing an effective approach

for finding an optimal merging. The number of weight classes C is assumed to be fixed

(in most practical applications, C = 3 or C = 5).

The first application of dynamic programming to the ALP is due to Psaraftis (1978,

1980). In this study, all aircraft within the same weight class are identical. Using state

variables to indicate the number of aircraft of each weight class that are scheduled and a

state variable to indicate the class of the last aircraft in the partial sequence, he derives an

algorithms to minimize LTmax, where LTmax = maxj=1,...,n LTj , and to minimize
∑n

j=1 LTj

with a time complexity of O(nC). Constraints on position shifting can be incorporated

into the algorithm without increasing the time complexity. Also, a further generalization

to the case of more than one runway is possible.

Several dynamic programming algorithms for the ALP are presented by Brentnall

(2006). For some objective functions, he derives the optimal order of aircraft within each

weight class, and is therefore able to generalize the dynamic programming algorithms of

Psaraftis. He also develops dynamic programming algorithms for the problem of scheduling

landings of aircraft located in several holding stacks, of the type used at London Heathrow

airport. His assumption is that the next aircraft to leave any stack must be the lowest

one.

Balakrishnan and Chandran (2010) present a dynamic programming framework for

runway scheduling that is applicable to the ALP. The algorithm, which minimizes the

landing time of the last aircraft, is also shown to generalize to delay-based objective

functions. In addition to standard separation constraints, there are constraints on posi-

tion shifting, precedence constraints between aircraft, and constraints imposed by time

5



windows. Lee and Balakrishnan (2008) extend the previous framework proposed by Bal-

akrishnan and Chandran (2010) and Chandran and Balakrishnan (2007) by presenting a

dynamic programming algorithm for minimizing the total delay costs associated with an

arrival schedule. Also, they study the problem of minimizing the fuel cost for an arrival

schedule, since fuel is a significant factor impacting the profitability of airlines. They allow

the earliest landing time to be less than the unconstrained landing time, which is referred

to as time advance, and show that up to 3 minutes of time advance is beneficial in most

practical cases.

A specialized simplex method is proposed in Ernst, Krishnamoorthy and Storer (1999)

to find the optimal landing schedule, given a partial ordering of the aircraft. They develop

a heuristic-based problem space search which consists of the simplex algorithm to compute

the optimal landing time, a constructive based heuristic to generate a good sequence, and a

genetic algorithm to search the perturbation space. The heuristic algorithm and simplex

method are used to obtain upper and lower bounds for a branch-and-bound algorithm

which minimizes the sum of delays.

In addition to providing an extensive literature overview, Beasley et al (2000) present

linear programming (LP)-based tree search approaches for scheduling landings on both

single and multiple runway problems. The model is based on an earlier mixed-integer

programming formulation of Abela et al (1993). Their objective is to minimize the de-

viation from the unconstrained landing times. Some additional constraints are proposed

in order to reduce the search space associated with the mixed-integer formulation and

to strengthen the LP relaxation. The static problem is solved optimally for problem in-

stances involving up to 50 aircraft and four runways. Faye (2015) use the Beasley et al

(2000) formulation and present a dynamic constraint generation algorithm. The approach

is based on an approximation of the separation time matrix to a rank two matrix, which

provides a very good LP relaxation.

Beasley, Sonander and Havelock (2001) develop a population heuristic addressing the

static single-runway ALP with time window restrictions. The algorithm aims to minimize

the sum of squares of deviations from unconstrained landing times. Computational results

are presented for a single problem instance obtained from observations during a busy

period at London Heathrow airport, where minimum separations are based on five weight

classes.

Pinol and Beasley (2006) implement two different population heuristics, scatter search

and a bionomic algorithm, for the multiple-runway ALP. Two alternative objective func-

tions are proposed based on earliness and lateness with respect to the unconstrained

landing time. Specifically, minimization of a linear function comprising weighted earliness

plus weighted tardiness, and maximization of a non-linear function comprising the total

6



squared earliness minus the total squared lateness are considered.

A comparative study of algorithms is provided by Fahle et al (2003). Specifically,

they compare a mixed-integer programming formulation with binary variables defining the

landing order between each pair of aircraft, an integer program employing time-indexed

variables, constraint programming, and local search approaches based on descent and sim-

ulated annealing. A satisfiability formulation was also explored, but this only produces

a feasible solution rather than searching for an optimal solution. Computational results

show that the constraint programming, the mixed-integer and integer programming ap-

proaches are computationally expensive on some instances. However, the descent and

simulated annealing approaches provide good-quality solutions within reasonable compu-

tation times. Soomer and Franx (2008) include airline preferences into the model proposed

by Beasley et al (2000). They evaluate the performance of a mixed-integer programming

model and a descent algorithm in which the search is performed over sequences with linear

programming used to determine actual landing times from the given sequence.

The dynamic aircraft landing problem in which the aircraft to be scheduled become

available to controllers over time has received relatively little coverage in the literature.

However, those studies that are available typically use the same general rolling horizon

(also referred to as receding horizon) approach. They first select an update time, which

is typically a few minutes, when a new schedule is to be created. Any aircraft that have

landed when the schedule is updated are removed from the system, any new aircraft that

have appeared within the relevant scheduling horizon are added to the system, and then

the resulting problem is solved to give a new schedule. Some studies also assume a freeze

time when computing an updated schedule. Specifically, any aircraft that is scheduled to

land within the freeze time cannot be rescheduled during an update.

Ciesielski and Scerri (1997) investigate the use of genetic algorithms for the dynamic

problem of scheduling landings on two runways at Sydney airport. Based on a three-minute

update time, positive conclusions are reached about the ability of genetic algorithms to

produce schedules of good quality in real time. Beasley et al (2004) introduce a displace-

ment term into their objective function, which penalizes any unfavourable changes when

the schedule is updated, where an unfavourable changes is one that moves the landing

time further away from its preferred landing time. They create their schedules using ei-

ther the tree search approach of Beasley et al (2000), one of the heuristics employed within

the tree search approach, or the population heuristic of Beasley, Sonander and Havelock

(2001), where the updated schedule is computed when a new aircraft enters the system.

Moser and Hendtlass (2007) propose an extremal optimization approach (essentially a

local search approach that aims to improve the worst components of a solution through

local modifications) for this problem, although their model does not include the displace-

7



ment function. Hu and Chen (2005a,b) develop a framework for rolling/receding horizon

approaches. Their computational work indicates that relatively short horizons of between

10 and 20 minutes are sufficient to provide schedules with suitably low delays. Murça

and Müller (2015) develop a MILP model for the dynamic sequencing and scheduling of

aircraft landings. They consider alternative approach routes to the runway as a means of

shortening or lengthening the path, and also consider departing aircraft in their model.

They set a scheduling window of 60 minutes and a freeze horizon of 20 minutes.

More recently, there has been a number of papers focusing on traffic management across

the entire terminal manoeuvering area (TMA), including arriving and departing aircraft.

D’Ariano et al (2012) state that ATC decisions can be divided into routing decisions,

involving the route the aircraft takes through the TMA including holding circles, air

segments and runways, and scheduling decisions. They model the problem as a job shop

scheduling problem and use an alternative graph formulation. The objective is to minimise

delay caused by the resolution of conflicts in the TMA. The scheduling problem is solved

using branch and bound, and the routing problem is solved using tabu search. Results

show that combining routing and scheduling is beneficial to reducing delay. D’Ariano

et al (2015) build on this work by introducing new practical constraints and testing two

greedy heuristics. Samà et al (2013) also use the alternative graph approach to solve

the scheduling problem assuming fixed routing. They model the dynamic case using a

rolling horizon approach. The branch and bound solver could find optimal solutions in

most cases within 60 seconds, while FCFS was significantly faster but produced much

higher delays. A further paper by the same authors (Samà et al, 2014) introduces a MILP

formulation of the scheduling and re-routing problem and provides solution of the model

using commercial solver. Also, two decomposition frameworks are proposed: time-based

through a rolling horizon and problem-based by separating the routing and scheduling.

Computational results shows that the competitiveness of each approach depends on the

instance. Finally, Samà et al (2016) use the alternative graph model to consider further

performance indicators.

In summary, there are numerous studies on the static ALP with dynamic program-

ming, local search and genetic algorithms providing competitive solution approaches. The

limited literature on the dynamic ALP is too fragmented for any common themes to

emerge.

3. The Aircraft Landing Problem

In this paper, we consider the ALP with a single runway that is used solely for landings.

This situation is common, although there are airports where both take-offs and landings

8



are scheduled on the same runway. Associated with any schedule are landing times.

Specifically, in any schedule, let LTj denote the landing time of aircraft j, for j = 1, . . . , n,

where n is the number of aircraft in the schedule that is to be created.

In the static/off-line version of the problem, n and all data associated with these

aircraft are known in advance of creating the schedule. However, in the dynamic/on-line

version of the problem, aircraft arrive into an ATC’s airspace over time. In practice,

controllers typically have knowledge of an aircraft between 30 and 40 minutes before it

can reach the runway. The number of aircraft is not known in advance. Further, no

information is available to controllers about aircraft that have yet to arrive into their

airspace. Thus, scheduling decisions have to be taken on the basis of partial data.

The model formulation that follows attempts to include an element of the type of

coordinated planning to be used in the future by considering the interests of the various

stakeholders. Currently, however, ATCs usually schedule landings to minimize separation

times between aircraft, subject to meeting safety requirements. In spite of our model’s

broader remit, a suitable choice of parameters maintains compatibility with the criteria

upon which ATCs make their decisions in a current-day setting.

3.1. Constraints

The constraints on the aircraft landing problem are divided into two main types. There

are constraints on the time that an aircraft can land, and constraints on the separation

time between landings.

3.1.1. Landing time constraints

There are various constraints on the landing time of each aircraft j, for j = 1, . . . , n,

that take the form of time windows. First, LTj should lie within a time window [eltj , lltj ],

where eltj and lltj are the earliest and latest landing times of aircraft j. Typically, the

earliest landing time is the time aircraft j takes to fly from its current location to the

runway at a maximum safe speed. The latest landing time is usually the maximum possible

flight time based on the fuel carried by the aircraft, although there could be reasons why

an airport or airline could stipulate a smaller value of the latest landing time. Second,

LTj should lie within a time window based on the unconstrained landing time, ultj , of

aircraft j. The value of ultj is the time that aircraft j would be expected to land when

there are no other aircraft to impede its progress to the runway. It is determined by the

arrival planner system after the aircraft enters the range of the relevant radar. Aircraft

j is assumed not to land before ultj , but may land up to a maximum time shift tsj after

ultj , which means that LTj should lie within the time window [ultj , ultj + tsj ].

9



The two time windows defined by the earliest/latest landing times and the deviations

from the ultj can be combined. This provides a constraint of the form

ej ≤ LTj ≤ lj for j = 1, . . . , n, (1)

where ej = max{eltj , ultj} and lj = min{lltj , ultj + tsj}.

An aircraft j may also have an associated preferred landing time pltj . The preferred

landing time may be based on the aircraft’s flight plan, the airlines timetable, or a time

used by the airport in their plans for assigning a gate to the aircraft or for the baggage

to be unloaded. However, we view the preferred landing time as a soft constraint that we

address when considering the objective function.

3.1.2. Separation time constraints

Associated with each aircraft is a weight class that determines the minimum separation

times between successive landings. Let C denote the number of classes. Also, let sbc be

the minimum separation time when an aircraft of class b lands before an aircraft of type

c, for b, c = 1, . . . , C. We assume that the separation times satisfy the triangle inequality

so that for any aircraft of types a, b and c we have sab + sbc ≥ sac. This implies that

it is sufficient to impose the separation time constraints only between successive pairs of

aircraft in the landing sequence.

Due to the importance of the separation time constraints, it is sometimes convenient

to use double indices for the aircraft. For any weight class c, let nc denote the number

of aircraft in this class, where n =
∑C

c=1 nc. We then refer to the aircraft in each weight

class c as (1, c), . . . , (nc, c). Because an aircraft (i, b) lands either before or after any other

aircraft (j, c), we obtain a separation constraint

LTi,b + sbc ≤ LTj,c or LTj,c + scb ≤ LTi,b (2)

for each pair of aircraft (i, b) and (j, c).

Note that there may be precedence constraints specifying that one aircraft must be

placed before another in the landing sequence. Thus, if aircraft (i, b) must land before

aircraft (j, c) according to the precedence constraints, then constraint (2) is replaced by

LTi,b + sbc ≤ LTj,c.

3.2. Objective function

As previously discussed, the ALP involves a number of stakeholders with various pri-

orities. Therefore, adopting a multi-objective approach is appropriate. Since problem is

10



complex and our aim is to find solutions quickly enough to solve the online problem, we

adopt the approach of forming a weighted sum of the individual objectives.

The main objective of ATCs after taking into account safety is to maximize runway

throughput. This naturally translates into minimizing the landing time of the last aircraft

in the schedule, or more formally the objective is to minimize LTmax, where LTmax =

maxj=1,...,n LTj . However, in a more realistic dynamic scheduling environment, there is a

high likelihood that the latter part of the schedule will change due to new aircraft arriving,

with the result that only the initial part of the landing schedule is implemented. Therefore,

focusing only or mainly on the landing time of the last aircraft may create schedules that

are less suitable when used for scheduling within a dynamic environment. Thus, we also

consider the minimization of the average landing time

ALT =
n∑

j=1

LTj/n, (3)

which aims to reduce each of the landing times rather than just the last. Smaller land-

ing times of aircraft early in the sequence may be especially advantageous in a dynamic

environment where only the first part of the schedule is executed and the remainder of

the schedule is updated as new aircraft join the system. The overall contribution to the

objective function of our runway throughput measure is

w1LTmax + w2ALT, (4)

where w1 and w2 are suitably chosen non-negative weights for the maximum and average

landing time, respectively.

The notion of a preferred landing time is introduced in Section 3.1.1. For each aircraft

j, we define a time window [pltj − δej , pltj + δlj ] within which the aircraft should ideally

land, were δej and δlj define allowable tolerances for earliness and lateness with respect to

pltj , respectively. If LTj < pltj − δej , then there is an earliness penalty uej(pltj − δej −LTj),

where uej is a penalty per unit of earliness with respect to the left-hand end of the time

window. Similarly, if LTj > pltj + δlj , then there is a lateness penalty ulj(LTj − pltj − δlj),

where ulj is a penalty per unit of lateness with respect to the right-hand end of the time

window. Generally, we would expect the model parameters to be chosen so that ulj ≥ uej

because lateness usually causes greater disruption then earliness. Thus, the overall penalty

for violation of the time windows defined for preferred landing times is

TW =

n∑

j=1

uej max{pltj − δej − LTj , 0}+

n∑

j=1

ulj max{LTj − pltj − δlj , 0}. (5)

11



Lastly, the cost of using more fuel than is necessary for a flight is a concern for airlines,

and moreover a reduction in fuel burn is helpful in achieving government targets on CO2

emissions. Thus, another objective is the minimization of the additional fuel used to

achieve a landing schedule. As a baseline, a landing time of ultj is assumed for each

aircraft j. Any later landing for aircraft j, as defined by LTj > ultj , causes the aircraft to

use more fuel due to being airborne for longer and also possibly through some manoeuvres

requested by the ATC to delay its landing time. Recall that we do not allow any aircraft

j to land before ultj . If v
l
j denotes the cost per unit time of the extra fuel associated with

lateness relative to ultj , then the overall extra fuel cost is

EF =

n∑

j=1

vlj max{LTj − ultj , 0}. (6)

Since the ALP may involve the simultaneous optimization of various dependent ob-

jectives that are not necessarily aligned, a trade-off among the objectives is required.

Therefore, they need to be optimized in the form of a weighted multi-criteria objective

function. Using suitable weights, we can combine the different objectives defined in (4),

(5) and (6) to give the overall objective function

w1LTmax + w2ALT+ w3TWF+ w4EF, (7)

for appropriately chosen non-negative weights w3 and w4 (as well as w1 and w2). This

expression is to be minimized, subject to constraints (1) and (2).

Based on equation (7), the incremental cost of aircraft j landing at time t is given by

gj,t = w2t/n+ w3(u
e
j max{pltj − δej − t, 0}+ ulj max{t− pltj − δlj , 0})

+w4(v
l
j max{t− ultj , 0}). (8)

3.3. Assumptions

The decision variables in our model are the landing time variables LTj for j = 1, . . . , n.

We assume that any selection of landing times that are chosen to satisfy (1) and (2) define

a feasible solution.

One aspect of feasibility that we do not consider is runway occupancy by a landing

aircraft. Suppose that the aircraft landing immediately before (j, c) is (i, b). According to

constraint (2), aircraft (j, c) could land as early as LTib + sbc. Our model assumes that

aircraft (i, b) has left the runway by this time. Thus, we do not model the blocking of the

runway by any aircraft that has already landed or by any aircraft that is taxiing.

Another operational issue that does not appear in our model concerns the manoeuvres

12



required by aircraft to achieve those landing times that correspond to the values of the

decision variables. We aim to avoid the need for excessive resequencing of aircraft by

imposing constraint set (1) which incorporates a maximum time shift of each aircraft. On

this basis, our assumption is that ATCs can achieve the desired landing times by using

relevant techniques (as pointed out by Bennell, Mesgarpour, and Potts (2011), vectoring,

detour and shortcut are used by ATCs to position aircraft according to the desired landing

sequence) and that these manoeuvres can be achieved in the terminal airspace.

3.4. The dynamic problem

The dynamic problem is most critically concerned with the aircraft that will land

next, or more specifically, the aircraft that will enter the freeze horizon. However, these

decisions are impacted by other aircraft in the schedule; hence, it is appropriate to adopt

a rolling horizon approach. Specifically, the static problem is first solved for aircraft

within a certain time window that contains the freeze horizon. Then, after a given update

period, the static problem is solved again for the aircraft in the new time window. We

create successive time windows so that they overlap, which allows for the possible changes

of landing positions between aircraft. Since the information about available aircraft is

continuously updated and decision are made in real time, the scheduling algorithms must

run within a few seconds.

The above formulation holds for the static problem with n chosen as the total number

of aircraft, and for the dynamic problem with n chosen as the subset of aircraft available

to the ATC for scheduling at a particular time. In the dynamic aircraft landing problem,

aircraft are scheduled for landing using a rolling horizon approach. This means that every

τ units of time, for some suitable chosen time interval of length τ , the previously created

(provisional) schedule is updated by removing aircraft at the beginning of the schedule

that land and therefore leave the system, and by including any new aircraft entering the

system that appears on the ATC’s radar screen. Some aircraft that are sufficiently close

to the start of the schedule are not eligible to be rescheduled for safety reasons. Further,

the likelihood of an aircraft being rescheduled reduces as it gets closer to landing. This

is because any new aircraft entering the system are too far away to have a significant

influence on the selection of landing times of aircraft close to the runway.

We refer to τ as the update time. Typically, τ may be approximately five minutes.

Too small a value of τ would result in too frequent updates to the schedule, possibly with

only one or two additional aircraft in the system. On the other hand, if τ is too large,

some of the opportunities for manoeuvres to create better landing schedules may be lost.

We investigate different values of τ in our computational experiments.

13



4. Algorithms for Creating Landing Schedules

This section describes the development of our solution algorithms for the aircraft land-

ing problem. Our goal is to design algorithms that run in under five seconds and preferably

provide solutions in under one second. In the following four subsections, we present various

search algorithms for solving the static problem. Although being of some independent in-

terest for the static ALP, these algorithms provide the core search mechanism for tackling

the dynamic problem. We then describe the solution procedure for the dynamic problem

in the final subsection.

By its nature, decision making for the dynamic problem can never be perfect because

some information is unavailable when the various decisions are to be made. On this basis,

algorithms for the static problem that are designed for use in solving the dynamic problem

do not necessarily have to guarantee optimality. Instead, heuristics that provide good-

quality solutions for the static problem at modest computational expense can be used.

4.1. FCFS

In FCFS, the aircraft are sequenced in non-decreasing order of their unconstrained

landing times. Thus, the landing sequence σ is chosen so that ultσ(1) ≤ · · · ≤ ultσ(n). The

landing sequence effectively defines precedences between aircraft that land in succession.

Thus, the actual (smallest) landing times are determined by applying constraints (1) and

(2) in a straightforward way.

4.2. Dynamic programming

Our dynamic programming algorithm assumes that, within each weight class, the

aircraft are ordered in non-decreasing order of their unconstrained landing times. We

index the aircraft accordingly, so that ult1,c ≤ · · · ≤ ultnc,c, for c = 1, . . . , C. We also

assume that, for the selected landing sequence, each aircraft is scheduled to land as early

as possible subject to the separation constraints (2).

Our proposed dynamic program has stages that are indexed by k, where k denotes

the number of aircraft that have landed in the partial schedule. The aircraft within the

different weight classes can be viewed as C queues operating in parallel that have to be

merged. This merging is achieved by successively selecting the aircraft at the front of one

of these queues to be the next to land.

The dynamic program has state variables (m1, . . . ,mC , c, t). The first set of state

variables are indices m1, . . . ,mC , where 0 ≤ mb ≤ nb, indicating that, within the partial

schedule, aircraft (1, b), . . . , (mb, b) for b = 1, . . . , C have landed. Thus, the total number

of aircraft to have landed is k =
∑C

b=1mb. State variable c indicates that aircraft (mc, c)

is the last to land in the partial schedule, and t is this aircraft’s landing time. These

14



state variables are sufficient to create and evaluate any continuation of a partial schedule,

since the identity of those aircraft to have landed is known and the landing time can be

computed for the aircraft that is selected to land next. Specifically, if aircraft (mb + 1, b)

is selected to land next, then its landing time is max{e(mb+1,b), t+ scb}).

Let f(m1, . . . ,mC , c, t) denote the minimum total cost among partial landing schedules

corresponding to state (m1, . . . ,mC , c, t). Our dynamic programming algorithm can be

stated formally as follows.

Algorithm DP

Initialization

Set k = 1, and

f(1, . . . , 0, 1, e(1,1)) = g(1,1),e(1,1)
...

f(0, . . . , 1, C, e(1,C)) = g(1,C),e(1,C)

where e(1,1), . . . , e(1,C) are lower bounds on landing times as used in constraints (1), and

the function g is defined in equation (8).

Next Stage Generation

For each state (m1, . . . ,mC , c, t) such that
∑C

b=1mb = k and each b such that mb <

nb, generate the potential new state (m1, . . . ,mb−1,mb + 1,mb+1, . . . ,mC , b, t
′), where

t′ = max{e(mb+1,b), t + scb}). If t′ > l(mb+1,b), then the potential new state is infeasible

and discarded; otherwise, it is retained and its associated value is f(m1, . . . ,mC , c, t) +

g(mb+1,b),t′ , where g(mb+1,b),t′ is computed from (8).

Next Stage Elimination

If any state (m′

1, . . . ,m
′

C , b, t
′), where

∑C
c=1m

′

c = k + 1, is created more than once in the

Next Stage Generation step, select the one with the smallest associated value V and set

f(m′

1, . . . ,m
′

C , b, t
′) = V . If k <

∑C
b=1 nb, then set k = k+1 and return to the Next Stage

Generation step.

Select Solution

Among all states (n1, . . . , nC , b, t
′) for b = 1, . . . , C and all t′, select the one with the

smallest value of w1t
′ + f(n1, . . . , nC , b, t

′).

In Algorithm DP, the Initialization considers partial schedules containing one aircraft

that may belong to any of the C weight classes. The next Next Stage Generation step

15



appends one aircraft to the current partial landing schedule and evaluates the cost of the

new partial schedule if it is feasible. Feasibility of the new partial schedule with respect to

the earliest are latest landing time constraints (1) is ensured by selecting t′ ≥ e(mb+1,b) and

only retaining a partial schedule when t′ ≤ l(mb+1,b). In the Next Stage Elimination step,

any duplicate states are eliminated on the basis of their cost. Finally, the Select Solution

step searches all states corresponding to schedules in which all aircraft have landed, and

selects one with minimum cost.

To justify that Algorithm DP produces an optimal landing schedule under the assump-

tions made, we first observe that all potential states are generated through the Initializa-

tion and Next Stage Elimination steps. Further, the Next Stage Elimination step removes

any dominated partial landing schedules through the principle of optimality. Finally, the

minimum cost solution selected in Select Solution step ensures that an optimal landing

schedule is obtained.

Algorithm DP has n stages and O(CnCT ) states within each stage, where T denotes

the number of potential landing times of the aircraft. However, T ≤ n(n + 1)C
2
because

each potential landing time is equal to ej+
∑C

b=1

∑C
c=1 xbcsbc for some aircraft j, and some

xbc ∈ {0, 1, . . . , n} for b, c = 1, . . . , C. Therefore, the time complexity of Algorithm DP is

O(C2nC2+C+2), which is polynomial for fixed C.

4.3. Iterated descent

We first describe a descent algorithm that provides the basic building block for our

iterated descent method. Solutions are represented as a landing sequence of aircraft.

Thus, each solution is defined by some aircraft sequence σ = (σ(1), . . . , σ(n)). We use

a combined insert, swap and 2-insert neighbourhood. Insert and swap are widely-used

neighbourhoods for a variety of sequencing problems and have been used for the ALP by

Fahle et al (2003), whereas the 2-insert neighbourhood has not been used previously. A

3-insert neighbourhood was also investigated but resulted in very few feasible moves, and

is therefore not included.

The insert neighbourhood comprises all sequences that can be obtained from the cur-

rent sequence by removing an aircraft from its current position and inserting it into a new

position in the sequence. Thus, for 1 ≤ h < i < j ≤ n, two insert neighbours of σ are

(σ(1), . . . , σ(h), σ(i), σ(h+ 1), . . . , σ(i− 1), σ(i+ 1), . . . , σ(n))

(σ(1), . . . , σ(i− 1), σ(i+ 1), . . . , σ(j), σ(i), σ(j + 1), . . . , σ(n)).

Further, the swap neighbourhood comprises all sequences resulting from the interchange

16



of two aircraft, so for 1 ≤ i < j ≤ n a swap neighbour of σ is

(σ(1), . . . , σ(i− 1), σ(j), σ(i+ 1), . . . , σ(j − 1), σ(i), σ(j + 1), . . . , σ(n)).

The 2-insert neighbourhood comprises all sequences that can be obtained by removing

two adjacent aircraft having the same weight class and inserting them into a new position

in the sequence. Our motivation for this move type arises from the potential benefit of

batching aircraft from the same weight class in terms of separation times. Note that these

neighbourhoods in combination can create solutions that cannot be formed by a merging

of streams of pre-ordered aircraft as in our dynamic programming algorithm.

The descent algorithm uses the FCFS sequence as the initial solution, and selects a

new solution using a best improve strategy when searching the combined insert, swap

and 2-insert neighbourhoods. Specifically, each iteration of the search generates all land-

ing sequences that are neighbours of the current sequence, from which the corresponding

(smallest) landing times are computed using (1) and (2). Any sequence that does not pro-

duce feasible landing times is not considered further, whereas other sequences with feasible

landing times are evaluated using equation (7). The best neighbour is then selected. If

it improves on the current solution, this best neighbour replaces the current solution and

the search to improve the new current solution continues. If the best neighbour does

not improve on the current solution, then the descent algorithm terminates with a local

optimum.

Iterated descent prevents the descent algorithm from terminating at the first local

optimum by applying a ‘kick’ to the locally optimal solution to create a new starting

solution. Descent is then applied to this new solution, and the process repeats until

a termination criterion ends the search process. Our kick corresponds to k randomly

generated insert moves, where any such moves that cause infeasibility due to the latest

landing time or maximum time shift constraints are rejected and consequently replaced

by other random insert moves. We investigate different values of k in our computational

experiments.

4.4. Simulated annealing

Simulated annealing is one of a number of local search techniques that can escape

from local optima through accepting non-improving moves. In brief, the search randomly

selects a neighbour, evaluates it with respect to the objective function, automatically ac-

cepts feasible improving neighbours and accepts feasible non-improving neighbours with a

certain probability. A temperature parameter controls this probability, which dynamically

changes through the search. The initial temperature is set so the probability of accepting

17



non-improving moves is high, and as the search progresses the probability reduces. This

is called the cooling schedule. Some researchers have investigated non-monotonic changes

in temperature.

Our implementation of simulated annealing follows the approach proposed by Crauwels,

Potts, and Van Wassenhove (1997) for scheduling families of jobs on a single machine,

where a set-up time is required when the machine switches from processing a job in one

family to a job in another family. There are some parallels with our problem, where air-

craft are in families of classes and switching classes often incurs a greater separation than

landing consecutive aircraft from the same class. We use the same three neighbourhoods

as in our iterated descent approach; insert, swap and 2-insert.

Neighbours producing a feasible solution with the same or a better objective function

values than the current solution are accepted. On the other hand, feasible neighbours

with a worse objective function value are accepted with probability e−∆/t, where ∆ is

the amount by which the objective function increases and t is the temperature. We

follow the scheme of Crauwels, Potts, and Van Wassenhove (1997) in which the values

of the temperature are periodic, rather than the usual scheme of starting with a high

temperature which is gradually decreased during the course of the algorithm.

4.5. Dynamic problem

As explained in Section 3.4, the dynamic problem is based on solving a static problem

every τ time units, where τ is the update time. The aircraft that are available to the

static scheduling algorithm depend on two parameters in addition to τ . First, we consider

the time horizon T over which the static problem is solved. Thus, at the update time, any

aircraft that are within time T of the runway are assumed to be known to the ATC and

are therefore included, but those aircraft with unconstrained landing times that are more

than T time units into the future are excluded. Second, we assume that there is a freeze

time t that defines the period of time for which the previously created schedule cannot be

altered. As a consequence, any aircraft that are currently scheduled to land within the

next t time units cannot be rescheduled. Note that the freeze time must exceed a certain

minimum level to avoid potentially dangerous manoeuvres of aircraft that are close to the

runway. Also, the time horizon T is selected to include all aircraft whose appearance times

would reasonably be expected to be known to the ATC and might realistically influence

scheduling decisions towards the start of the schedule that is to be generated.

An interesting observation is that the length of the time period T − t is our main

concern, rather than the specific values of t and T . For example, increasing both t and T

by time τ will create the same schedule, but τ time units earlier than would be the case

without the increase in t and T . Hence, we can set the length of the time window to be

18



T ′ = T − t with T ′ chosen such that knowledge of aircraft that are separated by more than

T − t time units does not significantly improve the quality of the landing schedule that is

generated.

5. Computational experience

5.1. Heathrow test data

Our computational tests use two types of data sets. The first includes all landings at

Heathrow Airport, UK, over a ten day period during June 2009. The second comprises

data that are randomly generated in such a way to exhibit similar characteristics of traffic

volume to the Heathrow data, and cover a 40-day period. The Heathrow data are the

property of NATS (National Air Traffic Services) Ltd and subject to a non-disclosure

agreement, hence motivating the generation of artificial data that can be made available

to other researchers.

There are two parallel runways available for use at Heathrow airport. As the airport

is situated close to residential areas, two runways generally operate in segregated mode;

one for landing and one for take-off. Occasionally, landings are allowed on the nominated

take-off runway to reduce delays and taxi times. Arriving aircraft approach from the

east to west (westerly operation) unless the wind comes from the east in which case the

landing direction is reversed so that aircraft land into the wind for safety reasons. During

busy periods, controllers normally direct arriving aircraft to the top of one of four holding

stacks. As aircraft reach the lowest level in their stack, controllers vector the aircraft onto

the final approach and move higher aircraft down. Finally, they are merged into a single

arrival stream of traffic for landing (Heathrow Airport, 2011).

For the Heathrow data set, we extract information that is used to form the input

into our scheduling algorithms and to provide a benchmark against which our algorithms

are compared. Specifically, for each aircraft j, we find: the actual landing time, the

landing runway, the aircraft’s weight class (cj) based on the UK’s wake vortex group

classification, date, the time that the aircraft crosses a cordon 40nm from the airport, and

the unconstrained landing time (ultj) as provided by Heathrow’s arrival planner system.

The UK has increased the original International Civil Aviation Organization’s three wake

turbulence separation groups to five, which in decreasing order of weight are Heavy (H),

Upper medium (U), Lower medium (M), Small (S) and Light (L). The unconstrained

landing time is calculated from the 40nm cordon crossing and provides the FCFS sequence

that serves as an initial landing order. The crossing time of the 40nm cordon is the

appearance time that defines when the flight becomes available to the controllers for

scheduling. We use the landing runway data to identify and remove flights that do not

19



Table 1: Separation times (seconds) based on an airspeed of 149 nm per hour

Follower
H U M S L

H 97 121 121 145 169
U 72 72 97 97 145

Leader M 72 72 72 72 121
S 72 72 72 72 97
L 72 72 72 72 72

land on the primary landing runway. Removing these data should not affect separation

times for landing the other flights in the data set (although there may be implications on

ATC workload but this is not considered in our model).

In addition to providing test instances for our algorithms, the Heathrow data are

used to estimate the separation time matrix (sbc) and to determine for each aircraft j

its maximum time shift (tsj). Note that ATCs are required to observe standard separa-

tion distances rather than times, and therefore the time between landings of aircraft is

dependant on their approach speed.

In order to estimate separation times, we first extract the times between actual land-

ings of consecutive flights. However, not all landings are queued, and consequently some

separations may have greater than the minimum required. Hence, we remove any sepa-

ration times that are greater than 1.2 times the standard separation distances divided by

the estimated speed of aircraft immediately prior to landing at Heathrow. The remaining

data are averaged by wake vortex leader/follower categories. Unfortunately, these data

cannot be used directly because some categories have insufficient observations. Instead, we

determine the airspeed that, when multiplied by the standard separation distances, gives

the lowest mean square error from the separation times extracted from the Heathrow data

set across all wake vortex categories. The separation times in Table 1 arise from a landing

airspeed of 149 nm per hour, which gives a mean squared error of 43.9.

Section 3 details the rationale for the maximum time shift, tsj . Here, we define a

common maximum time shift that applies to all aircraft. Analysis of the frequency of time

shifts in the Heathrow data, after removing flights that land before their unconstrained

landing time, show that 95% of the time shifts LTj−ultj lie in the range 0-870 seconds

after the unconstrained landing time. On this basis, we set tsj = 870 seconds for all

aircraft j. Since we do not have the necessary information to determine a meaningful

preferred landing time, we assume that it is equal to the unconstrained landing time and

therefore set pltj = ultj for all aircraft j.

Finally, for our tests we set δej = 300 and δlj = 600 for each aircraft j, which provides a

20



Table 2: Means and standard deviations of hourly aircraft arrivals

Morning Day Night

3-4am 4-5am 5-6am Normal Busy 8-9pm 9-10pm

Set1
µ 5 15 30 37 39 30 10

σ 0.5 0.5 1.0 1.5 1.5 1.0 0.5

Set2
µ 5 15 30 38 41 30 10

σ 0.5 0.5 1.0 1.5 1.5 1.0 0.5

Set3
µ 5 15 30 39 43 30 10

σ 0.5 0.5 1.0 1.5 1.5 1.0 0.5

Set4
µ 5 15 30 40 45 30 10

σ 0.5 0.5 1.0 1.5 1.5 1.0 0.5

15-minute landing time window around preferred landing times during which no penalty

is incurred. The values of the unit penalties uej , u
l
j and vlj that appear in the objective

function are not deducible from the Heathrow data; however, the values used in our

computational tests are listed below in Section 5.3. Note that since LTj ≥ ultj = pltj for

each aircraft j, the value of δej (and uej) is irrelevant.

5.2. Random test data

In order to generate the random test instances, we design a model that mimics the

pattern of changes in traffic volume across the day and allows us to set different traffic

intensities. As a result, we can evaluate the performance of the algorithms over a variety

of problem instances. Each problem instance covers a one-day period. The appearance

of the first aircraft is after 3am and the last aircraft before 10pm. Each day is divided

into three periods: Morning (3am-6am), Day (6am-8pm) and Night (8pm-10pm). Fewer

aircraft arrive during the Morning and Night periods. We further divide the Day period

into Normal and Busy hours, where Busy hours are 6-8am, 11am-1pm and 4-7pm and the

remaining hours are Normal. Table 2 details the average number of aircraft µ per hour

and the standard deviation σ, for each time period and each traffic intensity, where Set1

represents the lowest intensity and Set4 the highest. Ten instances are generated for each

traffic intensity level, giving forty random test instances in total.

In addition to the number of flights, we also need a mechanism to generate for each air-

craft j its weight class, appearance time (apj) and approach direction of the flight. For any

time period t, probabilities pt(c) and qt(d) for the weight class c ∈ {H,U,M,S,L} and ap-

proach direction d ∈ {1, . . . , 10} of an aircraft are derived from the 10-day Heathrow data,

where d is the number of the dodecant corresponding to the position the aircraft crosses

a cordon 40nm from the airport (only 10 of the 12 dodecants are used for approaches).

21



Also, a negative exponential distribution provides a good fit for the inter-arrival time of

flight appearance in the Heathrow data set.

The Daily Traffic Sample Generator below details the procedure for generating the test

data. In brief, for each hour we generate the number of flights using the normal distribution

N(µ, σ2) based the means and standard deviations in Table 2. Then we generate the

inter-arrival times between the flights using the negative exponential distribution. These

times are scaled to ensure the arrivals exactly span the entire hour (with one aircraft

appearing on the hour). The arrival times of the aircraft correspond directly to these

values. The algorithm then computes further parameters for each aircraft j as follows. The

weight class and approach direction are generated according to their respective probability

distributions. Given d and the runway for landing, the remaining duration of the flight

rdfd, assuming an unimpeded passage to the runway, is estimated from the Heathrow

data. Hence, we can calculate ultj for each aircraft j. Finally, the latest landing time lltj

is found by randomly choosing a time gap of 1800, 2700 or 3600 seconds with probability

0.3, 0.5 and 0.2, respectively, and and adding it to the appearance time apj . Note that

each of the time gaps exceeds the maximum time shift, and therefore latest landing times

are effectively redundant when a maximum time shift constraint is imposed.

Daily Traffic Sample Generator

Execute the following steps for each hour h = 1, . . . , 19 of the day, where the hours

correspond to the time periods 3-4am, . . . ,9-10pm. Select the intensity Set1, Set2, Set3 or

Set4 to be used, and set t to be one of the seven time periods according to the hour h and

the columns of Table 2.

Generate Appearance Times

Generate the number of the aircraft nh that appear during hour h from the normal dis-

tribution N(µ, σ2), where µ and σ are given in Table 2.

Generate the gaps in seconds between aircraft appearances as follows.

A sample of unscaled inter-arrival times gj in seconds for j = 1, . . . , nh for hour h from an

exponential distribution with mean 3600/nh is generated.

Compute corresponding scaled inter-arrival times ḡj = 3600gj/
∑nh

i=1 gi for j = 1, . . . , nh.

Assign the appearance times in seconds using apj = 3600(h−1)+
∑j

i=1 ḡi for j = 1, . . . , nh.

Generate Data for Each Aircraft

Execute the following statements for each aircraft j, for j = 1, . . . , nh, that has an ap-

pearance time in hour h.

22



Generate a random number and use the the probabilities pt(c) for c ∈ {H,U,M,S,L} to

assign aircraft j a weight class.

Generate a random number and use the the probabilities qt(d) for d ∈ {1,. . . ,10} to assign

aircraft j an approach direction (dodecant).

Generate a random number and set lj = apj + 1800, lj = apj + 2700 and lj = apj + 3600

with probabilities 0.3, 0.5 and 0.2, respectively.

Set ultj = apj+rfdd, pltj = ultj , δ
e
j = 300, δlj = 600, tsj = 870 uej = x, ulj = x and vlj = x.

The Generator does not guarantee that the resulting data set has a feasible schedule.

Hence we check feasibility using dynamic programming and discard any set for which a

feasible solution is not found. Typically this is because the time windows are too tight.

The preferred landing times, maximum time shifts and values of the unit penalties used in

the objective function are assigned values in the same way as for the Heathrow data, where

the unit penalty values used in our computational tests are listed below in Section 5.3.

5.3. Experimental design

All algorithms were coded in MS Visual C++ 2008 and run on a PC with a dual core,

2.13GHz and 2GB RAM. We refer to the first-come first-served, dynamic programming,

iterated descent and simulated annealing algorithms as FCFS, Algorithm DP, Algorithm

ID and Algorithm SA, respectively. For the static problem, our aim is to explore the

performance of the different algorithms relative to FCFS and to landing schedules based

on the landing sequence created by the ATCs. The solution of the static problem is

typically of interest in strategic or tactical planning where the focus is to estimate the

airport’s capacity. However, for operational use, the main goal is to evaluate how well the

dynamic problem is solved with the proposed algorithms.

For the static problem, we select three half-hour periods, three one-hour periods and

one two-hour period to schedule aircraft from the 10-day Heathrow data set. These focus

on time periods between 7-8am, and 5-7pm, when demand for landing is particularly high.

For the dynamic problem, each instance corresponds to the data for one day for both the

Heathrow and random data sets, and each algorithm is run once for each instance. There

are 10 instances for the Heathrow data. For the random data set, there are 10 instances

for each of four sets of parameter values Set1, Set2, Set3 and Set4 as defined in Table 2,

thus giving a total of 40 instances.

We now discuss some specific implementation details for Algorithm ID and Algorithm

SA when applied to the static problem. Both algorithms require an initial solution, which

is provided by FCFS. An important parameter of Algorithm ID is the kick size. Based

23



on results of initial experiments, we choose 6 randomly generated insert moves (ignoring

infeasible moves) as our kick. Algorithm ID and Algorithm SA terminate after 1 second,

2 seconds and 4 seconds for T = 30, 60 and 120 minutes, respectively. Because both

Algorithm ID and Algorithm SA employ randomization in some of their decisions, each

algorithm is run n/5 times and the average performance is reported.

The implementation details for Algorithm ID and Algorithm SA for the dynamic prob-

lem are now outlined. The initial solution when creating an updated schedule is obtained

by adding the newly available flights in FCFS order to the end of the previous schedule.

As in the static problem, our initial experiments indicate that 6 randomly generated insert

moves is an appropriate kick for Algorithm ID. The termination condition for each up-

date in Algorithm ID and Algorithm SA is a computation time limit of 3 seconds because

returning a solution quickly is critical. Algorithm ID and Algorithm SA are run once for

each instance (the frequent schedule updates reduce the need for multiple runs).

For the dynamic problem, the previous schedule is updated every τ time units. We

investigate the influence of τ by considering values τ = 2.5, 5.0, 7.5 and 10 minutes.

Scheduling starts after the freeze time that occupies the first t units of the scheduling

period and considers those aircraft with unconstrained landing times that are no more

than T time units into the future. As pointed out in Section 4.5, our interest is in the

value of the parameter T ′ = T − t that defines the length of the active time window. We

investigate T ′ = 10, 15, . . . , 40 minutes, and assume a freeze time of t = 5 minutes. For the

Heathrow data, appearance time is between 13 to 20 minutes before unconstrained landing

time depending on the approach route. In order to study longer active time windows, we

subtract a constant max{T ′ − 20, 0} from the appearance times.

Our experiments investigate several sets of weight vectors (W1,W2,W3,W4) for the

objective function defined in equation (7) of Section 3.2. When investigating throughput,

we use the objective function defined in equation (4). For the full multi-criteria objective

function (7), there are also penalties for time window violations and for the use of extra

fuel if the unconstrained landing time is not achieved. Table 3 lists the unit penalty values

that apply to each aircraft j within each of weight classes.

Table 3: Weights for time window violation and extra fuel

Weight class of j H U M S L

ulj 20 17 15 12 10

vlj 15 13 12 10 8

uej 10 8 7 5 4

Our first weight vector is W1 = (0.3, 0.5, 0.1, 0.1), which reflects the throughput consid-

24



erations of ATCs with some consideration of time-window violations and extra fuel cost.

The second vector is W2 = (0.2, 0.4, 0.3, 0.1) which gives more emphasis to time-window

violations. Note that delays relative to the time windows and extra fuel costs are non

conflicting. We also consider an objective that measures throughput, which is is given by

the weight vector W3 = (0.4, 0.6, 0.0, 0.0) so that both LTmax and ALT are considered. It

is worth noting that ATCs typically prioritize throughput, and in particular LTmax, when

deciding upon the landing order of aircraft. Hence, a throughput objective function is

regarded as providing the best basis to compare our schedules against those designed by

the controller. Although LTmax provides the most natural measure of throughput, this

objective only uses the landing time of the last aircraft. By ignoring other landing times

LTmax does not consider the first part of the schedule explicitly, which is the part that is

actually used in the dynamic problem and not subject to update when new aircraft arrive

into the system.

Our comparison of algorithms is based on the following performance statistics:

PI: percentage improvement in the value of the objective function provided by the al-

gorithm relative to the initial (FCFS) sequence (off-line problem) or to a specific

sequence (on-line problem);

TD: total deviation of the positions of aircraft in the landing sequence provided by the

relevant algorithm from their positions in FCFS;

ND: number of aircraft with a change in position in the landing sequence provided by

the relevant algorithm from the position in FCFS;

SEP: sum of the standard minimum separation times in seconds between aircraft implied

by the solution sequence;

CT: computation time in seconds for scheduling a given set of aircraft for the off-line

problem, or the computation time per update for the on-line problem.

As well as the overall weighted objective function, we also give values of PI relative to

the individual components LTmax, ALT, TW and EF, where the latter three are defined

in equations (3), (5) and (6), respectively. The results for the Heathrow data also include

those based on the ATC landing sequences, where earliest landing times are computed

from ATC sequences by imposing earliest landing time constraints as given by (1) and

the separation time constraints specified by the relevant inequality in (2). Using landing

times computed in this way, rather than using actual landing times, allows a comparison

using identical separation times to those used in our algorithms and is therefore fairer.

TD and ND quantify deviations from the FCFS landing sequence, and therefore provide

a measure of the amount of intervention necessary to achieve the landing schedule. SEP

25



can be viewed as a measure of the amount of batching used to reduce separation times.

Intuitively, reducing separation times is aligned with maximizing throughput; hence, ATCs

implicitly use batching as a heuristic decision tool for increasing throughput.

5.4. Results

The tables that follow detail the average performance of the schedules arising from

each of the approaches described in the earlier sections, where the objective function

is defined by (7) for various choices of weights, and the time window constraints (1)

and separation constraints (2) are imposed. As indicated above, results tables for the

Heathrow data include ATC performance as measured by the landing times computed

from the ATC’s sequencing but using our separation times. As discussed previously, the

ATC does not work to optimize our multi-objective function, and the data and constraints

do not perfectly mirror the task that the ATC performs. Moreover, the minimum standard

separations are currently based on distance (radar separation), which have been converted

into time separations when used within our algorithms.

Tables 4 and 5 list average results for the Heathrow data used in a static environment,

where each table corresponds to an alternative objective function. The first and second

columns in each table give the durations in minutes of the time windows that define the

aircraft to be scheduled and the average numbers of aircraft in the data set, respectively.

The third column contains row headings for the objective function criteria. Hence, for each

data set, the first row gives results for the main objective used by all of the approaches and

the following four rows break down the objective function into its component criteria. For

some entries in the TW row, a value of PI is not available (N/A) because the value of TW

is zero for the initial FCFS sequence but positive for the algorithm under consideration.

Table 4, which is based on the objective function weight vectorW1 = (0, 3, 0.5, 0.1, 0.1),

shows an improvement in the main objective relative to the initial FCFS schedule across

all of our algorithms. The ATC schedule does not show an improvement, but this is

largely due to the TW and EF cost elements. This is expected since there is no attempt

by the ATC to reduce lateness or the cost of fuel. However, there is some degradation

in ALT for T = 60, which is explored in more detail below in the discussion for dynamic

environment. When considering the breakdown of criteria, the improvement for LTmax

and ALT is modest; it is clear that our approaches are producing similar throughput but

with reduced cost associated with time window violations and extra fuel. Results for the

objective function weight vector W2 = (0, 2, 0.4, 0.3, 0.1) are not displayed because they

exhibit a similar pattern to those in Table 4. Table 5 displays results for an objective

function with weighted vector W3 = (0.4, 0.6, 0, 0) that does not consider costs for time

window violations or extra fuel. The values in the PI columns show that small average

26



improvements are typically observed over FCFS.

Comparing across the different solution approaches, dynamic programming has the

most variable computation times and these times become longer for the larger instances

with T = 120. For the data instances considered, greater computational effort does not

lead to improved schedules, with Algorithms DP, ID and SA having similar average for

the objective functions in Tables 4 and 5. The ability of Algorithms ID and SA to obtain

competitive solutions quickly indicates that they are well suited for use in a dynamic

environment.

One statistic of note is that all of our approaches are finding schedules of similar

performance across all data instances, but with varying deviations from the initial FCFS

sequence as measured by TD and ND. This suggests that there are multiple local optima

with similar objective function values.

We now present our computational results for the dynamic environment. For these

tests, we again compare Algorithms DP, ID and SA since their performance in terms of

the quality of schedules generated for the static problem is similar. Note that the reported

results are based on schedules created for a complete day.

We design an initial set of experiments in order to test parameters using the Heathrow

data, and eight days of the random test data, where two days are randomly chosen for each

of the four traffic intensity levels. We first experiment with the update times τ = 2.5,

5.0, 7.5 and 10.0 minutes, where dynamic programming is applied to solve the result-

ing problem at each update and the objective function is defined by the weight vector

(0.3, 0.5, 0.1, 0.1). Table 6 lists average PI values that are evaluated relative to objective

function values obtained with τ = 2.5 minutes, t = 5 minutes and T = 30 minutes. It is

clear from the results that τ = 5 minutes provides the best strategy in terms of solution

quality, and it has a lower computational requirement than the next best value of τ = 2.5

minutes.

Having decided on the value τ = 5 minutes, we now compare various active time win-

dow lengths T ′ = 15, 20, 25, 30, 35 and 40 minutes. Again, we use an objective function

defined with the weight vector W1 = (0.3, 0.5, 0.1, 0.1) and apply dynamic programming

at each update. Table 7 lists average PI values that are evaluated relative to objective

function values obtained with T ′ = 15 minutes. These results show that the quality of

schedules and the computation time increase as T ′ becomes larger. However, the improve-

ment in solution quality becomes less with each five minute lengthening of T ′, whereas

the computation time significantly increases. Hence, there are rapidly diminishing returns

after T ′ = 25. The results also confirm our intuition that new aircraft introduced, which

are not close enough to the runway to land until later in the schedule, are unlikely to affect

27



Table 4: Heathrow data, static environment: Weights W1 = (0.3, 0.5, 0.1, 0.1) used in (7)

ATC Algorithm DP Algorithm ID Algorithm SA

T n Obj. PI TD ND PI TD ND CT PI TD ND CT PI TD ND CT

30 21

Overall −0.72

15 10

1.47

15 8 0.16

1.47

13 7 1.00

1.47

15 8 1.00

LTmax 0.02 0.07 0.07 0.07

ALT 0.01 0.07 0.07 0.07

TW −5.42 2.65 2.65 2.65

EF −3.46 8.36 8.36 8.36

60 42

Overall −0.84

36 22

4.41

35 16 0.56

4.41

29 15 2.00

4.41

31 16 2.00

LTmax 0.00 0.19 0.19 0.19

ALT −0.15 0.12 0.12 0.12

TW −7.16 16.16 16.16 16.16

EF −4.07 10.50 10.50 10.50

120 84

Overall −0.81

72 47

7.08

74 30 7.73

7.05

78 34 4.00

7.05

84 36 4.00

LTmax 0.00 0.00 0.00 0.00

ALT 0.00 0.09 0.08 0.08

TW N/A N/A 0.00 0.00

EF −8.12 24.27 23.65 23.65

Table 5: Heathrow data, static environment: Weights W3 = (0.4, 0.6, 0.0, 0.0) used in (7)

ATC Algorithm DP Algorithm ID Algorithm SA

T n Obj. PI TD ND PI TD ND CT PI TD ND CT PI TD ND CT

30 21

Overall 0.01

15 10

0.10

22 9 0.25

0.10

18 7 1.00

0.10

14 6 1.00LTmax 0.02 0.13 0.13 0.13

ALT 0.01 0.08 0.08 0.08

60 42

Overall 0.09

36 22

0.18

63 23 0.72

0.18

43 18 2.00

0.18

61 22 2.00LTmax 0.00 0.23 0.23 0.23

ALT 0.15 0.14 0.14 0.14

120 84

Overall 0.00

72 47

0.05

88 34 7.64

0.05

56 22 4.00

0.05

96 34 4.00LTmax 0.00 0.00 0.00 0.00

ALT 0.00 0.09 0.08 0.09

28



Table 6: Influence of τ : Average PI relative to τ = 2.5 min

Update time τ (mins)

Dataset 5 7.5 10

10-day Heathrow 0.011 −0.029 −0.050

8-day random data 0.000 −0.052 −0.297

the order of the aircraft towards the beginning of the schedule especially for larger values

of T ′. As a result, we select T ′ = 25 minutes as the length of active time window.

Table 7: Influence of T ′: Average PI relative to T
′ = 15 mins

Active scheduling window length T ′ (mins)

Dataset Measure 15 20 25 30 35 40

10-day Heathrow Ave. PI 0.000 0.743 0.931 0.999 1.022 0.983

Ave. CT 0.002 0.020 0.103 0.308 0.883 1.959

8-day random data Ave. PI 0.000 0.245 0.761 0.855 0.973 0.980

Ave. CT 0.002 0.012 0.052 0.157 0.380 0.831

Tables 8 and 9 detail the full results for the dynamic problem with τ = 5, T ′ = 25.

The tables compare the schedules obtained from the ATC sequence (only for the Heathrow

data in Table 8) and the schedules obtained with updates using Algorithm DP, Algorithm

ID with k = 6, and Algorithm SA, where the latter two algorithms have a computation

time limit of 3 seconds for each update. For Algorithm DP, the average time for updating

the schedule is provided in the column CT, and the maximum time in the column Max-CT

Note that we do not include LTmax when reporting on the PI values for the individual

objective functions components because the landing time of the days last aircraft is not a

meaningful performance measure.

The results for the Heathrow data in Table 8 show that dynamic programming, iterated

descent and simulated annealing provide schedules that improve over FCFS and ATC for

all objective functions and all of its components except for TW when the objective function

weights are vector is W3 = (0.4, 0.6, 0, 0). As with the static case, the schedules obtained

from the ATC sequence appear to be inferior to FCFS schedules. However, TW and EF

play a major role in the reduction in solution quality; neither of them are used by ATC

in making scheduling decisions. Our understanding is that ATC seek to maximize runway

utilization by reducing separation times. This can be achieved locally by batching aircraft.

Performance measure Sep sums the minimum separation time between consecutive aircraft

given the landing sequence. Using this measure, it is clear that ATC are successfully

reducing separation times relative to FCFS. Algorithms DP, ID and SA also improve on

29



Table 8: Heathrow data, dynamic environment: Average PI relative to FCFS

FCFS ATC Algorithm DP Algorithm ID Algorithm SA

Weight Obj Sep. PI TD ND Sep PI TD ND CT Max-CT Sep PI TD ND Sep PI TD ND Sep

W1

Overall

54151

−5.55

569 302 53354

23.76

504 218 0.11 58.60 52838

23.60

523 222 52840

22.60

556 225 53000
ALT 0.00 0.14 0.14 0.13

TW −463.65 34.24 32.70 55.52

EF −2.19 29.46 29.33 27.92

W2

Overall

54151

−5.33

569 302 53354

26.32

486 216 0.10 52.90 52869

26.19

511 220 52871

25.22

534 219 52960
ALT 0.00 0.13 0.13 0.13

TW −463.65 72.17 70.04 77.47

EF −2.19 46.93 28.59 27.01

W3

Overall

54151

0.00

569 302 53354

0.05

736 272 0.09 26.40 52944

0.07

721 266 52906

0.07

742 268 53002
ALT 0.00 0.11 0.15 0.14

TW −463.65 −538.30 −328.24 −377.82

EF 7.79 18.14 29.37 27.18

Table 9: Random data, dynamic environment: Average PI relative to FCFS

Algorithm DP Algorithm ID Algorithm SA

Weight Obj PI TD ND CT Max-CT PI TD ND PI TD ND

W1

Overall 26.53

527 266 0.11 68.70

26.50

572 277

25.48

556 265
ALT 0.20 0.20 0.19

TW 59.69 60.09 72.39

EF 29.09 29.04 27.66

W2

Overall 31.32

503 261 0.14 77.50

31.26

544 271

30.13

533 260
ALT 0.19 0.19 0.18

TW 78.81 78.66 80.27

EF 28.33 28.28 26.88

W3

Overall 0.10

754 320 0.11 71.60

0.10

798 326

0.09

807 323
ALT 0.21 0.21 0.20

TW −573.23 −747.66 −737.47

EF 29.24 29.13 27.35

30



FCFS and ATC by this measure.

Table 9 shows a similar performance using the randomly generated test data. For both

the Heathrow and the random data, Algorithms DP, ID and SA exhibit similar levels of

performance. However, DP has variable computation times and could be vulnerable if

many new aircraft appear in the same update period. SA is harder to implement than ID

due to the many parameters that need to be tuned, while ID only requires the parameter k

to be specified. Overall, Algorithm ID has slight advantages over the two other competing

methods.

6. Concluding Remarks

This paper has introduced models and algorithms for the static/off-line aircraft land-

ing problem and the dynamic/on-line version of the problem. A special feature of our

model is the multi-objective approach that takes into account the agendas of the various

stakeholders that have an interest in the scheduling of landing aircraft.

Dynamic programming, iterated descent and simulated annealing algorithms are pro-

posed for the static problem. Also, using a rolling horizon approach, the dynamic problem

is tackled periodically updating the previous schedule with an iterated descent or dynamic

programming solution approach. A thorough computational evaluation is performed using

data from Heathrow airport and randomly generated test data.

Results for the static problem show that all of the proposed algorithms are effective

in achieving an efficient runway throughput. In addition, the algorithms are capable of

finding solutions that perform well in terms of minimizing delay and minimizing the cost of

extra fuel used to achieve the desired landing schedule. Iterated descent has the advantage

of being faster and having more predictable run times than the other approaches, and is

therefore preferred to dynamic programming and simulated annealing.

For the dynamic problem, the frequency of update time and the length of the time

window when aircraft are available for scheduling are investigated. A five minute update

time provides as good solutions as with a more frequent update, and has a lower com-

putational cost. A time window of twenty-five minutes for scheduling is chosen. Wider

time windows have diminishing returns and require much greater computational effort.

Our overall computational results show that iterated descent and dynamic programming

provide schedules that improve upon FCFS across all objective function elements. How-

ever, iterated descent is preferred to dynamic programming because of its more modest

and predictable computational requirements.

31



Acknowledgements

The authors are grateful to Alan Drew and Paul Humphreys of EUROCONTROL

for their help and support and to John Greenwood of NATS for providing the Heathrow

date that formed the basis for our computational evaluation of algorithms. We greatly

appreciate the useful advice from anonymous referees that resulted in the exposition of

the paper being improved.

This work has been co-financed by the European Organisation for the Safety of Air

Navigation (EUROCONTROL) under its Research Grant scheme.

The content of the work does not necessarily reflect the official position of EUROCON-

TROL on the matter.

C© 2011, EUROCONTROL and the University of Southampton. All Rights reserved.

Abela, J., D. Abramson, M. Krishnamoorthy, A.D. Silva. 1993. Computing optimal schedules for landing
aircraft. Proceedings of the 12th National Conference of the Australian Society for Operations Research,
Adelaide, Australia, July 7-9, 71–90..

Artiouchine, K., P. Baptiste, C. Dürr. 2008. Runway sequencing with holding patterns. European Journal
of Operational Research 189 1254–1266.

Balakrishnan, H., B. Chandran. 2010. Scheduling aircraft landings under constrained position shifting.
Operations Research 58 1650–1665.

Beasley, J.E., M. Krishnamoorthy, Y.M. Sharaiha, D. Abramson. 2000. Scheduling aircraft landings—The
static case, Transportation Science 34 180–197

Beasley, J.E., J. Sonander, P. Havelock. 2001. Scheduling aircraft landing at London Heathrow using a
population heuristic, Journal of Operational Research Society 52 483–493.

Beasley J.E., M. Krishnamoorthy, Y.M. Sharaiha, D. Abramson. 2004. Displacement Problem and Dy-
namically Scheduling Aircraft Landings, Journal of Operational Research Society 55 54–64

Bennell, J.A., M. Mesgarpour, C.N. Potts. 2011. Airport Runway Scheduling, Annals of Operations Re-
search 204 249–270.

Brentnall, A.R. 2006. Aircraft arrival management. Ph.D. thesis, University of Southampton, UK.
Chandran B., H. Balakrishnan. 2007. A dynamic programming algorithm for robust runway scheduling.

Proceedings of the American Control Conference, New York, USA, 1161–1166.
Ciesielski V., P. Scerri. 1997. An anytime algorithm for scheduling of aircraft landing times using genetic

algorithms. Australian Journal of Intelligent Information Processing Systems 4 206–213.
Crauwels, H.A.J., C.N. Potts, L.N. Van Wassenhove. 1997. Local search heuristics for single machine

scheduling with batch set-Up times to minimize total weighted completion time, Annals of Operations
Research 70 261–279.

D’Ariano, A., D. Pacciarelli, M. Pistelli, M. Pranzo. 2015. Real-time scheduling of aircraft arrivals and
departures in a terminal maneuvering area. Networks 65 212–227.

D’Ariano, A., M. Pistelli, D. Pacciarelli. 2012. Aircraft retiming and rerouting in vicinity of airports. IET
Intelligent Transport Systems 6 433–443.

Dear, R. 1976. The dynamic scheduling of aircraft in the near terminal area. Tech. rep., R76-9, Flight
Transportation Laboratory, MIT, USA.

Ernst, A.T., M. Krishnamoorthy, R.H. Storer. 1999. Heuristic and exact algorithms for scheduling aircraft
landings, Networks 34 229–241.

Fahle, T., R. Feldmann, S. Götz, S. Grothklags, B. Monien. 2003. The Aircraft Sequencing Problem.
R. Klein, H.-W. Six, L. Wegner, eds. Computer Science in Perspective, LNCS 2598, Springer-Verlag,
Berlin, 152–166.

Faye, A. 2015. Solving the Aircraft Landing Problem with time discretization apporach, European Journal
of Operational Research 242 1028–1038.

Heathrow Airport’s official website. Retreived Sept 1st, 2011. Available at:
http://www.heathrowairport.com,

32



Hu, X.-B., W.-H. Chen. 2005a. Receding horizon control for aircraft arrival sequencing and scheduling
IEEE Transaction on Intelligent Transportation Systems 6 189–197.

Hu, X.-B., W.-H. Chen. 2005b Genetic algorithm based on receding horizon control for arrival sequencing
and scheduling, Engineering Applications of Artificial Intelligence 18 633–642.

Lee H., H. Balakrishnan. 2008. Fuel cost, delay and throughput tradeoffs in runway scheduling. Proceeding
of American Control Conference (ACC 08), Seattle, Washington, USA, 1161–1166.

Moser I., T. Hendtlass. 2007. Solving dynamic single-runway aircraft landing problems with extremal
optimization. Proceeding of the 2007 IEEE Symposium on Computational Intelligence in Scheduling
(CI-Sched 2007), Honolulu, Hawaii, USA, 206–211.

Murça M.C.R., C. Müller. 2015. Control-based optimization approach for aircraft scheduling in a terminal
area with alternative arrival routes. Transportation Research Part E 73 96–113.

Pinol H., J.E. Beasley. 2006. Scatter search and bionomic algorithms for the aircraft landing problem,
European Journal of Operational Research 171 439–462.

Psaraftis, H.N. 1978. A dynamic programming approach to the aircraft sequencing problem. Technicla
report, R78-4, Flight Transportation Laboratory, MIT, USA.

Psaraftis, H.N. 1980. A dynamic programming approach for sequencing groups of identical jobs, Operations
Research 28 1347–1359.

Samà, M., A. D’Ariano, D. Pacciarelli. 2013. Rolling horizon approach for aircraft scheduling in the
terminal control area of busy airports, Transportation Research Part E 60 140–155.

Samà, M., A. D’Ariano, P. D’Ariano, D. Pacciarelli. 2014. Optimal aircraft scheduling and routing at a
terminal control area during disturbances, Transportation Research Part C 47 61–85.

Samà, M., A. D’Ariano, P. D’Ariano, D. Pacciarelli. 2016. Scheduling models for optimal aircraft
traffic control at busy airports: Tardiness, priorities, equity and violations considerations., Omega.
doi:10.1016/j.omega.2016.04.003.

Soomer M.J., G.J. Franx. 2008. Scheduling aircraft landings using airlines’ preferences, European Journal
of Operational Research 190 277–291.

33


