
This is a repository copy of Matheuristics for the irregular bin packing problem with free
rotations.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/139290/

Version: Accepted Version

Article:

Martinez-Sykora, A, Alvarez-Valdes, R, Bennell, JA orcid.org/0000-0002-5338-2247 et al.
(2 more authors) (2017) Matheuristics for the irregular bin packing problem with free
rotations. European Journal of Operational Research, 258 (2). pp. 440-455. ISSN
0377-2217

https://doi.org/10.1016/j.ejor.2016.09.043

© 2016 Elsevier B.V. Licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Matheuristics for the Irregular Bin Packing Problem with free rotations

A. Martinez-Sykoraa, R. Alvarez-Valdesb, J. Bennella, R. Ruizc, J.M. Tamaritb

a University of Southampton, Southampton, UK

J.A.Bennell@soton.ac.uk; A.Martinez-Sykora@soton.ac.uk

b Dept. of Statistics and Operations Research, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Spain

ramon.alvarez@uv.es; jose.tamarit@uv.es

c Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática, Ciudad Politécnica de la

Innovación, Edificio 8G, Acc. B. Universitat Politècnica de València, Camino de Vera s/n, 46021, València, Spain.

rruiz@eio.upv.es

Abstract
We present a number of variants of a constructive algorithm able to solve a wide variety of variants of the Two-

Dimensional Irregular Bin Packing Problem (2DIBPP). The aim of the 2DIBPP is to pack a set of irregular pieces,

which may have concavities, into stock sheets (bins) with fixed dimensions in such a way that the utilization

is maximized. This problem is inspired by a real application from a ceramic company in Spain. In addition,

this problem arises in other industries such as the garment industry or ship building. The constructive procedure

presented in this paper allows both free orientation for the pieces, as in the case of the ceramic industry, or a

finite set of orientations as in the case of the garment industry. We explicitly model the assignment of pieces to

bins and compare with the more common strategy of packing bins sequentially. There are very few papers in

the literature that address the bin packing problem with irregular pieces and to our knowledge this is the first to

additionally consider free rotation of pieces with bin packing. We propose several Integer Programming models

to determine the association between pieces and bins and then we use a Mixed Integer Programming model for

placing the pieces into the bins. The computational results show that the algorithm obtains high quality results in

sets of instances with different properties. We have used both industry data and the available data in the literature

of 2D irregular strip packing and bin packing problems.

Keywords: Cutting and packing; Two-Dimensional irregular bin packing; Integer Programming.

1 Introduction

The paper addresses a real and highly relevant problem in industry that up to now has received minimal attention

by the cutting and packing research community. This is the two-dimensional bin packing problem with irregular

pieces (2DIBPP). The particular characteristics of the problem are: the shapes to be cut are irregular with con-

cavities, the material being cut is homogenous therefore continuous rotation of the pieces are permitted, and a

typical demand set of pieces require more than one stock sheet to be satisfied. While two-dimensional (2D) ir-

regular packing problems have been extensively researched, these are almost exclusively strip packing problems.

Further, only a few papers consider continuous rotation of pieces and to our knowledge there are no publications

that examine problems that combine strongly heterogeneous irregular pieces, multiple stock sheets and continuous

rotation. Each of these features adds complexity to the problem. While simple adaptations of known algorithms

for the related simpler problem can be used, it is highly likely that these will yield sub-optimal results. Hence

in this paper we seek to design an algorithm that considers and optimises the complete problem. The particular

contributions of the paper are four fold. This is the first paper to tackle the problem of bin packing irregular shapes

with unrestricted rotations, and one of very few that considers pieces with concavities within the bin packing prob-

lem. We investigate some methodological design principles, in particular, the value of separating the assignment

decision from the packing model versus assignment as a consequence of the packing decision. We also investigate

the relative impact of assignment and packing depending on the data instance. We develop new data instances

for the irregular bin packing problem based on the benchmark instances of the strip packing problem. Finally,

we investigate the bias introduced in data set design with respect to the piece orientation and show how using

unrestricted rotation can address this bias.

A Spanish company in the ceramic tile sector, Butech Building Technology, by PORCELANOSA Group, has

developed a new solid surface which, due to its properties of strength, durability, and color stability, can be used

1

for ventilated facades, among many other applications. The material, whose commercial name is Krion R©, is

produced in plates of 366.6 by 75 centimeters. A particular property of this product is the possibility to cut it into

pieces of any polygonal shape, convex or not, according to the architect’s design. This is a significant departure

from the classical tiles used in ventilated facades, which are always of rectangular shape. The problem is, then,

to determine how the demanded pieces are cut from the plates so as to minimize the number of required plates.

As this new material is expensive and the number of pieces in a project can be very large, reducing the number

of plates to a minimum can produce substantial savings. At the time of undertaking this research, the company

manually designed the cutting patterns, where each order could take up to four person weeks to design the cutting

pattern.

Although the present study has been motivated by this particular company, there are many other companies in

which materials coming in sheets of given sizes have to be cut into smaller pieces with irregular shapes. Therefore,

the ideas developed here could be applied to other situations, such as the garment industry, ship building, or the

glass industry (Han et al., 2012; Martinez-Sykora et al., 2015), maybe adapting them to the special features of

each case.

The above cutting problem is a two-dimensional bin packing problem with irregular (non-convex) pieces

(2DIBPP). According to the typology proposed by Wäscher et al. (2007), the 2DIBPP problem can be classified

as a two-dimensional Single Bin Size Bin Packing Problem (SBSBPP) with the refinement that the pieces have

irregular shape. In the case of the ceramic cutting, there are no restrictions on the angle of rotation, making the

problem more difficult to solve efficiently. Further, the pieces cannot be reflected because each side of the plate

has a different texture and only one side can face outwards. The objective is to minimize the total number of bins

needed to cut all the pieces.

The most studied packing problem involving irregular shapes that can be found in the literature is the two-

dimensional strip irregular packing problem, also known as the Nesting Problem (see Bennell and Oliveira (2009)

for a survey). There are few publications considering the bin packing problem with irregular pieces and, to our

knowledge, there is no publication that additionally allows items to be continuously rotated. Chernov et al (2010)

is one example of a number of publications by these authors that permit continuous rotation of irregular pieces.

Here the objective is to minimize the area of the single containing object. An interesting application of bin packing

problems with irregular pieces arises in the glass industry. In this case pieces can be placed in any orientation,

however, since the cutting process forces the use of guillotine cuts, the pieces have to be convex. Han et al. (2012)

propose two constructive heuristics and report results on some real data. More recently, Martinez-Sykora et al.

(2015) present several MIP-based constructive procedures in which they improve the best known solutions in all

the instances and, furthermore, they obtain competitive results on rectangular bin packing problems.

Terashima-Marin et al. (2010) propose a hyper-heuristic algorithm for the 2DIBPP, which combines several

placement heuristics. They combine the Bottom-Left algorithm developed by Jakobs (1996) and an improved

version proposed by Liu and Teng (1999). For both procedures Terashima-Marin et al. (2010) add the possibility

of rotating the pieces by a finite set of angles. Furthermore, they include different modifications of the constructive

approach presented by Hifi and M’Hallah (2002). The hyper-heuristic is embedded into a Genetic Algorithm and

it is tested on jigsaw puzzle instances where all the pieces are convex. Lopez-Camacho et al. (2013) adapt the

Djang and Finch heuristic (DJD), originally proposed for the one-dimension bin packing problems by Ross et al.

(2002), to the two-dimensional irregular bin packing problem. Despite the fact the algorithm proposed by Lopez-

Camacho et al. (2013) consider non-convex pieces, in the computational experiments they only report results

involving pieces with convex shapes. A later paper, Lopez-Camacho et al. (2014), claim to have solved the

non-convex instances, but only report the percentage of problems solved with more, the same, or less bins when

compared with the problems convex counterpart. In all these approaches, the assignment of the piece to a bin is

incidental to the decision of where to place the piece in the bin.

Another study that considers multiple bins and irregular pieces is that of Song and Bennell (2013), who pro-

pose a column generation procedure for solving the irregular shape cutting stock problem. The authors use the

beam search algorithm proposed in Bennell and Song (2010) for generating the patterns and study three solution

approaches: column generation, adapted column generation and a sequential heuristic procedure. In the com-

putational experiments the authors build eleven instances obtained from well-known 2D irregular strip packing

instances by fixing the bin length and multiplying the demand of each shape by 100. While the instances include

non-convex pieces, the problem is a cutting stock problem where patterns are repeated multiple times, which is

somewhat different to the two-dimensional bin packing problem considered in our study.

This paper describes a constructive algorithm that explicitly considers the two aspects of the optimisation

problem; the assignment of pieces to bins and the arrangement of assigned pieces in the bin. We implement

several strategies for assigning pieces to the bins, including solving IP models for the one-dimensional Bin Packing

2

0o 270o

Figure 1: Reference point of a piece in two different orientations

Problem and knapsack problem and heuristic methods. In a second phase, the subset of pieces assigned to a given

bin are sequentially placed in the new bin using a packing procedure. This phase consists of two steps. First, we

determine a set of promising rotations for the piece and then, for each rotation, we determine if the piece fits into

the bin by solving a Mixed Integer Programming (MIP) model. The packing procedure permits all pieces to move

within the bin to accommodate the next piece. Since the assignment is based on piece area, often the packing fails.

Hence, we propose some alternative strategies for reassigning pieces. All these approaches are compared to the

more common approach of deciding the bin assignment as part of the piece placement strategy.

The paper is organised as follows: in Section 2 we define the problem and some notation. In Section 3 we

describe the construction algorithms that determine the assignment of pieces to bins and in Section 4 we provide

the formulation for the placement of items into each bin. Section 5 contains two local search procedures designed

to improve the solutions obtained. In Section 6 we describe the implementation of the constructive algorithm,

including any parameters that need to be set and a full description of the data instances. In Section 7 we present

the computational results and in the final section we summarise our conclusions.

2 Problem description

Let P = {1, . . . , n} be the set of n pieces, represented as simple polygons, to be placed into identical rectangular

bins. We denote the area of piece k ∈ P by ak. The number of available bins can be considered large enough to

pack all the pieces and the objective is to minimize the total number of bins needed to cut all the pieces in P. The

width and length of the bins are denoted by W and L respectively. The pieces can be rotated continuously and

must be placed entirely within the bin and may not overlap with other pieces.

A solution to the described problem is given by a set of bins B = {b1, . . . , bN}. Each bin bi(Pi,Oi, Xi,Yi),

∀i = 1, . . . ,N, is composed of a set of pieces Pi ⊆ P, a vector Oi = {o1, . . . , oni
} defines the orientation of the

pieces, where ni = |Pi| and for a given piece k, k = 1, . . . , ni, ok ∈ [0, 2π], and the two vectors, Xi and Yi, are the

X-coordinate and Y-coordinate of the reference point of each piece. We define the reference point of the piece

k ∈ P as the bottom left corner of the enclosing rectangle of the piece when in orientation ok. Hence, the position

of the reference point, relative to the vertices of the piece, changes according to the orientation, as illustrated in

Figure 1. In addition, we consider that the bottom-left corner of each bin is placed at (0,0), so that the coordinates

of the reference points are always positive. Note that, since all the pieces have to be placed, then P = ∪N
i=1

Pi.

The stated objective is to minimize the total number of bins. Applying this objective directly will result in many

tied solutions making the solution space difficult to navigate, further in many applications, the residual material

can be reused provided it is sufficiently large. Lopez-Camacho et al. (2013) propose an alternative measure of

performance that maximises the percentage usage of each bin as follows:

F =

∑N
i=1 U2

i

N
(1)

where Ui is the utilization ratio of each bin i ∈ 1 . . . ,N, defined as:

Ui =

∑ni

k=1
ak

LW
, (2)

This measure avoids ties among different solutions with the same number of bins, and favours solutions with

a high utilization in all but one or two bins over those that evenly distribute the pieces.

3

An alternative approach is used by Han et al. (2012). In order to account for the reuse of residual material,

they apply a vertical or a horizontal cut to separate the non-utilized part of the bin for future use. The cut is applied

to the least utilized bin only. We define the fractional number of bins as follows:

K = N − 1 + R∗ (3)

where R∗ is the proportion of the bin used to pack pieces after applying the vertical or horizontal cut. Figure 2

shows two different solution of the same instance (Han taken from ESICUP benchmark instance). Although both

solutions use three bins, solution (b) is better since it has a smaller value of K.

We employ both these performance measures, F and K, for comparing with the experimental results in addition

to the number of bins. Also F is used to guide the local search strategies.

(a)

(b)

Figure 2: Two solutions of instance han (Nest-MB) (a) K = 2.35; (b) K = 2.20.

3 Solution algorithm

The bin packing problem has two sets of distinct decision types. Specifically these are: the assignment of pieces

to a bin and how to pack the assigned pieces in the bin. Many authors design solution approaches where the

assignment decision is incidental to the packing decision, for example packing a bin until it is full, closing the bin,

and then opening a new bin to continue packing (Parreño et al. , 2010). In this paper we investigate an alternative

approach where the assignment decision is solved separately and prior to determining the layout of pieces in

the bin. Inevitably the assignment will often be unfeasible and one or more pieces can not be placed in their

allotted bin, hence we investigate alternative strategies for mending the assignment. In this section we describe

alternative strategies for assigning to bins and mending the assignment when pieces can not be feasibly packed.

The packing procedure is described in Section 4, which packs the assigned pieces to a given bin sequentially in

order of non-increasing area using a MIP model. Finally we investigate the benefit of employing local search after

the construction of the solution, this is described in Section 5.

The general framework for the procedure is organized as follows:

Step 1, solve a one-dimensional bin packing problem, where the pieces in P are represented by their area, in

order to assign all pieces to the minimum number of bins. Sort the bins in non-increasing order of utilization area.

If P is empty, stop.

Step 2, for the first bin on the list, use the MIP model described in Section 4 to arrange the assigned 2D

irregular pieces into the bin. If not all the pieces fit into the bin, go to Step 3. If all the pieces can be placed in the

bin with no overlap, then a feasible solution for the bin is found. Remove the bin from the list. Remove the pieces

4

packed in the bin from P. Store the packed bin to the final solution. If all pieces are packed, stop. Otherwise,

repeat Step 2 for the next bin on the list.

Step 3, if all the pieces can not be placed into the bin, mend the assignment of pieces to the bin until a feasible

arrangement is found. Remove the bin from the list. Remove pieces packed in the bin from P. Store the packed

bin to the final solution. Since the original assignment has been disrupted, go to Step 1 to solve a 1D-BPP with

the remaining pieces.

Section 3.1 to 3.5 describe alternative procedures for solving the assignment of pieces to bins, including

strategies for reassignment when the assignment is found to not be feasible. We also describe a simple construction

heuristic that does not preassign pieces to bins.

3.1 Bin Packing with Greedy Decisions (BPGD)

The BPGD strategy assigns pieces to bins by solving an IP formulation of the one-dimensional bin packing prob-

lem (1DBBP) described below. Since area is a weak approximation of a simple polygon, particularly when con-

cavities are present, the packing procedure, which decides how to arranged the 2D irregular pieces, often fails to

place one or more of the assigned pieces inside the bin. While it is possible to solve the entire assignment problem

again with constraints to prevent the failed bin being reproduced, there is a high chance the new assignment would

result in other infeasible bins. Reaching a feasible packing through this approach would require solving many IP

models with an increasing number of constraints leading to a very high computational cost. Hence a faster strategy

is to retain the bin that has a feasible arrangement of some of the assigned pieces and try to improve the utilization

of the bin by packing additional pieces that have been assigned to other bins. This is the approach taken by our

BPGD algorithm.

The IDBBP model is defined as follows: Let each piece be approximated by its area, ai. N is an upper bound

on the total number of bins required to pack all the pieces, obtained by using the First Fit Decreasing (FFD)

algorithm (Johnson et al. (1974)). We define the following binary variables: si, ∀i = 1, . . .N, which take value 1

if bin bi is used in the solution and 0 otherwise, and zi j, i = 1, . . . ,N, j = 1, . . . , n, which take value 1 if piece j is

assigned to bin i and 0 otherwise. An integer programming model for assigning pieces to bins can be formulated

in a standard way as a 1DBPP as follows:

Min.
∑N

i=1 si, (4)
∑n

j=1 a jzi j ≤ LW, 1 ≤ i ≤ N, (5)

∑N
i=1 zi j = 1, 1 ≤ j ≤ n, (6)

zi j ≤ si, 1 ≤ j ≤ n, 1 ≤ i ≤ N, (7)

si ∈ {0, 1}, zi j ∈ {0, 1} 1 ≤ j ≤ n, 1 ≤ i ≤ N. (8)

The objective function minimizes the total number of bins used in the solution. Constraints (5) ensure that the

total area of the pieces assigned to bin bi does not exceed the area of the bin. Equalities (6) force each piece to be

assigned to one bin. Inequalities (7) guarantee that if any piece is placed into a given bin, then the corresponding

bin is used in the solution. Finally, constraints (8) force the variables to be binary. Note that, if this IP model is

solved to optimality and we pack all the pieces assigned to each bin successfully, the solution would be optimal.

Given the optimal solution to the IDBBP, the bins are sorted in non-increasing order of utilization. The packing

procedure is applied to the first bin on this list, where the pieces assigned to the bin are sorted in non-increasing

order of area. When trying to pack the pieces assigned to a bin, there are two possible outcomes:

a) The packing procedure finds a feasible placement for all the pieces. In this case the bin and the pieces placed

in the bin are removed from further consideration and saved to the final solution. The algorithm will then

go on to consider the new most utilized bin on the list and apply the packing procedure.

b) The packing procedure fails when placing a given piece, j. In this case the pieces packed in the bin so

far are retained. Excluding piece j, all pieces that have not been packed (including those assigned to other

bins) are sorted in non-increasing order. Next, the packing procedure tries to place each piece in turn in the

partially packed bin, accepting each feasible placement. When all the pieces have been tried, the bin and

the pieces placed in the bin are removed from further consideration and saved to the final solution. Since

the assignment of pieces has been altered, we solve the assignment model again for the unpacked pieces.

5

The IP model has to be solved each time case (b) occurs because the set of remaining pieces has been modified.

Hence the IP model is run at most N times. Note that each time the IP model is solved at least one bin has been

closed and the number of the remaining pieces has been reduced. Therefore N is updated and the number of binary

variables is reduced.

3.2 First Fit Algorithm (FF)

An alternative to solving the 1DBPP to optimality using an IP model as described above, is the use of a known

heuristic algorithm. Our FF algorithm follows this strategy and adopts the fast and well known First Fit Decreasing

Algorithm (FFD) (Johnson et al. (1974)) to solve the 1DBPP. FFD takes an ordered list of pieces and assigns them

sequentially to the bins. In order to assign a piece, FFD examines each bin in the order the bins were opened

and places the piece in the first bin that can feasibly accommodate the piece. If the piece does not fit into any

existing bin, a new bin is created and the piece is assigned to this new bin. This algorithm is very fast and depends

critically on the initial ordering of the pieces. Therefore, in order to obtain a good solution we use the FFD

assignment scheme, but starting from a unique random permutation of the pieces and repeat the process 5000

times. We keep the solution with the minimum number of bins, breaking ties by the minimum used area of the

least utilized bin, and sort the bins in non-increasing order of utilization.

Similar to BPGD, the packing procedure is applied to the first bin on this list. If it finds a feasible placement

for all the pieces, the bin and the pieces placed in the bin are saved to the final solution and the algorithm will go

on to consider the new most utilized bin on the list.

If the packing procedure fails when placing a given piece, j, it stops and all pieces that have not been packed

yet are reassigned to bins using FFD, where the partially packed bin is the first open bin and piece j can not be

assigned to it. Given the new assignment, the packing procedure tries to place the newly assigned pieces into the

first bin. The packing and re-assigning continues until a feasible bin is obtained.

3.3 Partial Bin Packing (PBP)

The PBP strategy is motivated by the observation that we frequently change the assignment across the bins to

obtain a feasible solution. It also recognizes that assigning across the bins prevents the algorithm being too greedy

with respect to the bin under consideration. It is well documented in cutting and packing literature that a greedy

solution packs small pieces together early on in the solution construction, leaving the larger more difficult pieces

to the end, leading to overall poor solutions. Therefore, the PBP approach avoids reassignment by focusing on

the assignment of the pieces to just one bin, but uses an objective function that favours assigning larger pieces.

This strategy has been widely used in one-dimensional BPP (see Caprara and Pferschy (2004) for a review and a

worst-case analysis).

The assignment approach is a knapsack formulation, where the objective is to maximise the value of the bin

by packing some of the available pieces. The following formulation sets the binary variables, q j, j = 1 . . . , n, to

take the value 1 when piece j is assigned to the bin and 0 otherwise and amax is the area of the biggest piece. The

IP model can be formulated as follows:

Max.
∑n

j=1(
a j

amax
)2 q j, (9)

∑n
j=1 a j q j ≤ LW, 1 ≤ j ≤ n, (10)

q j ∈ {0, 1}, 1 ≤ j ≤ n. (11)

As with the above two strategies, the packing procedure may succeed or fail to feasibly pack the bin. If it finds

a feasible placement for all the pieces, the packed bin is saved to the final solution and the algorithm will then

solve the knapsack formulation with the remaining pieces to generate a new bin.

On the contrary, if the packing procedure fails when placing a given piece, j, the knapsack formulation is

solved again for the remaining capacity, with j removed from consideration. Given the new assignment, the

packing procedure tries to place the newly assigned pieces into the bin. The packing and re-assigning continues

until a feasible bin is obtained. Piece(s) j temporarily removed from consideration are returned to the available

pool of pieces and the algorithm will then solve the knapsack formulation to generate a new bin.

6

3.4 Two Phases Strategy (TPS)

The TPS strategy aims to enhance the BPGD strategy by attempting to distribute the small pieces across the bins

during the assignment phase, as in PBP strategy. While the solutions obtained by the BPGD procedure provides

the optimal number of bins required to pack all the pieces (as a 1D problem), the solution does not consider how

the small and large pieces are distributed. Therefore for the TPS strategy, after solving the assignment model

proposed in the BPGD strategy to find the minimum number of bins, N′, we solve a second IP model to reassign

pieces across bins. Let zi j, i = 1, . . . ,N′, j = 1, . . . , n be the binary variables which take value 1 if piece j is

associated with bin i.

Min.
∑N

i=1

∑n
j=1(

a j

amax
)2 2(N′−i)

N′2+N′
zi j, (12)

∑n
j=1 a jzi j ≤ LW, 1 ≤ i ≤ N′, (13)
∑N′

i=1 zi j = 1, 1 ≤ j ≤ n, (14)

zi j ∈ {0, 1}, 1 ≤ i ≤ N′, 1 ≤ j ≤ n. (15)

The objective function (12) forces the assignment of large pieces into the earlier bins while minimising the

total number of bins. Note that (
a j

amax
)2 takes a greater value when p j has more area and

2(N′−i)

N′2+N′
takes a greater value

for the earlier bins. The constraints (13) and (14) ensure, respectively, that the pieces associated to one bin does

not exceed the area of the bin and that each piece is assigned to one bin.

Once the pieces have been assigned by sequentially solving both IP models, the procedure to pack and re-

assign pieces is the same as the BPGD strategy.

3.5 Simple construction heuristic (SCH)

The SCH strategy is included to benchmark our approach against the commonly used approach of deciding the bin

allocation and placement position together. SCH directly packs pieces into a bin in a given sorted order following

a Next-Fit Decreasing strategy. The pieces are packed into the bins using the procedure described in Section 4.

The structure is as follows:

1) Sort all the pieces in order of non-decreasing area, open bin, i = 1

2) For next piece i, solve IP model described in Section 4 to pack piece i in the open bin.

3) If a feasible solution is found, i = i + 1, if i > n, stop, else got to 2. otherwise close bin and open new bin,

go to 2.

4 Packing model

In this section we describe the model that determines the exact location and orientation of the pieces in a bin.

We assume that a set of pieces Pb ⊆ P, ordered by non-increasing area, has been assigned to the current bin, b.

The MIP model places one piece in the bin in order to minimise the weighted rectangle of the partial solution.

Although, the pieces can be rotated continuously, but the MIP we use to pack the pieces requires that each piece

has a fixed orientation. As a result, the MIP model is run several times for each piece solving a model for each

orientation we want to consider. This idea was first proposed in Martinez-Sykora et al. (2015).

In order to obtain promising rotations for placing the next piece, we consider the edges of the pieces already

placed in the bin and the edges of the bin. We calculate the angles of rotation in such a way that one edge of the

piece being placed matches with either one edge of a piece already placed or one edge of the bin. If we obtain

more than three different rotations, we sort the angles by the following criteria (GR):

• Non-increasing number of matches between the edges of the polygon obtained by applying the given rota-

tion to the piece, and the edges of all the pieces already placed in the bin and the edges of the bin.

• Ties are broken by the total length of the edges of all the matchings.

If the number of rotations is not specified, we consider the first three rotations for the insertion of each piece.

If in a given instance, only some fixed orientations are allowed, we use these orientations.

7

1

(d) Rotation 1

1

(e) Rotation 2

1

(f) Rotation 3

Figure 3: Three rotations for the first piece (instance poly3a-x2). Rotation 3 is selected and fixed

In what follows we give a description of the MIP model. For the sake of clarity, we first describe the model

for the insertion of the first piece, then the second piece and finally the general case. The placement model for the

first piece has a linear programming formulation, in which the variables x1 and y1 correspond to the coordinates

of the reference point of piece 1:

Min. ωLu + (1 − ω)Wu, (16)

Lu ≤ L, (17)

Wu ≤ W, (18)

x1 ≤ Lu, (19)

y1 ≤ Wu. (20)

Lu and Wu denote the used length and width of the bin when placing the first piece and ω is a coefficient which

depends on the dimensions of the bin. In order to balance the used length and width when adding pieces we fix

ω = 1
(W/L)+1

. Therefore, with this objective function the pieces will be placed in such a way that the dimensions

of the enclosing rectangle are proportional to the dimensions of the bin. Constraints (17) and (18) ensure that the

used length and width do not exceed the dimensions of the bin and constraints (19) and (20) force piece 1 to be

inside the enclosing rectangle (Lu,Wu).

We solve this linear programming formulation once for each different orientation we consider for the piece. In

this step we determine and fix the orientation of the piece for which the objective function is minimized. In Figure

3, the first two rotations are considered because two edges of the piece are parallel to the edges of the bin. The

values of x1 and y1 given by the LP solution are not fixed in the following models but the orientation is. The third

rotation, which happens to be the best, is considered because the largest edge of the piece is parallel to one edge

of the bin.

When inserting the second and later pieces, the main difficulty is to ensure that they do not overlap. We use the

MIP model, proposed by Alvarez-Valdes et al. (2013), in which non-overlapping constraints are obtained using

No-Fit Polygons (NFP). The NFP is a polygon derived from every pair of pieces in such a way that its interior

represents all the overlapping positions between the pieces, and its boundary represents all the touching positions.

Figure 4 gives an example of the NFP, corresponding to pieces 1 and 2 (NFP12), where the orientation of piece 1

is fixed in the previous step and piece 2 was the same shape as piece 1 and is rotated 900. Deriving the NFP is not

the topic of this paper, see Bennell and Oliveira (2008) for a review of procedures. Given the correct placement

of piece 1, the reference point of piece 2 must be placed outside NFP12 to avoid overlapping. Alvarez-Valdes

et al. (2013), following the idea proposed by Fischetti and Luzzi (2008), divide the outer region into horizontal

slices and define a binary variable for each slice so that it takes value 1 if the reference point is in this slice and 0

otherwise.

In the example in Figure 4 we need 13 binary variables. The notation we use to write the formulation is a

three-index notation in which the two first indexes represent the pieces, and the third index enumerates the slices

(for the sake of clarity in Figure 4 we show only the third index). In general, if pieces have complex shapes, the

set of points not belonging to the NFP may have a structure more complex than that of the Figure 4 and it might be

needed to divide concave shapes into convex shapes. In these cases, before defining the slices and their associated

8

1

2

NFP12

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

Figure 4: NFP12

variables, a preprocess is required and additional binary variables are associated with the subsets of the region not

included in the slices (see Alvarez-Valdes et al. (2013) for a complete discussion).

Let m12 be the total number of binary variables, i.e, the number of slices we derived from NFP12 (m12 = 13

in Figure 4). We denote by t12i the total number of inequalities required to describe slice S i associated with v12i,

i = 1, . . . ,m12. Despite the fact that in Figure 4 t12i = 4, ∀i = 1, . . . ,m12, it might be possible that t12i takes

different values if the NFP12 has a more complex shape. In what follows we describe first the non-overlapping

constraints and then the containment constraints.

If, for some slice k of the NFP12, v12k = 1, the constraints defined by the sides of the slice:

α
k f

12
(x2 − x1) + β

k f

12
(y2 − y1) ≤ δ

k f

12
f = 1, . . . , t12k (21)

where α
k f

12
and β

k f

12
are the coefficients defining the slope of the inequality and δ

k f

12
the intercept, must be satisfied.

However, if v12k = 0, these constraints must be relaxed. This can be done by using big-M constants:

α
k f

12
(x2 − x1) + β

k f

12
(y2 − y1) ≤ δ

k f

12
+ (1 − v12k)M f = 1, . . . , t12k (22)

Fischetti and Luzzi (2008) describe a procedure for building these constraints avoiding the big-M constants.

Since exactly one slice is used in any feasible solution, this equality holds:

m12∑

i=1

v12i = 1 (23)

Then a tighter constant could be written for each slice, eliminating the big-M and including on the right hand

side of the inequality all the binary variables, defined by NFP12, multiplied by a given constant. These constants

are obtained by solving the following problem:

δ
k f h

12
= maxp2∈S h α

k f

12
(x2 − x1) + β

k f

12
(y2 − y1) (24)

which corresponds to the maximum value of the left hand side when piece 2 lies on slice h, h ∈ {1, . . . ,m12}.

Then, the non-overlapping inequalities can be written as follows:

α
k f

12
(x2 − x1) + β

k f

12
(y2 − y1) ≤

m12∑

h=1

δ
k f h

12
v12h k = 1, . . . ,m12, f = 1, . . . , t12k (25)

9

The containment constraints ensure that each piece does not exceed the limits of the bin (as with inequalities

(19) and (20) in the formulation for one piece). Alvarez-Valdes et al. (2013) describe a lifting procedure for these

inequalities, adding some of the binary variables of the corresponding NFP, associated with slices on which one

piece protrudes either horizontally or vertically from the other. Let us denote by y12k and y
12k

(x12k and x
12k

) the

maximum and minimum value of y2 − y1 (respectively, x2 − x1), when slice k is used. Let X12 and Y12 be the

minimum X-coordinate and Y-coordinate value of NFP12 respectively. We define the following classification of

the binary variables:

• U12 := {v12k | y
12k
≥ 0}, the set of binary variables whose associated slices do not allow piece 2 to protrude

from below piece 1. In Figure 4, U12 = {v1, v2, v3, v12}.

• R12 := {v12k | x12k
≥ 0}, the set of binary variables whose associated slices do not allow piece 2 to protrude

from the left of piece 1. In Figure 4, R12 = {v9, v10, v11, v12}.

• LS 12 := {v12k | λ12k > 0}where λ12k = l1−(x12k−X12) and l1 is the length of piece 1 in the current orientation.

Then, LS 12 is the set of binary variables whose associated slices force piece 1 to protrude from the right of

piece 2. In Figure 4, LS 12 = {v2, v3, v4, v5, v6, v7}.

• DS 12 := {v12k | µ12k > 0} where µ12k = w1 − (y12k − Y12) and w1 denotes the width of piece 1. Then, DS 12 is

the set of binary variables whose associated slices force piece 1 to protrude from above piece 2. In Figure

4, DS 12 = {v7, v8, v9}, variable v6 is not in DS 12 because µ126 = 0.

The containment constraints for piece 1 are:

∑
k∈R12

x
12k

v12k ≤ x1 ≤ Lu − l1 −
∑

k∈LS 12
λ12kv12k (26)

∑
k∈U12

y
12k

v12k ≤ y1 ≤ Wu − w1 −
∑

k∈DS 12
µ12kv12k (27)

Similarly we can build the containment constraints for piece 2. In Figure 4, U21 = {v5, v6, v7, v8, v9, v10}, R21 =

{v2, v3, v4, v5, v6, v7}, LS 21 = {v9, v10, v11, v12}, and DS 21 = {v1, v2, v3, v4, v11, v12}. The containment constraints for

piece 2 can be written as follows:

∑
k∈R21
λ21kv12k ≤ x2 ≤ Lu − l2 −

∑
k∈LS 21

x
12k

v12k (28)
∑

k∈U21
y12kv12k ≤ y1 ≤ Wu − w2 −

∑
k∈DS 21

µ21kv12k (29)

where λ21k = l2 − (X
12
− x

12k
) and µ21k = w2 − (Y

12
− y

12k
).

The MIP formulation we consider to place pieces 1 and 2 has as objective function expression (16), subject to:

• Constraints (17) and (18) to ensure that Lu and Wu do not exceed the limits of the bin.

• Lifted containment constraints (26) and (27) for piece 1.

• Lifted containment constraints (28) and (29) for piece 2.

• Non-overlapping constraints (23) and (25).

This MIP model is solved three times since we consider three orientations as illustrated in Figure 5. Each time

we solve the model for a given rotation and we obtain an improved feasible solution, the value of its objective

function is used as an upper bound for the following rotations. Therefore, only models producing improved

solutions are solved to optimality. If the orientation being tested cannot produce a better solution, the model is

quickly identified as unfeasible by the solver, speeding up the process. In the three solutions depicted in Figure 5

the orientation of piece 1 is fixed, as a result of the previous step, but its position is determined by the solution of

the current model.

There are 13 binary variables in each one of the models solved for the insertion of the second piece. Since this

number increases exponentially with the number of pieces already placed into the bin, it maybe necessary to fix

the relative position between the pieces already placed to reduce this number. If the computational time needed to

solve the MIP model to optimality exceeds a given threshold, θ, then for the following insertion we fix the binary

variables to the values obtained in the previous model. Otherwise, we allow more flexibility by keeping the binary

variables free. Further each MIP model is given a maximum computation time.

10

1

2

(a) Rotation 1

1

2

(b) Rotation 2

1

2

(c) Rotation 3

Figure 5: Three rotations for the second piece. Rotation 3 is selected and fixed

1

2
3

4 5

6 7

8

9

10

11

12

13

14

15

(a) Rotation 1

1

2
3

4 5

6 7

8

9

10

11

12

13

14

15

(b) Rotation 2

1

2
3

4 5

6 7

8

9

10

11

12

13

14

15

(c) Rotation 3

Figure 6: Three rotations for the 15th piece. Rotation 1 is selected and fixed

For the general case, where the next piece to be inserted is piece j, j − 1 pieces have been inserted and now

have fixed orientation. The model for the insertion of j can be written as follows:

Min. ωLu + (1 − ω)Wu, (30)

Lu ≤ L, (31)

Wu ≤ W, (32)
∑

k∈R x
j1 j2k

v j1 j2k ≤ x j1 ≤ Lu − l j1 −
∑

k∈LS j1 j2
λ j1 j2kv12k, j1, j2 ∈ {1, . . . , j} (33)

∑
k∈U j1 j2

y
j1 j2k

v j1 j2k ≤ y j1 ≤ Wu − w j1 −
∑

k∈DS j1 j2
µ j1 j2kv j1 j2k, j1, j2 ∈ {1, . . . , j} (34)

α
k f

j1 j2
(x j2 − x j1) + β

k f

j1 j2
(y j2 − y j1) ≤

∑m j1 j2

h=1
δ

k f h

j1 j2
v j1 j2h, 1 ≤ j1 < j2 ≤ j, k = 1, . . . ,m j1 j2 , f = 1, . . . , t j1 j2k(35)

∑m j1 j2

i=1
v12i = 1, 1 ≤ j1 < j2 ≤ i (36)

v j1 j2k ∈ {0, 1}, j1, j2 ∈ {1, . . . , j} (37)

xl, yl ≥ 0, 1 ≤ l ≤ j (38)

Constraints (31) and (32) ensure that Lu and Wu do not exceed the dimensions of the bin. The containment

constraints (33) and (34) are required for all the pairs of pieces taking into account the order (j(j − 1) pairs) and

the non-overlapping constraints (35) and (36) are required for all the NFP (
j(j−1)

2
pairs).

In Figure 6 we show the insertion of piece 15. In this example the previous MIP model was difficult to solve

to optimality (the computation time was greater that the threshold θ). Therefore, the relative position of the pieces

already placed is fixed while piece 15 is being inserted. We can see that we obtain different solutions with the

same objective function value. In this case, the algorithm would solve the first MIP model to optimality (Rotation

1) obtaining a solution. This objective function value will be used in the next two MIPs as upper bound. As a

result, the second and third model will be quickly identified as infeasible. Their solutions appear in Figure 6 only

11

for illustrative purposes.

5 Local search

In this section we present two local search strategies referred to as LS1 and LS2 respectively. Throughout the dif-

ferent proposed methods we consider that a solution has been improved if its coefficient F (equation 1) increases.

Both strategies are based on hill climbing first found improvement and do not include diversification schemes.

Both terminate when a local optimum solution is found. The rationale behind such simplistic procedures is that

coefficient F has several properties: First, if a move leads to a reduction on the number of bins, F increases and the

move is accepted. Second, if a move results in the same number of bins but with one bin with a higher utilisation,

F will still increase, accepting the move. These properties prove useful when differentiating between solutions

with the same number of bins, removing large plateaux from the solution space.

5.1 LS1

Given a solution containing a set of bins B = {b1, . . . , bN} sorted by non-decreasing utilization, i.e, U1 ≤ U2 ≤

· · · ≤ UN . The proposed local search procedure (LS1) considers all pairs of bins, bi and b j with i < j, and

attempts to move pieces one by one from bin i into bin j. If all pieces from both bins fit into only one bin, the new

solutions is accepted. Otherwise, the move is accepted if U j is increased and consequently Ui is decreased. The

new solution would have the same number of bins but a higher F. The idea is to reduce the usage of the least used

bins so that eventually they might be emptied and consequently removed.

A neighbourhood move involves the removal of one piece from the fullest bin, b j, starting with the smallest

piece in the bin, and the insertions of a piece from emptiest bin, bi, starting from the largest piece in the bin.

Each piece from bi is tried before the piece from b j is returned and the next smallest piece is removed. The first

improving move found is accepted.

The neighbourhood search procedure LS1 is as follows: We first sort the pieces from bin b j by non-decreasing

area and the pieces from bin bi by non-increasing area. Considering the pieces from each bin in their sorted order,

remove a piece p j ∈ b j. This generates an empty space in which all pieces pi ∈ bi are considered. Each piece from

bi is packed into b j, one at a time. If it fits, the piece is kept in b j and the next piece in bi is considered. If not, the

piece is placed onto an Unplaced list of pieces. When all pieces of bi have been considered, we then attempt to

pack the removed piece p j into b j. Again, if it does not fit, it is put onto the Unplaced list.

At this stage, we examine the new utilisation of bin b j. If it has not improved, then the move is discarded.

Otherwise, if Unplaced is empty, then bin bi is also empty and the new solution is accepted. If Unplaced is not

empty, all of its pieces are packed into a new bin, again one at a time in non-increasing order of their area. If

this packing is unsuccessful, then the new solution has a larger number of bins and is discarded. If all pieces in

Unplaced fit, the solution is accepted if the recalculated F is higher. The complete procedure is further detailed

in Algorithm 1.

LS1 considers each pair of bins starting with those with the lowest utilization. Each time an improvement is

found we start again from the new solution studying all pairs of bins in which exactly one bin is different from the

previous solution and all previously unvisited pairs of bins.

12

Data: bi and b j such that ui ≤ u j

Result: bi′ and b j′ such that ui′ ≤ ui and u j′ ≥ u j

b′
i
= bi;

b′
j
= b j;

for each piece p j in b j do

Set areaout = areap j
, areain = 0, Unplaced = ∅;

Remove p j from b′
j
;

List: Sort pieces in bi by non-increasing area;

Add p j to the end of List;

for each piece p in List do

Obtain rotations piece p described in Section 4;

Solve the corresponding MIP models (one per rotation);

if piece p fits then

Update b′
j
;

areain+ = areap;

else

Unplaced = Unplaced ∪ {p};

end

end

if areain > areaout (bin b′
j
has a higher utilisation) then

if Unplaced , ∅ then

Sort Unplaced by non-increasing area;

Build b′
i

trying to place all the pieces into the bin (see Section 4);

if All pieces fit then
return b′

i
and b′

j
;

else

Set b′
i
= bi and b′

j
= b j;

end

else

return b′
j
and b′

i
as an empty set (all the pieces fits only in one bin);

end

else

Set b′
i
= bi and b′

j
= b j;

end

end

Algorithm 1: Procedure to explore the neighbourhood in LS1.

5.2 LS2

This local search aims to extend the scope of the search in LS1 by considering a set of bins, B′, instead of a single

bin b j. As a result, we increase the chances of packing all pieces of bin bi into a set of bins. As before, the aim

is to empty bin bi, as much as possible, from a solution with N bins by moving pieces into any of the bins with

greater utilisation than bi. The set of bins, B′ is all the bins with greater utilisation that bi and lower than 0.99, say

B′ = {b j1 , . . . , b jr }, r < N, B′ ⊆ B \ {bi}, where r is the number of bins in B′.

The main difference is that in LS1, once we have built a new bin b′
j
, we try to rebuild bi. Whereas in LS2, we

consider r ≥ 2 bins in such a way that bin bi is not rebuilt until all the r bins have been considered. If we fail to

pack all the pieces from the list of unpacked pieces in the new bin b′
i
, the whole movement fails and we return to

the previous solution. The specific details of the procedure are given as pseudocode in Algorithm 2.

13

Data: bi, b j1 , . . . , b jr such that ui ≤ u j1 ≤ · · · ≤ u jr

Result: r or r + 1 new bins packing the same set of pieces with better coefficient F

Copy pieces of bi in List ;

bi = ∅;

Copy bins b′
j1
= b j1 , . . . , b

′
jr
= b jr ;

improved = true;

while improved do

improved=false;

for k = 1 to r do

for each piece p jk in b′
jk

do

Set areaout = areap jk
, areain = 0;

Remove p jk from b′
jk

;

Copy List2 = List;

Add p jk to the end of List;

for each piece p in List2 do

Obtain rotations for piece p as described in Section 4;

Solve the corresponding MIP models (one per rotation);

if piece p fits then

Update b′
jk

;

areain+ = areap;

Remove p from List2;

else

Study next piece;

end

end

if areain > areaout then

if List2 , ∅ then

List = List2 and sort the list by non-increasing area;

b jk = b′
jk

;

improved=true;

else

return b′
j1
, . . . , b′

jr
(a solution with one bin less have been found);

end

else

b′
jk
= b jk ;

end

end

end

if List has been modified then

Try to place all the pieces from List into bi, building a new bin b′
i
;

if All pieces fit then

Improvement is found: return bi and bins b′
j1
, . . . , b′

jr
;

else

return (no improvement is found);

end

else

return (no improvement is found);

end

end

Algorithm 2: Procedure to explore the neighbourhood in LS2.

Local search LS2 is based on applying the procedure described in Algorithm 2, which is carried out for all the

bins bi, i = 1, . . . ,N − 1. Note that i goes all the way up to the second fullest bin without taking into account bins

with an utilisation greater than 0.99.

6 Implementation

In Section 3 we present five different construction algorithms for solving the 2DIBBP: BPGD, FFD, PBP, TPS

and SCH. The first four approaches initially solve a variant of the one dimensional bin packing problem prior

to packing the 2D pieces in the bins. The fifth approach performs the assignment and the packing together. All

approaches use the MIP model described in Section 4 to pack the pieces.

In Section 5 we described two local search procedures. Although they can be applied to the solutions obtained

by any constructive algorithm, we have tested them only in combination with the constructive algorithm PBP. This

is because PBP produces more efficient layouts at lower computational cost on average than the other variants (see

14

Section 7).

There are few parameters to set. The construction algorithms terminate when they find a feasible solution and

the local search strategies terminate when they hit a local optima. As described in Section 4, the MIP models can

be time consuming, hence for all the approaches we consider θ = 20, so if the time required to solve the MIP

exceeds 20 seconds, the binary variables are fixed in the next insertion. We also fix a time limit of 50 seconds

per MIP solved. Our experience in developing the algorithms was that this gave a reasonable trade off between

computation time and solution efficiency. Clearly if the MIP model is permitted to run for longer, better solutions

can be found. The only other parameter is related to the number of rotations attempted in the packing model.

For instances in which the pieces can rotate freely, their orientation will be obtained by the criteria described in

Section 4. We denote by GR1 the criterion in which only the best rotation is considered and by GR3 the case in

which the best three rotations are studied. For instances in the literature in which the orientations of the pieces are

limited, usually to two angles of rotation (0o, 180o), or four angles of rotation (0o, 90o, 180o, 270o), we consider

only these allowed orientations.

The five construction algorithms and the two local search strategies are coded in C++ and implemented using

Visual Studio 2008. We use CPLEX, version 12.6.0.0, for solving both the Integer Programming models in the

assignment strategy and the Mixed Integer Programming models in the packing strategy, and the computational

tests are run on a PC with core i7 2600 processor and 4 GB memory.

6.1 data

The different variants of the algorithm were tested on four different sets of instances with irregular shapes available

in the literature. The first two sets of instances were proposed by Lopez-Camacho et al. (2013). Both sets are

jigsaw puzzle instances where the optimal solution is known and equal to 100% utilisation of every bin. The first

set, JP1, has a collection of 540 instances where all pieces are convex. These instances are divided in 18 classes

with 30 problems in each class with varying numbers of pieces per bin. The second set, JP2, has 480 instances

(16 classes with 30 problems each class) in which the pieces have concavities. These two sets of instances are

available online at ESICUP web site (http://paginas.fe.up.pt/ esicup/tiki-index.php).

Figure 7 shows the solution to two JP1 instances of different types. The size of the bins is the same (but scaled

differently in the picture). However, the shape of the pieces and the number of pieces per bin are very different.

Both solutions are obtained by algorithm PBP. The top solution belongs to an instance of class L and the solution

depicted at the bottom is an instance of class O (in which the algorithm was able to find the optimal solution).

Figure 7: Two solutions of different type instances.

The third set of instances are created from the well-known irregular strip packing benchmark instances, avail-

able on the ESICUP web site. These have a high variety of shapes (convex and non-convex) and the pieces do

not fit together exactly, as in the previous two sets. In strip packing problems only the width of the stock sheet is

constrained, and the objective is to minimize the total length required to pack all the pieces. In order to modify

these instances to our bin packing problem, we only need to define a fixed stock sheet size (width and length). We

have built three sets of instances according to the bin size as follows. Let md be the maximum length or width

15

across all the pieces in their initial orientation for a given instance. Then the bin are a fixed dimensional square

with the following sizes (given in the same units of the pieces):

• Nest-SB (small bins). The bin dimensions are W = L = 1.1md

• Nest-MB (medium bins). The bin dimensions are W = L = 1.5md

• Nest-LB (large bins). The bin dimensions are W = L = 2md

There are twenty-three irregular strip packing instances, which gives sixty-nine bin packing instances arising

from the three bin sizes. Table 1 shows the instances with the corresponding number of pieces, bin size, and

rotations permitted. Columns SB, MB and LB shows the size of the bins in each one of the sets.

Table 1: Irregular strip packing instances

N SB MB LB Rot

albano 24 3337.40 4551.00 6068.00 0-180

shapes2 28 5.50 7.50 10.00 0-180

trousers 64 64.90 88.50 118.00 0-180

shapes0 43 15.40 21.00 28.00 0-90-180-270

shapes1 43 15.40 21.00 28.00 0-180

shirts 99 26.00 19.50 14.30 0-180

dighe2 10 77.00 105.00 140.00 0

dighe1 16 72.60 99.00 132.00 0

fu 12 15.40 21.00 28.00 0-90-180-270

han 23 25.30 34.50 46.00 0-90-180-270

jakobs1 25 8.80 12.00 16.00 0-90-180-270

jakobs2 25 17.60 24.00 32.00 0-90-180-270

mao 20 1206.70 1645.50 2194.00 0-180

poly1a 15 14.30 19.50 26.00 0-90-180-270

poly2a 30 14.30 19.50 26.00 0-90-180-270

poly3a 45 14.30 19.50 26.00 0-90-180-270

poly4a 60 14.30 19.50 26.00 0-90-180-270

poly5a 75 14.30 19.50 26.00 0-90-180-270

poly2b 30 14.30 19.50 26.00 0-90-180-270

poly3b 45 14.30 19.50 26.00 0-90-180-270

poly4b 60 14.30 19.50 26.00 0-90-180-270

poly5b 75 14.30 19.50 26.00 0-90-180-270

swimm 48 2133.61 2909.47 3879.29 0-180

The rationale for considering three different bin sizes is to investigate the relative importance of the assignment

and the packing approaches. Intuitively, for instances Nest-SB the assignment problem should be more important

than for instances Nest-MB and Nest-LB because fewer pieces can fit into one bin and the packing problem will

be easier. Conversely, in the instances of Nest-LB, the packing phase will be more important, where solving the

packing problem more efficiently may lead to better solutions even if the assignment is not ideal.

The fourth set of instances have been obtained from Han et al. (2012) for the 2-Dimensional Bin Packing

Problem with Irregular convex Pieces and Guillotine Cuts (2DBPPIPGC). The authors test their algorithms on 8

instances. 4 of these instances, called J40, J50, J60 and J70, are real data obtained by a company in the glass

cutting industry. The remaining 4 instances, called H80, H100, H120 and H149, were generated randomly taking

into account the main properties of the real data. This data set permits free rotation of the pieces. We denote these

8 instances by Jotika.

In addition, we report the solutions we obtain for the three real instances for the ceramic industry provided

by a Spanish company located in Castellon, BUTECH-PORCELANOSA. The instances have 209, 340 and 484

pieces. Two of the instances have pieces with concavities and one instance has only convex pieces. In this real

application there is no restriction on the orientation of the pieces, and the objective is to minimize the total number

of bins (N).

7 Computational results

In the first computational test we compare the five variants of the constructive algorithm presented in Section 3.

In Table 2 we present the average results obtained by the algorithms in all instances in each data set. For each one

16

of the variants we report the average number of bins (N), the average value of F described in (1) and the average

fractional number of bins K defined in (3). Table 3 shows the average computational time (T) in seconds.

Table 2: Comparison between different variants of the constructive algorithm

SCH BPGD FF PBP TPS

N F K N F K N F K N F K N F K

JP1 7.600 0.682 7.189 7.670 0.671 7.289 7.922 0.632 7.521 7.569 0.685 7.159 7.656 0.672 7.275

JP2 7.204 0.693 6.834 7.340 0.676 7.007 7.633 0.629 7.282 7.159 0.699 6.805 7.308 0.680 6.981

Nest-SB 9.174 0.409 8.755 9.261 0.395 8.884 9.304 0.392 8.913 9.174 0.409 8.737 9.348 0.396 8.938

Nest-MB 4.870 0.425 4.476 4.870 0.425 4.458 4.870 0.427 4.464 4.870 0.425 4.477 4.870 0.425 4.485

Nest-LB 2.783 0.398 2.386 2.783 0.398 2.395 2.783 0.398 2.396 2.783 0.398 2.381 2.826 0.391 2.413

Jotika 13.125 0.695 12.542 13.375 0.678 12.790 13.500 0.664 12.892 13.125 0.698 12.514 13.375 0.671 12.884

Av. 7.459 0.550 7.030 7.550 0.540 7.137 7.669 0.524 7.245 7.447 0.553 7.012 7.564 0.539 7.163

Table 3: Computational time (in seconds) used by all the constructive algorithms

SCH BPGD FF PBP TPS

JP1 52 81 54 53 85

JP2 72 58 40 42 67

Nest-SB 78 67 61 72 98

Nest-MB 129 119 121 116 124

Nest-LB 291 313 284 265 307

Jotika 129 163 154 148 233

Av. 125 134 120 116 152

Although the differences in N, the number of bins required by the solutions, are very small, as is usual in bin

packing problems, we can observe that in all the data sets PBP performed the best on average in all the measures

of performance (N, F and K), with lower computational effort. Variant SCH is the next best preforming algorithm,

although the computational effort is slightly higher than PBP and FF. The approaches that made a full assignment

to the bins performed least well (BPGD, FF and TPS). PBP makes a partial assignment by solving the 1D knapsack

problem for one bin at a time and reducing the greediness of the approach with a modified objective function. SCH

does not pre-assign pieces to bins but simply places the piece in the first bin it will fit. This leads to many more

attempts to pack a piece, increasing computation time. Hence, we can conclude that attempting to assign pieces

prior to packing is valuable but only for the immediate decision to pack the next bin. Tables 7, 8, 9, 10,11 and 12

in the appendix shows the average results for each one of the classes (or individual instances) in JP1, JP2, Nest

and Jotika. Since PBP is the best performing algorithm, we use this variant for the remainder of the investigation.

In order to compare the improvement of each one of the local search procedures described in Section 5 we

present the average improvement of each local search procedure over the solution obtained by the PBP algorithm.

In Table 4 we present the average improvement of F obtained by both local search procedures LS1 and LS2 when

applied to the solution obtained by the constructive algorithm PBP for each set of instances. In general there is

a significant improvement with both local search strategies. We can observe that LS2 performs better than LS1,

obtaining better average results in all sets of instances but one, with a similar computational effort. Table 13 and

14 in the appendix show the the results obtained in each one of the classes on sets JP1 and JP2. The average results

obtained on set JP1 by LS1 and LS2, 0.703 and 0.723, respectively, improve on the average solution quality from

the best known algorithms results reported by Terashima-Marin et al. (2010), 0.690.

Note that the average improvement of LS2 on instances Nest-LB is much lower than the other sets of instances.

This fact suggests that the impact of the local search depends on the ratio between the size of the pieces and the

size of the bins. The average number of pieces per bin on instances sets Nest-SB, Nest-MB and Nest-LB is,

respectively, 4.35, 8.19 and 14.34. Therefore, if the average number of pieces per bin is big enough then the local

search procedure, which explores only the assignment of the pieces into the bin, is less effective. However, the

local search produces relevant improvements on instances in which the average number of pieces per bin is lower.

This confirms our conjecture that the assignment is more important when the number of pieces per bin is small.

The next set of computational experiments evaluate the impact of allowing free rotation of the pieces. In

addition, we investigate the influence of the initial given rotation and how that impacts the solution quality. Our

conjecture is that data sets are created with a good initial orientation with respect to packing and therefore keeping

this orientation fixed would produce good solutions. For some applications i.e. garment manufacturing the pattern

and bias of the material is important, and rotation angles are finite and specific. However, with many other

materials there is no practical reason for any given initial rotation. Table 5 shows the results obtained for the

Nest-MB instances by the PBP constructive algorithm with three configurations. In columns ”Initial Given” the

17

Table 4: LS1 vs LS2

PBP LS1 LS2

F T F %Imp T F %Imp T

JP1 0.685 52 0.703 1.740 129 0.723 3.806 161

JP2 0.699 42 0.716 1.753 136 0.729 3.068 123

Nest-SB 0.409 72 0.434 5.802 1721 0.432 5.389 1297

Nest-MB 0.425 116 0.445 4.493 2816 0.452 6.029 3172

Nest-LB 0.398 265 0.403 1.222 951 0.403 1.294 767

Jotika 0.698 148 0.725 3.740 1931 0.730 4.370 1426

orientation of the pieces in the original data is kept and for each instance we consider the finite rotation angles

given in Table 1. In columns ”Initial Random” the orientation of the pieces in the original data is rotated a random

angle and the permitted orientation of the pieces are considered starting from the new angle of rotation. The

columns headed ”Free Rot” present the results obtained when the pieces are allowed to rotate freely, regardless of

their permitted orientations.

If we compare the results obtained by ”Initial Given” and ”Initial Random”, we observe that ”Initial Given”

gets better solutions in seventeen of the twenty-three cases, and of those cases where ”Initial Given” is worse, all

but one arise in the poly data sets that are artificial instances with arbitrary shapes for which the initial orientation

is not important. This suggests that the initial orientation given to the pieces is advantageous in the majority of

nesting instances coming from real problems, allowing good matchings between the pieces and the edges of the

bin. In Figure 8 we can observe that the initial angle of rotations on solution (b) is clearly better for packing,

allowing the larger pieces to be packed together more effectively. In solution (a), where we randomized the initial

angle of rotations, pieces have fewer matching edges leading to a worse solution. A more significant impact can

be found in instances dighe1 and dighe2. These are jigsaw puzzle instances where only the initial orientation of

the pieces allows the perfect fit.

Comparing these results with those obtained by ”Free Rot”, this variant found better result than both the finite

rotation variants in fourteen cases. Note that our ”get rotations” algorithm is not dependent on the initial angle

of rotation given to the pieces. Hence, when there is no practical reason for setting specific angles of rotation,

our free rotation approach removes any bias from how the data sets are created. Also note that on average the

number of bins is better for ”Free Rot”, but its F value is inferior to that of ”Initial Given”. Although in most of

the instance in which ”Free Rot” does not obtain the best result the distance to best is very small, there are very

large discrepancies on the two jigsaw instances, especially on dighe2, in which the algorithm with free rotation

needs an extra bin, and as a result the F value is significantly lower.

In summary, when the instances come from real problems or are jigsaw instances they are given with an initial

orientation which will produce the best or near-best solution. Our algorithm with free rotation, in which every

time a piece is packed its orientation is chosen according to the partial configuration of the bin, is able to improve

on the results obtained using this initial orientation for most of the instances and to get similar solutions for the

remaining ones, except for jigsaw instances in which just one bad selection of the orientation of one piece can

lead to much worse solutions. Apart from these very specific cases, the proposed algorithm, which is independent

of the initial orientation of the pieces, tends to produce better solutions.

In Table 6 we present the results obtained in the three real instances proposed by BUTECH-PORCELANOSA.

For these instances the objective is to reduce the total number of bins, N. For illustrative purposes the table also

shows the average percentage utilization U =
∑N

i=1 Ui/N, as well as the computing times T . Concerning the

algorithms, since the upper bounds on the number of bins and the number of pieces are very large, solving the

corresponding IP models many times, as required by TPS, is computationally prohibitive. This variant of the

algorithm is therefore not included. However, algorithm BPGD, which solves a similar IP formulation but far

fewer times, produces a solution in reasonable computing time and is included. Nevertheless, the best algorithm in

terms of computational time and quality of the solutions is, again, PBP, that always provides average utilizations

greater than 90% and up to 97.49%. These solutions considerably improved the efficiency of previous manual

solutions.

8 Conclusions

In this paper we have addressed a new bin packing problem with irregular pieces that can be freely rotated for

which there is no specialized algorithm despite the fact that the problem arises in industry. It was motivated

18

Table 5: Analysis of different rotation criteria on Nest-MB instances

Initial Random Initial Given Free Rot

N F N F N F

albano 4 0.332 3 0.480 3 0.510

shapes2 12 0.248 10 0.349 10 0.350

trousers 4 0.362 3 0.555 3 0.580

shirts 9 0.450 8 0.518 8 0.570

shapes0 10 0.179 7 0.271 6 0.390

shapes1 9 0.150 7 0.282 6 0.390

dighe2 2 0.236 1 0.823 2 0.280

dighe1 2 0.283 2 0.368 2 0.290

fu 5 0.247 4 0.443 4 0.440

han 3 0.309 3 0.387 3 0.390

jakobs1 6 0.281 4 0.570 4 0.530

jakobs2 4 0.354 4 0.401 4 0.380

mao 3 0.272 3 0.271 3 0.300

poly1a 2 0.307 2 0.308 2 0.320

poly2a 4 0.342 4 0.339 4 0.340

poly3a 5 0.420 5 0.419 5 0.420

poly4a 7 0.396 7 0.392 7 0.410

poly5a 8 0.448 8 0.449 8 0.450

poly2b 4 0.363 4 0.389 4 0.400

poly3b 5 0.423 5 0.432 5 0.440

poly4b 6 0.474 6 0.465 6 0.470

poly5b 7 0.486 7 0.478 7 0.480

swimm 5 0.385 5 0.397 5 0.390

Av. 5.478 0.337 4.870 0.425 4.826 0.414

#best 3 6 14

Table 6: Computational results for the real data instances

SCH BPGD PBP FFD

N U T N U T N U T N U T

BP209 48 0.9157 320 52 0.8454 1280 48 0.9157 293 51 0.8577 589

BP340 204 0.9354 663 214 0.8918 4049 202 0.9455 234 210 0.9089 568

BP484 316 0.9732 22 388 0.7900 1827 316 0.9749 83 325 0.9471 527

by the ceramic tile sector, from which we have tested the algorithm in several instances provided by BUTECH

(PORCELANOSA group) in Spain. Due to the high cost of the material used, the main objective is to obtain high

utilization solutions.

Besides the instances provided by the company we have used several sets of test instances, some of them

previously published and other adapted from related problems, in order to have instance with very different char-

acteristics. That has allowed us to study the behavior of the different strategies developed in this paper on a wide

range of cases.

We have solved the problem by decomposing it into two phases, the assignment of pieces to bins and the

packing of the assigned pieces in the corresponding bin. As one of the objectives of the study was to investigate

the value of this separation strategy versus the assignment as a consequence of the packing decision, we have

developed and tested several assignment procedures, including the simple sequential assignment method. The

results show that a partial assignment is the most successful strategy. This strategy is known to work well in one

dimensional and two-dimensional bin packing problems with rectangular pieces and it is also the best in this case

of irregular pieces.

We have also investigated the relative impact of assignment and packing depending on the data instance and

found it highly dependent on the average number of pieces per bin. The assignment is more important when the

number of pieces per bin is small. In particular, the local searches developed to improve the solutions, based on

modifying the assignment of pieces to bins, work better when only a few pieces fit into each bin.

Finally, we have studied the impact of the orientation of pieces given in the original data and how free rotation

helps to improve the solutions by modifying the orientation of the pieces. Our results show that in some cases,

such as jigsaw puzzle instances in which only using the initial orientation of the pieces is possible to obtain the

perfect fit, allowing free rotation cannot improve on the solutions and more likely will produce worse solutions if

some wrong decisions about the orientation are made in the constructive process. However, in many other cases,

our algorithm, which is not dependent of the initial orientation, produces better results, finding better orientations

19

a1 a2 a3 a4

11

b1

7

b2 b3

Figure 8: Solution a with ”Initial Random”, needed 4 bins; solution b with ”Initial Given”, needed 3 bins

for some pieces.

As future work, we plan to extend the ideas developed here to other bin packing problems with irregular pieces,

such as the problems arising from cutting leather, in which bins are neither identical nor rectangular, and can even

have some defects, defining non-usable zones.

Acknowledgments

This study has been partially supported by the Spanish Ministry of Economy and Competitiveness, DPI2011-

24977, and by the Generalitat Valenciana, PROMETEO/2013/049. The authors would like to acknowledge the

contribution of the professionals at PORCELANOSA Group, in particular to Javier M. Chiva Bartoll, who have

contributed to the practical application in this work in a significant way.

References

R. Alvarez-Valdes, A. Martinez-Sykora, and J.M. Tamarit. A branch & bound algorithm for cutting and packing

irregularly shaped pieces. International Journal of Production Economics, 145:466–477, 2013.

J.A. Bennell and J.F. Oliveira. The geometry of nesting problems: A tutorial. European Journal of Operational

Research, 184:397–415, 2008.

J.A. Bennell and J.F. Oliveira. A tutorial in irregular shape packing problems. Journal of the Operational Research

Society, 60:S93–S105, 2009.

J.A. Bennell and X. Song. A beam search implementation for the irregular shape packing problem. Journal of

Heuristics, 16(2):167–188, 2010.

A. Caprara and U. Pferschy. Worst-case analysis of the subset sum algorithm for bin packing.. Operations

Research Letters, 32:159–166, 2004.

N. Chernov, Y. Stoyan, and T. Romanova. Mathematical model and efficient algorithms for objects packing

problem. Computational Geometry: Theory and Applications 43:535–553, 2010.

M. Fischetti and I. Luzzi. Mixed-integer programming models for nesting problems. Journal of Heuristics, 15:

201–226, 2008.

20

W. Han, J.A. Bennell, X. Zhao, and X. Song. Construction heuristics for two dimensional irregular shape bin

packing with guillotine constraints. European Journal of Operations Research, 230:495–504, 2012.

M. Hifi and R. M’Hallah. A best-local position procedure-based heuristic for two-dimensional layout problems.

Studia Informatica Universalis, International Journal on Informatics, 2(1):33–56, 2002.

S. Jakobs. On genetic algorithms for the packing of polygons. European Journal of Operations Research, 88:

165–181, 1996.

D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garvey, and R.L. Graham. Worst-case performace bounds for simple

one-dimensional packing algorithms. SIAM Journal on Comuting, 3:299–325, 1974.

D. Liu and H.Teng. An improved bl-algorithm for genetic algorithm of the othogonal packing of rectangle.

European Journal of Operational Research, 112:413–419, 1999.

E. Lopez-Camacho, G. Ochoa, H. Terashima-Marin, and E.K. Burke. An effective heuristic for the two-

dimensional irregular bin packing problem. Annals of Operations Research, 206:241–264, 2013.

E. Lopez-Camacho, H. Terashima-Marin, Peter Ross and G. Ochoa,. A unified hyper-heuristic framework for

solving packing problems. Expert Systems with Applications, 41:6876–6889, 2014.

A. Martinez-Sykora, R. Alvarez-Valdes, J. Bennell, and J.M. Tamarit. Constructive procedures to solve 2-

dimensional bin packing problems with irregular pieces and guillotine cuts. Omega, 52:15–32, 2015.

F. Parreño, R. Alvarez-Valdes, J.F. Oliveira, and J.M. Tamarit A hybrid GRASP/VND algorithm for two- and

three-dimensional bin packing Annals of Operations Research, 179:203–222, 2010.

P. Ross, S. Schulenburg, and J.G. Marin-Blazquez. Hyper-heuristics: learning to combine simple heuristics in bin-

packing problems. Lecture notes in computer science. Conference on genetic and evolutionary computation,

942–948, 2002.

X. Song and J.A. Bennell. Column generation and sequential heuristic procedure for solving an irregular shape

cutting stock problem. Journal of the Operational Research Society, 1–16, 2013.

H. Terashima-Marin, P. Ross, C.J. Farias-Zarate, E. Lopez-Camacho, and M. Valenzuela-Rendon. Generalized

hyper-heuristics for solving 2d regular and irregular packing problems. Annals of Operations Research, 179:

369–392, 2010.

G. Wäscher, H. Haußner, and H. Schumann. An improved typology of cutting and packing problems. European

Journal of Operational Research, 183, 109-1130, 2007.

21

9 Appendix

In this Section we present with more detail the computational results presented and discussed in Section 7.

Table 7: Results of the different constructive algorithms applied on set of instances JP1

SCH BPDG FF PBP TPS

N F K T N F K T N F K T N F K T N F K T

A 4.000 0.613 3.498 51.733 4.000 0.605 3.520 61.400 4.000 0.605 3.519 47.600 4.000 0.614 3.490 51.700 4 0.605 3.5356 61.1

B 11.833 0.761 11.406 0.933 11.333 0.826 11.100 27.833 11.967 0.741 11.586 1.733 11.700 0.781 11.281 1.300 11.5 0.8059 11.243 24.3

C 7.233 0.731 6.838 18.200 7.600 0.671 7.155 46.267 7.933 0.615 7.436 22.933 7.233 0.729 6.858 18.833 7.6 0.671 7.1642 46.567

D 4.000 0.591 3.638 149.500 4.000 0.586 3.668 160.340 4.000 0.581 3.693 163.700 4.000 0.590 3.636 164.533 4 0.5856 3.667 168.73

E 4.400 0.523 4.098 100.500 4.400 0.519 4.102 127.367 4.467 0.510 4.141 98.300 4.400 0.522 4.098 101.167 4.5667 0.4961 4.1762 109.4

F 3.000 0.516 2.412 39.733 3.000 0.508 2.457 31.800 3.000 0.507 2.435 34.900 3.000 0.515 2.414 41.967 3 0.5041 2.4467 34.4

G 14.533 0.716 14.158 1.833 14.867 0.684 14.494 78.100 14.967 0.681 14.552 3.233 14.467 0.724 14.050 3.300 14.633 0.7082 14.272 68.967

H 14.267 0.751 13.859 1.100 14.067 0.774 13.719 68.133 14.400 0.736 14.037 2.033 14.133 0.766 13.693 1.833 14 0.786 13.693 66.267

I 4.000 0.629 3.383 87.067 4.000 0.622 3.410 97.300 4.000 0.617 3.414 93.233 4.000 0.628 3.382 83.367 4 0.6211 3.4057 97.733

J 5.000 0.671 4.578 88.233 5.000 0.665 4.619 97.033 5.000 0.662 4.628 82.100 5.000 0.672 4.570 90.533 5 0.6656 4.6287 94.767

K 7.033 0.760 6.730 47.800 7.233 0.728 6.896 72.733 7.567 0.677 7.184 37.733 7.033 0.761 6.721 51.533 7.2333 0.7274 6.9074 73.2

L 4.067 0.589 3.751 28.467 4.067 0.580 3.806 49.367 4.100 0.569 3.856 34.867 4.067 0.588 3.754 28.600 4.0667 0.5782 3.8204 44.5

M 6.400 0.658 6.102 24.200 6.500 0.636 6.198 48.400 7.000 0.564 6.536 30.867 6.400 0.655 6.111 23.600 6.5333 0.6326 6.2192 48.567

N 3.000 0.518 2.388 199.700 3.000 0.513 2.395 218.900 3.000 0.512 2.416 210.867 3.000 0.517 2.392 186.300 3 0.5077 2.4124 230.57

O 7.967 0.826 7.641 0.833 7.433 0.920 7.333 11.733 8.800 0.675 8.490 3.567 7.933 0.831 7.596 1.533 7.3667 0.929 7.2584 10.567

P 9.867 0.713 9.420 45.533 9.967 0.688 9.577 71.233 10.133 0.655 9.835 51.533 9.800 0.720 9.383 53.967 9.9667 0.6884 9.5771 83.233

Q 15.633 0.941 15.338 14.200 16.600 0.843 16.283 137.933 17.133 0.792 16.807 10.200 15.500 0.956 15.263 7.800 16.333 0.8692 16.061 173.23

R 10.567 0.766 10.165 33.033 11.000 0.710 10.477 58.633 11.133 0.681 10.812 40.400 10.567 0.767 10.165 39.967 11 0.7103 10.462 100.67

Av. 7.600 0.682 7.189 51.811 7.670 0.671 7.289 81.361 7.922 0.632 7.521 53.878 7.569 0.685 7.159 52.880 7.656 0.672 7.275 85.376

Table 8: Results of the different constructive algorithms applied on set of instances JP2

SCH BPGD FF PBP TPS

N F K T N F K T N F K T N F K T N F K T

A 4.000 0.626 3.435 90.000 4.000 0.594 3.653 97.367 4.067 0.584 3.688 84.100 4.000 0.605 3.579 95.345 4 0.5926 3.6594 144.59

B 12.000 0.728 11.644 74.767 12.300 0.698 11.901 51.033 12.833 0.636 12.477 22.500 11.967 0.731 11.596 18.133 12.233 0.7014 11.848 48.467

C 7.700 0.665 7.217 134.633 7.767 0.653 7.260 105.933 7.933 0.612 7.452 79.467 7.517 0.690 7.094 79.828 7.7667 0.6522 7.2594 150.47

F 3.000 0.510 2.488 225.667 3.000 0.498 2.503 83.400 3.000 0.501 2.499 80.500 3.000 0.511 2.468 79.700 3 0.4921 2.5384 123

H 14.433 0.730 13.985 49.467 14.667 0.704 14.281 67.300 15.100 0.661 14.736 19.200 14.433 0.730 13.995 14.567 14.633 0.7091 14.219 88.167

L 4.200 0.563 3.883 93.600 4.133 0.564 3.886 67.967 4.167 0.556 3.914 59.667 4.167 0.571 3.823 71.933 4.1667 0.561 3.8764 70.2

M 6.633 0.627 6.264 94.767 6.833 0.594 6.354 78.200 6.967 0.564 6.524 63.667 6.533 0.641 6.194 68.067 6.8 0.6 6.328 85.467

O 8.300 0.769 7.857 21.700 8.733 0.691 8.429 34.600 9.200 0.618 8.888 11.567 8.233 0.774 7.843 5.533 8.6333 0.7038 8.3437 33.5

S 3.000 0.517 2.633 27.900 2.867 0.556 2.603 16.900 2.967 0.526 2.644 14.100 2.967 0.521 2.605 13.333 2.8667 0.561 2.5877 14.433

T 10.833 0.887 10.556 9.567 11.167 0.846 10.969 24.467 12.100 0.736 11.792 3.500 10.833 0.890 10.542 2.033 11.067 0.8599 10.883 24.333

U 6.133 0.732 5.830 19.167 6.200 0.736 5.901 18.833 6.933 0.571 6.550 8.500 6.100 0.737 5.826 7.600 6.1667 0.744 5.8871 17.133

V 5.233 0.942 5.115 2.833 5.033 0.990 5.027 0.633 5.267 0.936 5.194 0.467 5.200 0.951 5.091 0.600 5.0667 0.982 5.0395 0.4667

W 5.133 0.646 4.790 49.667 5.100 0.649 4.768 45.600 5.167 0.630 4.861 26.733 5.067 0.656 4.712 30.300 5.0333 0.671 4.7104 41.567

X 4.033 0.586 3.727 134.633 4.000 0.588 3.711 80.467 4.000 0.581 3.742 69.233 4.000 0.593 3.691 69.867 4.0345 0.5822 3.7171 78.103

Y 7.300 0.720 6.992 95.200 7.533 0.687 7.125 87.533 7.767 0.647 7.293 65.567 7.300 0.720 6.958 70.767 7.3667 0.7044 7.0639 91.1

Z 13.333 0.847 12.924 33.700 14.100 0.763 13.734 63.933 14.667 0.708 14.251 37.967 13.233 0.856 12.866 39.100 14.1 0.7633 13.735 64.433

Av. 7.204 0.693 6.834 72.329 7.340 0.676 7.007 57.760 7.633 0.629 7.282 40.421 7.159 0.699 6.805 41.669 7.308 0.680 6.981 67.214

22

Table 9: Results of the different constructive algorithms applied on each instance in Nest-SB

SCH BPGD FF PBP TPS

N F K T N F K T N F K T N F K T N F K T

albano 6 0.474 5.216 12 6 0.419 5.811 18 6 0.677 5.521 10 6 0.474 5.216 10 6 0.419 5.811 18

shapes2 20 0.300 19.727 3 20 0.300 19.727 4 20 0.542 19.727 1 20 0.300 19.727 3 20 0.300 19.727 5

trousers 5 0.671 4.909 202 6 0.519 5.247 232 5 0.831 4.909 195 5 0.671 4.909 181 5 0.677 4.886 185

shapes0 14 0.245 13.390 8 14 0.245 13.390 11 14 0.500 13.390 14 14 0.245 13.390 11 14 0.245 13.391 10

shapes1 13 0.272 12.714 22 13 0.272 12.714 22 13 0.528 12.714 19 13 0.272 12.714 21 14 0.241 13.712 19

shirts 14 0.571 13.839 135 16 0.462 15.490 115 16 0.676 15.629 97 14 0.571 13.839 131 16 0.466 15.490 169

dighe2 3 0.359 2.654 0 3 0.350 2.662 1 3 0.611 2.654 0 3 0.359 2.654 0 3 0.350 2.662 1

dighe1 3 0.406 2.771 3 3 0.406 2.771 3 3 0.677 2.817 4 3 0.406 2.771 3 3 0.406 2.772 2

fu 8 0.362 7.455 1 8 0.357 7.455 1 8 0.602 7.455 1 8 0.362 7.455 1 8 0.348 7.584 1

han 5 0.435 4.237 33 5 0.430 4.277 38 5 0.619 4.277 11 5 0.435 4.237 27 5 0.430 4.277 26

jakobs1 9 0.371 8.341 1 10 0.305 9.341 10 9 0.576 8.682 4 9 0.371 8.341 2 10 0.305 9.341 10

jakobs2 7 0.402 6.682 10 7 0.401 6.707 9 7 0.640 6.818 11 7 0.402 6.682 9 7 0.401 6.707 11

mao 4 0.432 3.706 22 4 0.430 3.831 27 4 0.702 3.706 16 4 0.432 3.706 19 4 0.428 3.706 20

poly1a 3 0.438 2.892 24 3 0.441 2.896 14 4 0.513 3.420 13 3 0.438 2.892 20 3 0.438 2.856 24

poly2a 7 0.363 6.420 52 6 0.433 5.977 47 7 0.575 6.420 50 7 0.363 6.420 49 7 0.360 6.280 53

poly3a 10 0.385 9.420 106 9 0.434 8.824 86 9 0.660 8.949 82 10 0.386 9.420 92 10 0.384 9.420 135

poly4a 13 0.381 12.515 206 12 0.436 11.860 147 12 0.657 11.997 116 13 0.386 12.439 160 13 0.385 12.439 242

poly5a 16 0.400 15.420 297 16 0.398 15.420 181 16 0.630 15.517 176 16 0.400 15.420 274 16 0.403 15.420 480

poly2b 7 0.409 6.632 31 7 0.395 6.843 27 7 0.652 6.629 39 7 0.410 6.506 33 7 0.409 6.615 70

poly3b 9 0.444 8.916 89 9 0.441 8.918 98 10 0.607 9.420 87 9 0.444 8.916 86 9 0.449 8.768 90

poly4b 12 0.430 11.210 151 12 0.414 11.420 91 12 0.645 11.420 136 12 0.430 11.210 147 12 0.419 11.420 235

poly5b 14 0.428 13.426 227 14 0.432 13.420 228 14 0.658 13.448 208 14 0.431 13.284 202 14 0.431 13.420 270

swimm 9 0.416 8.877 165 10 0.365 9.335 127 10 0.588 9.486 121 9 0.418 8.806 165 9 0.414 8.865 170

Av. 9.174 0.409 8.755 78.261 9.261 0.395 8.884 66.826 9.304 0.624 8.913 61.348 9.174 0.409 8.737 71.565 9.348 0.396 8.938 97.652

Table 10: Results of the different constructive algorithms applied on each instance in Nest-MB

SCH BPGD FF PBP TPS

N F K T N F K T N F K T N F K T N F K T

albano 3 0.480 2.873 26 3 0.480 2.873 25 3 0.491 2.667 24 3 0.480 2.873 22 3 0.480 2.895 36

shapes2 10 0.345 9.933 3 10 0.346 9.933 7 10 0.347 9.933 4 10 0.349 9.933 5 10 0.344 9.933 10

trousers 3 0.555 2.667 156 3 0.556 2.667 194 3 0.555 2.667 197 3 0.555 2.667 147 3 0.556 2.667 241

shapes0 7 0.271 6.762 71 7 0.271 6.762 58 7 0.287 6.524 36 7 0.271 6.762 60 7 0.271 6.762 66

shapes1 7 0.282 6.476 181 7 0.282 6.476 166 6 0.367 5.905 92 7 0.282 6.476 171 7 0.281 6.570 172

shirts 8 0.518 7.844 160 8 0.514 7.849 174 8 0.517 7.866 195 8 0.518 7.844 136 8 0.514 7.891 167

dighe2 1 0.823 0.952 8 1 0.823 0.952 11 1 0.823 0.952 14 1 0.823 0.952 9 1 0.823 0.951 9

dighe1 2 0.368 1.333 9 2 0.368 1.333 7 2 0.368 1.333 8 2 0.368 1.333 8 2 0.368 1.333 10

fu 4 0.443 3.571 1 4 0.443 3.571 1 4 0.454 3.429 1 4 0.443 3.571 1 4 0.443 3.571 2

han 3 0.387 2.203 32 3 0.387 2.203 27 3 0.376 2.290 34 3 0.387 2.203 27 3 0.391 2.290 27

jakobs1 4 0.570 3.333 54 4 0.567 3.250 52 4 0.552 3.417 53 4 0.570 3.333 45 4 0.567 3.250 52

jakobs2 4 0.401 3.250 36 4 0.401 3.250 35 4 0.412 3.333 40 4 0.401 3.250 36 4 0.401 3.251 36

mao 3 0.271 2.328 20 3 0.271 2.328 19 3 0.295 2.171 23 3 0.271 2.328 18 3 0.243 2.518 19

poly1a 2 0.308 1.536 36 2 0.300 1.598 25 2 0.308 1.536 39 2 0.308 1.536 35 2 0.300 1.597 25

poly2a 4 0.339 3.308 79 4 0.339 3.308 63 4 0.367 3.308 60 4 0.339 3.308 64 4 0.343 3.308 59

poly3a 5 0.419 4.705 184 5 0.426 4.632 137 5 0.414 4.790 146 5 0.419 4.665 165 5 0.424 4.682 137

poly4a 7 0.392 6.386 269 7 0.413 6.308 244 7 0.400 6.328 216 7 0.392 6.386 216 7 0.398 6.308 218

poly5a 8 0.443 7.850 441 8 0.447 7.667 362 8 0.445 7.958 387 8 0.449 7.905 370 8 0.446 7.950 339

poly2b 4 0.389 3.436 78 4 0.379 3.462 64 4 0.368 3.526 79 4 0.389 3.436 72 4 0.383 3.442 88

poly3b 5 0.434 4.582 148 5 0.430 4.564 115 5 0.433 4.581 133 5 0.432 4.582 170 5 0.441 4.507 158

poly4b 6 0.465 5.801 278 6 0.463 5.848 245 7 0.383 6.308 207 6 0.465 5.801 277 6 0.470 5.776 265

poly5b 7 0.478 6.936 386 7 0.476 6.826 488 7 0.477 6.933 439 7 0.478 6.936 368 7 0.476 6.826 488

swimm 5 0.397 4.891 311 5 0.401 4.870 227 5 0.392 4.907 365 5 0.397 4.891 238 5 0.401 4.870 232

Av. 4.870 0.425 4.476 129.000 4.870 0.425 4.458 119.391 4.870 0.427 4.464 121.391 4.870 0.425 4.477 115.652 4.870 0.425 4.485 124.174

Table 11: Results of the different constructive algorithms applied on each instance in Nest-LB

SCH BPGD FF PBP TPS

N F K T N F K T N F K T N F K T N F K T

albano 2 0.387 1.472 51 2 0.388 1.533 53 2 0.388 1.533 55 2 0.387 1.472 45 2 0.383 1.500 70

shapes2 5 0.439 4.800 25 5 0.441 4.800 27 5 0.449 4.700 23 5 0.452 4.700 41 5 0.439 4.799 22

trousers 2 0.445 1.500 504 2 0.437 1.500 635 2 0.435 1.500 578 2 0.445 1.500 433 2 0.450 1.500 480

shapes0 4 0.290 3.393 61 4 0.290 3.393 54 4 0.314 3.393 35 4 0.290 3.393 49 4 0.291 3.393 53

shapes1 4 0.302 3.286 134 4 0.302 3.286 108 4 0.317 3.214 86 4 0.302 3.286 103 4 0.285 3.428 86

shirts 4 0.644 3.926 554 4 0.640 3.935 708 4 0.642 3.928 501 4 0.644 3.926 456 5 0.498 4.269 715

dighe2 1 0.260 0.590 14 1 0.260 0.587 26 1 0.260 0.587 21 1 0.260 0.587 21 1 0.260 0.587 42

dighe1 1 0.329 0.835 43 1 0.329 0.835 37 1 0.329 0.835 35 1 0.329 0.835 35 1 0.329 0.833 19

fu 2 0.505 1.681 23 2 0.505 1.681 25 2 0.505 1.681 22 2 0.505 1.681 18 2 0.505 1.680 25

han 2 0.300 1.217 65 2 0.300 1.217 57 2 0.300 1.217 52 2 0.300 1.217 53 2 0.311 1.217 51

jakobs1 2 0.608 1.763 72 2 0.609 1.875 64 2 0.608 1.812 49 2 0.608 1.763 67 2 0.609 1.875 64

jakobs2 2 0.450 1.875 71 2 0.450 1.875 70 2 0.436 1.933 69 2 0.450 1.875 71 2 0.456 1.812 79

mao 2 0.231 1.346 29 2 0.231 1.346 32 2 0.231 1.346 29 2 0.231 1.346 30 2 0.213 1.319 35

poly1a 1 0.355 0.907 80 1 0.355 0.907 96 1 0.355 0.907 79 1 0.355 0.907 96 1 0.355 0.856 128

poly2a 2 0.369 1.723 194 2 0.371 1.744 233 2 0.366 1.711 151 2 0.369 1.723 198 2 0.366 1.770 299

poly3a 3 0.380 2.634 330 3 0.372 2.701 378 3 0.373 2.687 335 3 0.380 2.634 269 3 0.383 2.544 343

poly4a 4 0.382 3.521 682 4 0.385 3.481 581 4 0.384 3.500 511 4 0.382 3.521 538 4 0.377 3.588 666

poly5a 5 0.405 4.299 911 5 0.398 4.348 812 5 0.400 4.402 807 5 0.405 4.299 888 5 0.404 4.273 869

poly2b 2 0.442 1.898 217 2 0.445 1.917 239 2 0.439 1.925 236 2 0.442 1.898 223 2 0.448 1.873 180

poly3b 3 0.396 2.590 255 3 0.408 2.472 319 3 0.395 2.565 293 3 0.396 2.590 260 3 0.403 2.651 285

poly4b 4 0.389 3.265 467 4 0.398 3.269 682 4 0.400 3.231 593 4 0.389 3.255 474 4 0.393 3.270 689

poly5b 4 0.472 3.754 1010 4 0.464 3.828 1157 4 0.467 3.853 938 4 0.472 3.754 949 4 0.468 3.860 1063

swimm 3 0.364 2.593 912 3 0.375 2.557 797 3 0.356 2.657 1045 3 0.364 2.593 772 3 0.364 2.613 797

Av. 2.783 0.398 2.386 291.478 2.783 0.398 2.395 312.609 2.783 0.398 2.396 284.478 2.783 0.398 2.381 264.739 2.826 0.391 2.413 306.957

23

Table 12: Results of the different constructive algorithms applied on each instance in Jotika

SCH BPGD FF PBP TPS

N F K T N F K T N F K T N F K T N F K T

jotika40 8 0.612 7.378 23 8 0.616 7.385 19 8 0.628 7.299 38 8 0.612 7.378 25 8 0.616 7.385 47

jotika50 10 0.620 9.327 41 10 0.636 9.191 28 10 0.602 9.526 55 10 0.641 9.191 48 10 0.630 9.209 63

jotika60 11 0.659 10.299 43 11 0.648 10.432 57 11 0.625 10.598 88 11 0.668 10.194 53 11 0.642 10.466 76

jotika70 12 0.709 11.358 78 12 0.689 11.653 132 12 0.689 11.748 71 12 0.695 11.536 81 12 0.687 11.635 127

han80 10 0.711 9.286 139 10 0.697 9.422 104 10 0.687 9.523 172 10 0.711 9.286 136 10 0.694 9.485 247

han100 16 0.722 15.496 161 16 0.719 15.462 131 17 0.659 16.158 132 16 0.732 15.325 195 16 0.710 15.648 210

han120 16 0.749 15.670 174 16 0.751 15.555 283 17 0.692 16.127 314 16 0.749 15.679 259 17 0.682 16.243 313

han150 22 0.780 21.520 372 24 0.666 23.222 552 23 0.726 22.162 366 22 0.778 21.526 385 23 0.708 23.000 778

Av. 13.125 0.695 12.542 128.88 13.375 0.678 12.79 163.25 13.500 0.664 12.892 154.5 13.125 0.698 12.514 147.75 13.375 0.671 12.884 232.625

Table 13: Local search on JP1 instances

PBP PBP-LS1 PBP-LS2 BKR

A 0.614 0.614 0.614 0.605

B 0.781 0.858 0.878 0.929

C 0.729 0.736 0.736 0.763

D 0.590 0.591 0.590 0.579

E 0.522 0.525 0.529 0.412

F 0.515 0.520 0.564 0.496

G 0.724 0.797 0.809 0.814

H 0.766 0.868 0.810 0.928

I 0.628 0.637 0.652 0.627

J 0.672 0.675 0.701 0.665

K 0.761 0.763 0.763 0.718

L 0.588 0.590 0.619 0.512

M 0.655 0.655 0.655 0.589

N 0.517 0.520 0.668 0.503

O 0.831 0.848 0.848 0.823

P 0.720 0.720 0.852 0.678

Q 0.956 0.965 0.965 1.000

R 0.767 0.767 0.767 0.771

Av. 0.685 0.703 0.723 0.690

Av.Time 52 129 161 50

Impv. 1.74% 3.80%

Table 14: Local search on JP2 instances .

PBP PBP-LS1 PBP-LS2

A 0.605 0.642 0.680

B 0.731 0.752 0.760

C 0.690 0.691 0.691

F 0.511 0.530 0.551

H 0.730 0.766 0.828

L 0.571 0.575 0.576

M 0.641 0.664 0.681

O 0.774 0.786 0.788

S 0.521 0.537 0.522

T 0.890 0.921 0.921

U 0.737 0.764 0.761

V 0.951 0.976 0.989

W 0.656 0.664 0.669

X 0.593 0.607 0.632

Y 0.720 0.725 0.726

Z 0.856 0.858 0.893

Av. 0.699 0.716 0.729

Av. Time 41.669 136.163 123.344

Impv. 1.753 3.068

24

