
This is a repository copy of Emerging evidence for the modulation of exocytosis by 
signalling lipids.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/139201/

Version: Published Version

Article:

Garcia-Martinez, V., Gimenez-Molina, Y., Villanueva, J. et al. (3 more authors) (2018) 
Emerging evidence for the modulation of exocytosis by signalling lipids. FEBS Letters, 592
(21). pp. 3493-3503. ISSN 0014-5793 

https://doi.org/10.1002/1873-3468.13178

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


REVIEW ARTICLE

Emerging evidence for the modulation of exocytosis by

signalling lipids

Virginia Garcia-Martinez1, Yolanda Gimenez-Molina1, Jos�e Villanueva1, Frederic D. Darios2,

Bazbek Davletov3 and Luis M. Guti�errez1

1 Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Cient�ıficas-Universidad Miguel Hern�andez de Elche, Sant Joan

d’Alacant, Alicante, Spain

2 Inserm, U1127, CNRS, UMR 7225, Institut du Cerveau et de la Moelle �epini�ere, ICM, Sorbonne Universit�e, Paris, France

3 Department of Biomedical Sciences, University of Sheffield, UK

Correspondence

L. M. Guti�errez, Instituto de Neurociencias,

Universidad Miguel Hern�andez-CSIC, Sant

Joan d’Alacant, Alicante 03550, Spain

Fax: +34 965919561

Tel: +34 965919562

E-mail: luisguti@umh.es

(Received 27 April 2018, revised 1 June

2018, accepted 27 June 2018, available

online 10 July 2018)

doi:10.1002/1873-3468.13178

Edited by Wilhelm Just

Membrane fusion is a key event in exocytosis of neurotransmitters and hor-

mones stored in intracellular vesicles. In this process, soluble N-ethylmalei-

mide sensitive factor attachment protein receptor (SNARE) proteins are

essential components of the exocytotic molecular machinery, while lipids have

been seen traditionally as structural elements. However, the so-called sig-

nalling lipids, such as sphingosine and arachidonic acid, interact with

SNAREs and directly modulate the frequency and mode of fusion events.

Interestingly, recent work has proved that the sphingosine analogue FTY-720,

used in the treatment of multiple sclerosis, mimics the effects of signalling

lipids. In the present Review, we discuss recent investigations suggesting that

endogenous signalling lipids and synthetic analogues can modulate important

physiological aspects of secretion, such as quantal release, vesicle recruitment

into active sites, vesicle transport and even organelle fusion in the cytosol.

Therefore, these compounds are far from being merely structural components

of cellular membranes.
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The fusion of the vesicles containing neurotransmitters

and hormones with the plasma membrane to release

their content during the process of exocytosis is a key

event underlying the function of the neuronal and

endocrine systems. In essence, this is a multisequential

process involving the cytoskeletal-mediated transport

of vesicles [1,2], their docking and final release of neu-

rotransmitters through the interactions of soluble

N-ethylmaleimide sensitive factor attachment protein

receptor (SNARE) proteins and the lipids constituting

the vesicular and plasma membrane [3,4].

The lipids within the membranes were initially

assumed to play a passive role, but recent results

indicate that a class known as signalling lipids directly

modulate SNARE function, and may play important

roles in the physiology of neurosecretion [5–7].

Signalling lipids that modulate SNARE function

include arachidonic acid (AA) and sphingosine. AA is

generated from a variety of phospholipid molecules by

phospholipase-A2 or diacylglycerol lipase whereas sph-

ingosine is produced from sphingolipids. AA primarily

seems to target t-SNARE protein syntaxin-1 [8,9],

which is anchored to the plasma membrane, whereas

sphingosine interacts with synaptobrevin, which is the

complementary v-SNARE anchored to the vesicle.

Both AA and sphingosine seem to enhance exocytosis

Abbreviations

PUFAs, polyunsaturated fatty acids; SMase, sphingomyelinase; SNAP-25, synaptosomal-associated protein of 25 kDa; SNARE, soluble

N-ethylmaleimide sensitive factor attachment protein receptor.
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of both neurotransmitters and hormones by promoting

formation of SNARE complexes [10].

Interestingly, a structural analogue of sphingosine of

fungal origin, FTY-720, also known as Fingolimod,

has been approved for the oral treatment of multiple

sclerosis [11], one of the most frequent disorders of the

CNS. In this case, this substance is phosphorylated

and binds to sphingosine-1-phosphate receptors, caus-

ing lymphocyte egress and immunosuppression, there-

fore being effective for the palliation of this CNS

inflammatory syndrome [12,13]. Nevertheless, this

drug, as it happens with signalling lipids, also

enhances SNARE complex formation and promotes

the release of neurotransmitters in neuroendocrine cel-

lular models [14]. Here, we review the molecular mech-

anisms and the exocytotic steps regulated by signalling

lipids and related molecules affecting the secretory

activity of neuronal and neuroendocrine cells.

The traditional and new role of lipids
in exocytotic membrane fusion

Neurotransmitters and hormones are stored in special-

ized vesicles. The release of these active substances

requires the fusion of the membrane forming these

vesicles with the plasma membrane during exocytosis

[15–17]. The process initiates with the formation of a

structure called the fusion pore, formed with lipids

from the opposite membranes [6,18,19].

As the formation of the fusion pore requires the

active reorganization of lipids to overcome energy bar-

riers, the actual ‘proteocentric’ vision claimed catalytic

proteins as sculptors of the lipid bilayers, giving the

lipids a mere passive structural role. Since lipid bilay-

ers need to adopt curved shapes during membrane

fusion, either proteins or lipids could help in the spon-

taneous bending, therefore the shape of the lipids

forming the fusing leaflets have an important role in

the facilitation of exocytosis [20]. In this sense, conic

shape lipids with larger or smaller heads comparing

with its inner fatty acid chains will facilitate membrane

curvature and in consequence there is a large number

of evidences supporting this ‘shaping’ role [7,20–23],

especially for lysophospholipids regulating the secre-

tion in neuroendocrine cells (see Fig. 1) [24,25].

Lipids can additionally influence exocytosis by

aggregating into specific microdomains that recruit

proteins required for neurosecretion. In this sense, it is

well-established that phosphatidyl inositol 4,5-bipho-

sphate (PIP2) is a specific requirement for exocytosis

(Fig. 1) [26], being recruited in secretory sites by intra-

cellular calcium elevations during cell stimulation [27].

Today, these initial studies have been supported by

recent studies proving that PIP2 coordinates the

translocation of secretory vesicles to their docking sites

on the plasma membrane in a Cdc42-dependent man-

ner [28,29]. In that way, forms clusters that, in addi-

tion to nucleation of the formation of F-actin bundles,

also interact with SNARE proteins [30], and in conse-

quence act as a beacon for vesicle guidance to active

secretory sites (Fig. 1).

In addition, other membrane constituents, such as

cholesterol, are essential for maintaining the hetero-

geneities in the plasma membrane that accumulate

secretory proteins such as syntaxin-1 in well-defined

clusters within so called lipid rafts [31–35].

Finally, lipids are incorporated into secretory pro-

teins to modify them and affect in that way either the

location or the activity. This post-translation modifica-

tion consists frequently in an acylation by the incorpo-

ration of palmitate, a saturated 16-carbon fatty acid,

into cysteine residues [36], and the major target in neu-

roendocrine cells is the SNARE protein synaptosomal-

associated protein of 25 kDa (SNAP-25) [37–39].

Palmitoylation of SNAP-25 in four central residues

(Fig. 1)[38], is likely to enhance the clustering of

SNAP-25 in cholesterol and sphingomyelin rich lipid

rafts and in that way may be a cohesive factor in the

formation of exocytotic active sites [33,40,41]. The

exact role of SNAP-25 palmitoylation is unclear, since

some studies indicate that it is a major factor support-

ing the secretory activity of this protein transmitting

to the fusing membranes the proper forces generated

during SNARE complex assembly or zippering [42],

whilst others suggest that the palmitoylation serves a

more conventional role in membrane anchoring [37].

It is important to mention that SNAP-25 is not the

only protein relevant for exocytosis that is pamitoy-

lated, as synaptobrevin 2, present in the vesicular

membrane could be modified by palmitic acylation

during brain development, as this modification is only

found in adults and not in embryonic rats [43]. In

addition, synaptotagmin 1, an essential calcium sensor

[44], is palmitoylated in five residues near the trans-

membrane domain [38]. Finally, cystein string protein

(CSP), a molecular chaperone helping in protein fold-

ing [45], is heavily palmitoylated in 14 cystein residues

and it has been found to be important for the secretory

process in neuronal and endocrine models [46–48].

As could be derived from the multiple roles assumed

by lipids as mentioned above, their function in exocy-

tosis is far more complex than the deduced from being

the basic structural elements forming membranes, and

this is further evidenced with recent data on the direct

modulation of the secretory machinery by signalling

lipids.
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Signalling lipids, new players in the
regulation of exocytosis

In neuroendocrine cells SNAREs proteins are located

in the fluid mosaic of the plasma membrane composed

of a diversity of lipids including phospholipids, sphin-

golipids and cholesterol [49], and stabilized by a

matrix of cytoskeletal elements forming the dynamic

cytoarchitecture of active sites [50,51]. In this environ-

ment, the activity of phospholipases could release

either saturated and also polyunsaturated fatty acids

(PUFAs) that normally are present in the sn-2 position

[52], and often, the released PUFAs could act as a

intracellular messengers regulating a diversity of cellu-

lar processes including exocytosis [25,53–57]. Specifi-

cally, phospholipase type A2 (PLA2) acting in the sn-2

site release lysophospholipids and free unsaturated

fatty acids, and the latter ones can diffuse into cytosol

where they interact with their targets of action, likely

in hydrophobic domains [58,59]. Certainly, different

elements of the molecular machinery of exocytosis are

among these targets, since it has been demonstrated

that inhibitors of PLA2 influence exocytosis in neu-

roendocrine cells [57,60,61], and addition of snake

PLA2 neurotoxins alter secretion in neuronal [62–65]

and chromaffin cells [66,67] via a variety of mecha-

nisms. In the latter secretory model, it is quite illustra-

tive that other phospholipases such as phospholipase

C (PLC) and phospholipase D (PLD) have been impli-

cated in catecholamine secretion [68–71], in this cases

the activation of PKC by diacylglycerol mediates the

PLC pathway [70,72], whereas the generation of phos-

phatidic acid seems to be associated with PLD sig-

nalling driving the enhancement of exocytosis

[68,69,71,73]. In all these cases the generation of a sig-

nalling lipid has been demonstrated to be essential to

Fig. 1. Lipids regulate exocytosis by different mechanisms. This figure presents different ways used by lipids to regulate vesicle fusion

during exocytosis. Lipids, such as lysophosphatidic acid present a conic shape that facilitate membrane curvature during exocytosis

influencing this process in consequence (represented in green). In addition lipids could be incorporated into the proteins constituting the

molecular machinery to for example stabilize membrane attachments as it happens with palmitoylation of SNAP-25, synaptobrevin,

synaptotagmin, CSP and Rab proteins (in blue in the figure). Other lipids such PIP2 could be acting as molecular beacons for the guidance

of the vesicles to secretory active sites (in yellow). Finally, signalling lipids could interact directly with SNARE proteins and promote vesicle

fusion. This is the case of AA influencing syntaxin 1 activity or sphingosine facilitating an open conformation of synaptobrevin II and

favouring SNARE complex formation (in red in the figure).
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influence different elements of the secretory pathway.

From now on we will focus on the action of these

compounds over the molecular constituents of the exo-

cytotic molecular machinery.

Signalling lipids interact directly with
the fusion machinery

After the release of signalling lipids such AA or sphin-

gosine from the lipid bilayer, these lipids could diffuse

and interact with SNARE proteins and therefore regu-

late the activity of these fusogenic proteins. The first

report of a direct interaction of signalling lipids with

SNAREs was reported in 2005 when the direct admin-

istration of AA or the treatment with PLA2s was

demonstrated to enhance the formation of the SNARE

complex in synaptic membrane preparations [9]. One

of the most remarkable characteristic of this potentia-

tion is that AA could interact with syntaxin-1 even in

the presence of Munc-18 which stabilizes a closed con-

formation of syntaxin-1 (Fig. 1) [8,9], this may suggest

that this lipid could penetrate into the hydrophobic

zones of syntaxin-1 without altering the native dimers

of syntaxin-1/Munc-18. This may be a basic principle

of AA activation of syntaxins since it was also

reported to occur with the syntaxin-3 isoform [8].

The importance of this mechanism for the regulation

of syntaxins was later stressed when we found that the

protein a-synuclein, implicated in the phatogenesis of

Parkinson’s disease, was found to sequester AA pre-

venting the enhancement of SNARE complex forma-

tion caused by this lipid [74], thus providing new

insights into the alteration of neurotransmission by the

pathogenic a-synuclein.

More recently, in screening the ability of a diversity

of lipids in modulating the formation of SNARE com-

plexes, we found that only sphingosine and some

derivatives were able to activate synaptobrevin 2 to

engage SNAP-25-syntaxin heterodimers acting in the

interphase between vesicular lipids and synaptobrevin

(Fig. 1) [10]. This effect was dose-dependent with a

EC50 ~ 10 lM and resulted in the enhancement of the

exocytosis in neuronal and neuroendocrine cellular

models. Furthermore, in neurons from synaptobrevin

2 knockout mice no modulation of exocytosis by sph-

ingosine was observed, thus stressing the implication

of this vesicular SNARE in mediating the action of

sphingosine activating neurosecretion [10]. Analysis of

sphingosine-related compounds revealed two critical

features of sphingosine to promote SNARE complex

formation and enhance exocytosis: the length of the

carbon chain and the positive charge of sphingosine.

Furthermore, L-sphingosine was as active as the

D-sphingosine suggesting that it may act by perturbing

the local environment of synaptobrevin [10].

In order to demonstrate that the endogenous sphin-

gosine production could mimic these results, the activ-

ity of external sphingomyelinases (SMase) and

intracellular ceramidases releasing sphingosine into the

cytosol in isolated nerve terminals [10], or cultured

chromaffin cells [54,75] was tested on potentiation of

exocytosis. The obtained results support this mecha-

nism and further implicate synaptobrevin 2 since the

treatment of the cells with Botulinum Neurotoxin type

D, cleaving vesicular synaptobrevin, prevented the

enhancement of neurosecretion due to the production

of sphingosine and derivatives.

It is important to note, however, that Camoletto

and co-workers [76] found that sphingosine may act

on syntaxin-1 facilitating the engagement with Munc-

18. Thus, this mechanism will decrease the number of

docked vesicles and increase paired-pulse facilitation in

neurons.

In conclusion, there is substantial evidence for a

direct interaction of signalling lipids with a variety of

SNAREs and further work is needed to establish the

precise molecular mechanisms involved in such interac-

tions associated with the regulation of the secretory

activity of neuronal and neuroendocrine cells.

Signalling lipids increase the
frequency and quantal release of
neurotransmitters

How do signalling lipids affect the exocytotic process?.

Well, if these lipid messengers potentiate the formation

of SNARE complexes it is predicted that they will

enhance secretion, and in the case of sphingosine, this

has been demonstrated in melanotrophs, chromaffin

cells, isolated nerve terminals and hippocampal neurons

[10]. Since, exocytosis is a multistep process involving

the translocation of vesicles to the plasma membrane,

the ‘priming’ or maturation of the vesicles to be in a

‘ready-releasable’ state, and the final fusion of the mem-

branes to release the vesicular content [15,17,77–79], it

is important to define the different stages of this process

altered by signalling lipids and this required the use of

biophysical techniques with the capability of analysing

fusion at the level of individual vesicles.

In 2013, two groups used such techniques to study

the effect of sphingosine over the exocytosis in differ-

ent cellular systems. Zorec’s group from Ljubljana

University applied the capacitance technique [80,81] to

resolve unitary exocytotic events in pituitary lac-

trotrophs finding that sphingosine increases the fre-

quency of the fusion of small vesicles and also larger
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dense vesicles [82]. They also observed that sphin-

gosine promoted the full fusion of large vesicles

whereas smaller vesicles tent to fuse in the ‘kiss and

run’ mode [83], only partially releasing their vesicular

content, leading to the conclusion that the vesicle size

was an important factor favouring the shift of fusion

mode caused by sphingosine.

Simultaneously, our group at the Institute of Neuro-

sciences of Alicante performed experiments in adreno-

medullary chromaffin cells, using the amperometry

technique [84] to detect the release of catecholamines

from individual fusion events by their oxidation at the

tip of a carbon fibre [54]. In our study, sphingosine and

derivatives were produced by SMase treatment of the

cells, and resulted in the increase of the amount of cate-

cholamines released in individual fusions with detection

of changes in the kinetics of the process suggesting

changes in the mode of fusion of the vesicles. In addi-

tion, AA was also employed to show a 2–3 fold increase

in the amount of catecholamines release per individual

event, again implying that in the control situation and

with chromaffin cells stimulated by depolarization, the

release is suboptimal (kiss and run mode) and that sig-

nalling lipids promoted the full granular fusion.

Later on, the whole cell and on-cell capacitance

techniques were used to study if sphingomyeline

derivatives affect the release of different types of vesi-

cles in chromaffin cells [75], and the results demon-

strated an increase in the frequency of the release of

small vesicles as well as large dense granules in agree-

ment with the results obtained in lactotrophs.

In conclusion, the experiments performed with tech-

niques allowing the high temporal resolution of secre-

tory events in neuroendocrine cells demonstrated that

signalling lipids increase the frequency of fusion of

clear small vesicles as well as large dense granules and

that these lipids are able to favour a change in the

mode of exocytosis from the transient fusion pore

opening characteristic of the ‘kiss and run’ mode to

the full extent fusion collapsing the vesicle membrane.

FTY-720, an analogue of sphingosine
revealed multiple possible targets for
signalling lipids derivatives

The sphingolipid signalling pathway is important for

the regulation of multiple physiological processes in

the brain [85–89], including neurotransmission [52,90–92],

and for the pathologies associated with neuronal disor-

ders [88,93–95]. Therefore, molecules designed to mimic

these compounds could interfere with the normal and

pathological neuronal pathways and be useful as

potential pharmacological tools. This is the case with

FTY-720 also known as Fingolimod, an analogue of

sphingosine that has been used extensively as an

immunosuppressant agent [96], and moreover, it has

been recently approved for treatment of relapsing remit-

ting multiple sclerosis [11,97]. FTY-720 crosses the

blood brain barrier [98], and like sphingosine is phos-

phorylated, allowing it to interact with the receptors of

sphingosine-1P mediating the egression of lymphocytes

and causing immunosuppression (Fig. 2) [99].

Very recently it was demonstrated that FTY-720

readily imitates sphingosine in its ability to interact

with synaptobrevin promoting SNARE complex for-

mation and increasing exocytosis from neuronal and

neuroendocrine cellular systems [14]. This drug at con-

centrations around 10–20 lM (very similar to the sph-

ingosine range), was able to enhance the frequency of

glutamate release from rat synaptosomes, secretion

from melanotrophs and chromaffin cells, and the neu-

rotransmission from cultured rat hippocampal neurons

(Fig. 2). In addition, FTY-720, also shares with sphin-

gosine the modulation of the mode of exocytotic

fusion, as it augments the amount of neurotransmitter

release per individual fusion event [14].

Nevertheless, FTY-720 could be having a complex

action on secretion, as it has been found to inhibit the

release of cargo from different types of vesicles in cul-

tured rat astrocytes due to a decrease in vesicle mobility

[100]. Both sphingosine and FTY-720, caused an

impaired access of the vesicles to releasable sites, an effect

that has been associated with an alteration of calcium

dynamics by signalling lipids in this cellular system [101].

The results from astrocytes are in apparent contra-

diction with those reported in neuroendocrine systems,

nevertheless, we have found recently that in chromaffin

cells FTY-720 has a dual effect on catecholamine

release. In this neuroendocrine model, incubation with

FTY-720, increases the frequency of vesicle fusions

during the first round of cell stimulation by depolar-

ization but decreases the amount of vesicles recruited

in subsequent stimulations, (V. Garcia-Martinez, J.

Villanueva, Y. Gimenez-Molina & L. M. Guti�errez,

unpublished results). Furthermore, by using FRET, we

have observed that FTY-720 interacts at the molecular

level with SNARE clusters in chromaffin cells as was

previously described for sphingosine and AA [54]. In

addition, FTY720 could also interact with F-actin gov-

erning the motion of the vesicles in the close proximity

of secretory sites [102,103]. Thus, FTY-720 seems to

influence secretion through interaction with several cel-

lular targets, and remarkably we have found recently

by using electron microscopy that this compound also

promotes the homotypic fusion of vesicles and the het-

erotypic fusion of vesicles and mitochondria in the
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cytosol of chromaffin cells (Y. Gimenez-Molina, V.

Garcia-Martinez, J. Villanueva, B. Davletov & L. M.

Guti�errez, unpublished results, Fig. 2), these intriguing

findings may suggest that the characterization of the

cellular targets of FTY-720 is an open research subject

requiring further experimentation.

Conclusions and perspectives

In conclusion, our understanding of the role of lipids

in the process of the release of neurotransmitters and

hormones by the exocytotic fusion of the vesicular and

plasma membranes has evolved drastically in the last

Fig. 2. Targets of the sphingomimetic drug FTY-720. The analogue of sphingosine FTY-720 was first characterized as an immunosuppressor

drug when in its phosphorylated form binds to sphingosine 1-P receptors causing lymphocyte egress (A). This drug has been proved to

mimic sphingosine activating synaptobrevin II and increasing the formation of the SNARE complex leading to the enhancement of

neurosecretion (B). In addition, FTY-720 has been shown to inhibit the motion of the vesicles in astrocytes and chromaffin cells interacting

with the F-actin cytoskeleton (C). Finally, and very recently, we have observed that FTY-720 could induce the homotypic fusion of vesicles

and the heterotypic fusion of mitochondria with vesicles in the chromaffin cell cytosol (D, mixed organelles product of vesicle-mitochondria

fusion).
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20 years from being the mere structural components of

these membranes to a more active and direct function

in modulation of the proteins constituting the molecu-

lar machinery of membrane fusion. Today, it is well-

accepted that in addition to this structural role, certain

lipids such lysophospholipids could be helping to

adopt the membrane curvature favouring membrane

fusion [24,25], lipids such PIP2 are produced and

transported to the active sites to act as a molecular

beacons attracting vesicle movement towards these

specific sites for preferential fusion [30], and proteins

are modified by addition of palmitate chains to sup-

port membrane anchoring and stabilization [37].

Moreover, lipids such AA and sphingosine, pro-

duced by the action of phospholipases and diffusing

into the cytosol acting as signalling lipids have been

shown to interact with SNARE proteins and activate

the formation of the fusogenic SNARE complex there-

fore facilitating neurotransmission in neuronal and

neuroendocrine cells [8–10]. Interestingly, these lipids

modulate not only the frequency of vesicle fusion but

also the fusion pore behaviour promoting the full

fusion mode over the partial release by the ‘kiss and

run’ mode [54,82], thereby suggesting that these sig-

nalling lipids could be fine-tuning the amount of neu-

rotransmitter release per secretory event to adapt to

specific functional requirements.

The importance of these signalling lipids was stressed

when FTY-720 (Fingolimod), a structural analogue of

sphingosine was approved as the first drug for oral

treatment of relapsing multiple sclerosis [11]. This ther-

apeutic use is based on the immunosupression proper-

ties of the phosphorylated form of FTY-720 binding to

sphingosine 1-P receptors and supressing lymphocyte

egress [96]. In recent years, FTY-720 has been found to

affect a plethora of physiological processes including

neuronal gene expression, axonal growth, and regener-

ation [104], suggesting that this drug may influence a

variety of aspects of the physiology of neurons. There-

fore, the finding that FTY-720 mimics the properties of

signalling lipids towards the activation of SNAREs

and the parallel potentiation of exocytosis was funda-

mental to understand the possible mechanisms underly-

ing the role of FTY-720 in neuronal function.

The results obtained with FTY-720 may indicate

that signalling lipids and related drugs could be acting

on multiple targets involved in different cellular and

pathological processes explaining why this compound

stimulates neuronal function and regeneration [104],

and benefits neuroprotection in murine disease models

[105], ischaemia [106,107], excitotoxicity [108], and can

even improve the recovery of memory and learning in

neurological disorders [109–112].

In summary, the study of the molecular mechanisms

associated with the physiological regulation of neu-

rosecretion by signalling lipids promises not only the

understanding of basic mechanisms governing the

secretory activity in neuronal and neuroendocrine cells

but also the possible design of new therapeutic agents

against neurological disorders.
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