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We study the vibrational modes of Skyrmions with baryon numbers one through eight in the standard
Skyrme model. The vibrational modes are found in the harmonic approximation around the classical soliton
solution and the real parts of the frequencies of the modes are extracted. We further classify the vibrational
modes into representations of the symmetries possessed by the Skyrmion solutions. We find that there are
approximately 7B low-lying modes for a Skyrmion with baryon number B, in addition to an infinite
continuum of scattering modes. This result suggests that the instanton moduli space, which is 8B-
dimensional, does not accurately describe the deformation space of Skyrmions as previously conjectured.
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I. INTRODUCTION

In the Skyrme model [1], nuclei are described as topo-
logical solitons known as Skyrmions. The Skyrmions are
classical energy minimizers of a nonlinear field theory and
are labeled by a topologically conserved integer, B, which is
identified with the baryon number. In nuclear physics this is
called the atomic mass number and is equal to the number of
nucleons.
To make contact with nuclear physics, one must quantize

the Skyrmions. Ideally, all possible field configura-
tions should be included in the quantization scheme.
Unfortunately this is too difficult and instead one must
truncate the configuration space to make the calculation
tractable. This can also be thought of as truncating the
degrees of freedom (d.o.f.) of the Skyrmions themselves.
The simplest and most widely applied truncation is to only
include the zero modes, those transformations which leave
the Skyrmion’s energy unchanged: translations, rotations
and isorotations. This procedure has some successes, such
as the reproduction of the energy spectra and static proper-
ties of some small-B nuclei [2,3]. However, since these
d.o.f. do not allow the Skyrmion to break up, the formalism
cannot be used to study several important problems such as
nuclear fission, binding energies and scattering processes.
A first step in studying these problems is to understand the

normal mode spectra of the Skyrmions. One can then
understand how the Skyrmions deform and break apart
classically. We call the space of deformed Skyrme con-
figurations the deformation space. Including some of these
additional d.o.f. has led to successes in describing the
Deuteron [4], Lithium-7 [5], and Oxygen-16 [6] nuclei.
Basic questions about the normal mode spectra are still

unanswered. For instance, it is unclear how many normal
modes each Skyrmion has. Various authors have theorized
that a baryon number B Skyrmion has 6Bþ 1 [7], 8B − 4
[8] and 8B − 1 [9] modes (including the nine zero modes)
based on numerical results, the rational map approximation
and instanton ideas respectively. In this paper, we answer
this question by numerically generating the normal modes
of the B ¼ 1–8 Skyrmions. We find that the question is ill-
posed and that low lying quasinormal modes should also be
included in the counting. Once these are accounted for, we
find that there are approximately 7B modes, rejecting all
previous conjectures. The result can be understood as
follows: as well as its six zero modes, translations and
rotations, a single Skyrmion can also increase and decrease
its size radially. This is known as the breathing mode.
The 7B-dimensional deformation space of a B-Skyrmion
includes enough d.o.f. for its constituent Skyrmions to take
advantage of all their seven modes.
The paper is organized as follows. We carefully describe

the spectral problem and how we solve it in Sec. II. The
overall results and a list of modes can be found in Sec. III,
where we also discuss several interesting individual modes.
We have generated 266 normal and quasi-normal modes
and each may be important for certain nuclear processes.
Section IV contains our conclusions. To keep the paper
readable, we have relegated technical details about the
symmetries of the modes to Appendix A. A full list of the
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266 modes, accompanied by descriptions, can be found in
Appendix B. These are also available online accompanied
by animations of each mode at http://www1.maths.leeds.ac
.uk/pure/geometry/SkyrmionVibrations/.

II. PROBLEM AND METHOD

The Skyrme Lagrangian is usually written in terms
of an SUð2Þ-valued field, Uðx; tÞ. For the numerical setup
it is more convenient to write the field in terms of a
4-component nonlinear sigma-model field Φ ¼ ðΦ0;ΦÞ
such that

U ¼ Φ0 þ iτ ·Φ; ð2:1Þ

where τ are the Pauli matrices and the fields satisfy

Φ2
0 þΦ ·Φ ¼ 1; ð2:2Þ

so that U ∈ SUð2Þ. In this notation, the standard Skyrme
Lagrangian in natural units is

L ¼ ∂μΦ · ∂μΦþ 1

2
ð∂μΦ · ∂νΦÞð∂μΦ · ∂νΦÞ

−
1

2
ð∂μΦ · ∂μΦÞ2 −m2ð1 −Φ0Þ; ð2:3Þ

where m is the dimensionless pion mass which we fix as
m ¼ 1. One may modify the Lagrangian in a number of
ways [10–17]. For static, finite energy configurations the
potential term ensures that Φ ¼ ð1; 0; 0; 0Þ at spatial
infinity. This gives a one-point compactification of space
and means that Φ is a map from R3 ∪ f∞g ≅ S3 to
SUð2Þ ≅ S3. Maps between three-spheres have an associ-
ated topological degree, which we denote B. The degree is
conserved and so Skyrme configurations with different
values of B lie in disjoint sectors of the total configuration
space. In each sector there is a minimal energy configu-
ration which we call the Skyrmion with charge B.

To visualize a Skyrme configuration we plot a contour of
constant energy density. This is then colored to represent
the direction of the pion field at that point on the energy
contour. The Skyrme field is colored white/black when
π̂3 ¼ �1 and red, green and blue when π̂1 þ iπ̂2 ¼ expð0Þ,
expð2iπ=3Þ and expð4iπ=3Þ respectively, where π̂≡ π=jπj
is the normalized pion field. The small B Skyrmions are
well known and have interesting symmetry groups. We plot
the B ¼ 1–8 Skyrmions in Fig. 1. Modifications to the
Skyrme Lagrangian can alter the symmetries of the
Skyrmions. Note that there are three B ¼ 8 solutions.
One has D6d symmetry which we label B ¼ 8h. Another
is constructed from two B ¼ 4 Skyrmions which have been
rotated relative to each other. This is known as the twisted
B ¼ 8 solution and so we label it B ¼ 8t. Finally, there is
one saddle point solution constructed from B ¼ 4 clusters
which have not been rotated relative to each other, known
as the untwisted solution and labeled B ¼ 8u. The three
solutions are almost degenerate in their classical energies.
We denote a Skyrmion solution by ϕ and study small

deformations of it. To do so, we consider fields of the form

Φϵðx; tÞ ¼ ϕðxÞ þ ϵðxÞeiωt; ð2:4Þ

where ϵðxÞ is a normal mode with frequencyω. We take ϵ to
be small and, to ensure that Φϵ remains in SUð2Þ, demand
that

ϕ · ϵ ¼ 0: ð2:5Þ

Inserting Eq. (2.4) into the full Lagrangian (2.3) and
ignoring higher-order terms in ϵ, we find a linearized
Lagrangian for ϵ. The corresponding Euler-Lagrange equa-
tion is

∂iðVab;ij∂jϵbÞ þ λϵa ¼ ω2Iabϵb; ð2:6Þ

where

FIG. 1. The small-B Skyrmions and their symmetry groups, to scale.
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Vab;ij ¼ δab∂iϕc∂jϕc − δijδab∂kϕc∂kϕc þ ∂jϕa∂iϕb

þ δij∂kϕa∂kϕb − 2∂iϕa∂jϕb − δabδij;

Iab ¼ δab þ δab∂iϕc∂iϕc − ∂iϕa∂iϕb; ð2:7Þ

and λ is the Lagrange multiplier of the solution

λ ¼ ϕ · ðð∂iϕ · ∂i∂jϕ− ∂jϕ · ∂i∂iϕÞ∂jϕ

þ ð1þ ∂jϕ · ∂jϕÞ∂i∂iϕ− ð∂iϕ · ∂jϕÞ∂i∂jϕÞÞ þm2ϕ0;

ð2:8Þ

which enforces the constraint (2.5) in theory. However, due
to small numerical errors, the constraint does not hold
exactly and these errors are compounded with time. Hence,
we manually project the vibration into the plane (2.2) every
few time steps. Equation (2.6) is the linearized equation of
motion for the normal modes of the classical Skyrmion ϕ.
The equations are in Sturm-Liouville form and thus there
exists an eigenfunction basis, also known as the mode
space, which we denote fϵðpÞg. The basis can be made
orthogonal with respect to the weight function so that

Z
ϵðpÞa IabðϕÞϵðqÞb d3x ¼ δpq: ð2:9Þ

The local deformation space is generated by all configu-
rations Φ ¼ ϕþP

nanϵ
ðnÞ for real coefficients fang.

There are three types of mode. Their difference can be
understood by examining the equations of motion far from
the Skyrmion. Here, the Skyrme field looks like the vacuum
state plus a Yukawa multipole and thus Eq. (2.6) can be
found asymptotically. It becomes

ð−∇2 þm2Þϵ ¼ ω2ϵ; ð2:10Þ

which has solution exp ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
k · xÞ for any constant

unit vector k. Real bounded solutions only exist for ω < m.
Since a normal mode must decay asymptotically they only
exist for ω < m. There is then an infinite set of scattering
modes with ω > m. Any numerical scheme will naturally
discretize this continuous spectrum. In addition, there are
quasinormal modes (QNMs) which have complex frequen-
cies. At a fixed time they are non-normalizable, but they do
decay dynamically. QNMs are well understood in black
holes, where they are responsible for long-time sphericity
of solutions, and quantum mechanics where they describe
resonant states. See Ref. [18] for a review or Ref. [19] for
an example of their existence in a simple soliton model.
Since we are in a finite box the spatial blow up does not
cause a problem. Our method only allows us to extract the
real part of the frequencies of the QNMs. This paper and its
results would be improved by using a method which is
tailored to find QNMs. Note that, due to the mass term in
Eq. (2.10), a QNM may become a normal mode as m is

increased. This has been shown to happen in the case of the
B ¼ 1 Skyrmion [20,21]. We find repeated evidence that
this also occurs for B > 1. Hence varying m can (and does)
alter the number of normal modes which exist. The question
“howmany normal modes does a Skyrmion have?” does not
have a unique answer. Instead we will ask “how many low
lying normal and quasinormal modes does a Skyrmion
have?” This does appear to have an answer. To do the
calculation we must apply a cut-off frequency in our
search for modes. We choose ω ¼ 1.5m ¼ 1.5. An obvious
extension to this work would be to find the effect of
changing this cut-off. We call the combined set of normal
modes and QNMs vibrational modes.
From the asymptotic analysis, it appears that no normal

modes exist if m ¼ 0. In fact this is an artificial conse-
quence of linearizing the nonlinear Skyrme theory. The
linearization (2.6) misses the fact that Skyrmions may
break up and that the resulting clusters can move arbitrarily
far apart. For example, the B ¼ 2 Skyrmion can break into
two B ¼ 1’s which may be infinitely separated. The
Eq. (2.6) is focused around the classical toroidal solution
and thus cannot describe this mode in full, only those
configurations near the torus. If one changed into different
coordinates which can accommodate this motion, such as
those based on the instanton moduli space [4], the break up
mode could be studied in more detail. Whether that break-
up corresponds to a normal mode or a QNMwill depend on
the value of the asymptotic Skyrmion configurations rather
than the naive asymptotics given by Eq. (2.10).
To find the vibrational modes we follow a procedure

outlined in Ref. [22,23]. We generate an initial random
perturbation ϵðxÞ at time τ ¼ 0 and evolve it using

∂τϵðx; τÞ ¼ −I−1abð∂iðVbc;ij∂jϵcÞ þ λϵbÞ: ð2:11Þ

This has solution

ϵðx; τÞ ¼
X
n

bne−ω
2
nτϵðnÞ; ð2:12Þ

where fϵðnÞg is the set of normal modes and bn are some
constant coefficients. After a long time, the lowest-
frequency mode dominates the solution and we extract
it. Having found this mode we can project it out of the
initial perturbation (essentially setting b1 ¼ 0) and repeat
the process. Now the solution does not contain any of the
lowest frequency mode and after a long time the second-
lowest mode dominates. We can then extract this mode and
project it (as well as the lowest mode) out of the initial
perturbation and repeat the process again. This is repeated
until we have found all modes up to the cut off ω ¼ 1.5. To
improve the method we take advantage of the symmetries
of the Skyrmions. Each mode transforms as an irreducible
representation (irrep) of the Skyrmion’s symmetry group
and we treat each irrep individually by applying symmetry
operators to the perturbations. More details, including lists
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of the irreps, can be found in Appendix A. We display the
dimension of the irrep as a prefixed superscript. Hence the
two-dimensional irrep E is written 2E.
The QNMs pose a greater challenge than the normal

modes as they are significantly more difficult to identify
and extract. This is because they lie in the same frequency
range as, and hence mix with, the scattering modes. We use
a variety of techniques to deal with this problem. Each
numerical run was repeated on three different box sizes
since QNMs are less sensitive to this change compared with
scattering states [24]. We also estimate the scattering modes
by solutions of the asymptotic equation (2.10). This is a
surprisingly good approximation when there are no QNMs
present in the spectrum but the spectrum is greatly altered
when one is present. The theoretical spectrum and the
numerically generated spectrum for the B ¼ 8t Skyrmion,
for two different irreps, is plotted in Fig. 2. The first irrep,
1B2g, does not contain a QNMwhile the second, 1B1g, does.
In the figure, the theoretical scattering modes match the
numerical results very well for 1B2g but the matching fails
entirely for the 1B1g modes. Spectra like this give indirect
evidence of the existence of a QNM. One can also compare
the structure of the approximate scattering modes with the
numerical modes to confirm an identification. If these
techniques do not give clear results, we then repeat the
calculation at a higher value ofm. For a large enoughm the
QNM becomes normal and one can then confirm that it is
indeed a QNM rather than a scattering mode.
In total, we investigated and classified 655 modes, 266 of

which were identified as vibrational modes and 86 as zero
modes. All numerical simulations were done on a cuboid
with periodic boundary conditions using fourth-order spa-
tial derivatives and a lattice spacing of 0.15 Skyrme units.

III. RESULTS

We now summarize the results. Including zero modes,
we find exactly 7B vibrational modes for the B ¼ 1–4
Skyrmions. We have included one mode (a 1A2 mode for
the B ¼ 3 Skyrmion) which lies slightly above ω ¼ 1.5.

For the B ¼ 5–8 Skyrmions we find almost 7B modes,
though never reach that number. The exact numbers can be
found in Table I. In theory there are infinitely many QNMs
of higher and higher frequency and there is numerical
evidence for this in the B ¼ 1 sector [21]. Hence there is
not necessarily a definite answer to how many modes a
baryon number B Skyrmion has. We believe Table I has
enough evidence to say that there are 7B low-lying modes
and we conjecture that the missing modes lie somewhere
beyond, but nearby, ω ¼ 1.5. Previous work has suggested
that the deformation space has dimension 6Bþ 1. We can
dismiss this due to the newly discovered modes, previously
missed in Refs. [7,25], for the B ¼ 2 and 4 Skyrmions. An
instanton-inspired approach suggests that 8B − 1 modes
should be found [9]. We never find more than 7B modes
and hence are doubtful there are 8B low-lying modes. Of
course, since there are infinitely many modes, if one
continues to search they will eventually find 8B modes.
We conjecture that all of these will have significantly higher
frequency than the modes we have found. Houghton
showed that the instanton approach predicts a 3T1 mode
for the B ¼ 3 Skyrmion [26]. Despite some effort search-
ing, we have not found such a mode and instead have found
a 1A2 mode which is not predicted by this instanton
approach. This suggests that the basic instanton approxi-
mation does not accurately model the local deformation
space of Skyrmions.
At the frequency we search at, a B ¼ 1 Skyrmion has

seven d.o.f.: three translations, three rotations and a single
breathing mode. Hence it is natural that a B Skyrmion,
being made from B individual Skyrmions, has 7B d.o.f. If
we increased our cut-off so that the B ¼ 1 could deform
further (first through its dipole breathing mode of dimen-
sion three), the other deformation spaces may be enlarged
proportionally.
Generically the spectra split into four distinct parts,

though the parts overlap in some highly symmetric cases.
From low to high, the spectra begin with the zero-frequency
modes: the translations, rotations, and isorotations. Then
there are the “monopole modes.” These can be described as
the Skyrmion breaking into clusters where the individual
clusters retain their orientation and size. There is a one-to-
one mapping between these configuration spaces and the
moduli space of monopoles, both of which can be described
using rational maps [27,28]. There are then breathing
modes where either different parts of the Skyrmion, or
the entire Skyrmion, inflate and deflate. Finally, there are
modes where different parts of the Skyrmion isorotate

FIG. 2. The theoretical spectrum, using the asymptotic scattering states as an approximation (bottom), against the numerically
generated spectrum (top) for the 1B2g and 1B1g irreps of the B ¼ 8t Skyrmion. The theory works well for the 1B2g irrep but fails for the
1B1g irrep, providing initial evidence for the existence of a QNM which transforms as 1B1g.

TABLE I. The number N of vibrational modes (including zero
modes) found for each Skyrmion with ω < 1.5. For the B ¼ 3
Skyrmion, a single mode at ω ¼ 1.59 is also included.

B 1 2 3 4 5 6 7 8h 8t 8u

N 7 14 21� 28 33 41 47 53 54 54
7B − N 0 0 0 0 2 1 2 3 2 2
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in different directions. These tend to have very high
frequency.
We list all of the vibrational modes discovered

in Table II alongside their corresponding freque-
ncies and the irrep which they transform as. The different
irreps for each Skyrmion are discussed and listed in
Appendix A. A description of each mode can be found
in Appendix B and animations of each mode can be viewed
online at http://www1.maths.leeds.ac.uk/pure/geometry/
SkyrmionVibrations/. Note that the normal modes of all
the Skyrmions, apart from the B ¼ 8u Skyrmion, are real
and positive. Hence, the Skyrmions are all locally stable
apart from the B ¼ 8u Skyrmion, which decays into the
B ¼ 8t Skyrmion through its single imaginary-valuedmode.

To describe excited states of nuclei one could promote
the classical vibrations to quantum excitations in a har-
monic approximation. Taking commonly used energy and
length scales the excitations have energies much higher
than those experimentally seen. This is related to another
long-standing problem in the Skyrme model: that its
classical binding energies appear too large. A modified
model with low classical binding energies (such as those
developed in Refs. [10–17]) will also have lower vibra-
tional frequencies and hence more realistic quantum states.
In addition, and especially in the lightly bound models, the
potential energy may be significantly anharmonic—a
difficult feature to account for. However, a recently
developed quantization method based on quantum graphs

TABLE II. A list of the frequencies and irreps of the numerically generated low lying normal and quasinormal modes. The different
irreps are explained in Appendix A while a list of modes including descriptions can be found in Appendix B.

B Vibrational modes in d dimensional irrep I with frequency ω

1 dI 1A1

ω 1.20
2 dI 2E2g

2E1u
1A1g

1A2u

ω 0.37 0.99 1.03 1.08
3 dI 3T2

2E 3T2
1A1

2E 1A2

ω 0.43 0.56 0.91 0.94 1.01 1.59
4 dI 2Eg

3T2g
1A2u

3T2u
1A1g

3T1u
3T2g

3T2u

ω 0.46 0.48 0.52 0.62 0.87 0.87 0.94 1.14
5 dI 2E 1B1

1A1
1B2

2E 1B2
2E 1A1

1B1
1A2

2E 1A1

ω 0.10 0.23 0.42 0.43 0.45 0.49 0.51 0.57 0.61 0.77 0.80 0.81
1B1

1B2
1B2

2E 1A1
1A2

1A1

0.84 0.89 0.95 0.95 1.00 1.04 1.09
6 dI 1A1

1B1
2E1

2E3
2E2

2E2
1B2

2E1
2E2

1A1
2E1

2E3

ω 0.25 0.28 0.33 0.40 0.41 0.46 0.47 0.50 0.52 0.76 0.77 0.80
1B2

2E2
1A1

2E3
2E1

2E2
2E3

0.87 0.90 0.95 0.95 1.01 1.08 1.11
7 dI 5Hg

5Hu
2T2u

4Gu
1A1g

3T1u
4Gg

5Hg
4Gu

4Gg

ω 0.32 0.38 0.47 0.54 0.73 0.76 0.84 0.91 0.94 1.01
8h

dI 2E3
2E5

2E4
2E2

1B1
2E1

1A1
1B2

2E2
2E3

2E2
2E1

ω 0.13 0.21 0.24 0.28 0.33 0.40 0.45 0.45 0.45 0.49 0.50 0.57
1B2

1A1
2E5

2E1
2E5

2E4
1A1

2E4
2E1

2E2
2E4

2E5

0.69 0.70 0.75 0.76 0.87 0.88 0.89 0.89 0.90 0.96 1.01 1.02
2E3

1.03
8t

dI 1A1u
1A2g

2Eu
1A1g

1B1g
1B1u

2Eg
1A2u

1A1g
2Eu

1B2u
1B1g

ω 0.18 0.19 0.22 0.25 0.33 0.35 0.38 0.43 0.44 0.44 0.45 0.46
1B2g

1B2g
2Eg

1B1u
2Eg

1B2u
1A1g

2Eu
1B1g

1B2g
1B1u

1A2u

0.47 0.48 0.48 0.52 0.59 0.62 0.72 0.72 0.81 0.83 0.84 0.85
2Eu

2Eg
1A1g

2Eu
1A2u

2Eg
1B1g

1B1u
1B2u

2Eu

0.86 0.88 0.91 0.94 0.98 1.03 1.05 1.06 1.08 1.10
8u

dI 1A2g
1A1u

2Eu
2Eg

1B2u
1A1g

1B2g
1A1g

1B1g
1B1u

2Eg
1A2u

ω 0.12i 0.01 0.21 0.22 0.29 0.30 0.34 0.40 0.45 0.47 0.47 0.48
2Eu

1B1u
1B2u

1B2g
1B1g

1B2g
2Eu

2Eg
1A1g

1A2u
2Eg

2Eu

0.49 0.51 0.52 0.53 0.57 0.57 0.68 0.70 0.78 0.85 0.86 0.86
1B1u

1A1g
2Eu

1B2u
1B1g

1A2u
2Eg

1B2g
1B2u

2Eu

0.88 0.91 0.92 0.93 0.96 0.96 0.97 1.04 1.09 1.13
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can deal with anharmonic potentials as well as other
difficulties [29].
Some particularly interesting vibrational modes are

observed in the B ¼ 8t Skyrmion, the lowest-energy
chain of two B ¼ 4 Skyrmions which are interpreted
as alpha particles. The modes we refer to here are the
lowest-frequency vibrational modes. The first mode is a
1A1u mode with ω ¼ 0.18 which makes the two cubes
rotate back and forth, out of phase, around their common
axis. The next is a 1A2g mode with ω ¼ 0.19. Here, the
two cubes isorotate, out of phase, about the π1 isospin
axis. This is followed by a 2Eu mode with ω ¼ 0.22
which makes the two cubes wiggle into a bent-arm shape
and then into the opposite bent-arm shape. The next
mode is a 1A1g mode with ω ¼ 0.25 and here the two
cubes move away from each other and back again.
Finally, the next mode is a 1B1g mode with ω ¼ 0.33
which makes the two cubes isorotate around the π3 axis,
out of phase. These first five vibrational modes excite the
zero modes of the individual alpha particles: their
relative motion and (iso)rotations. The sixth vibrational
mode includes vibrational modes of the alpha particles
themselves as the frequency is now high enough that the
structure of the alpha particle can be seen. This makes a
clear physical picture of vibrations of the cluster-like
Skyrmions. Their lowest-lying modes are just move-
ments and (iso)rotations of the individual clusters while
their higher-frequency modes include vibrations of the
alpha particles themselves.
A high frequency mode which is difficult to interpret is

displayed in Fig. 3. It is a mode of the B ¼ 2 Skyrmion
lying at ω ¼ 0.99 which transforms as the 2E1u irrep.
Looking only at its energy density it appears that one half of
the Skyrmion inflates while the other half deflates. This
was the interpretation given in Ref. [7]. However, examin-
ing the pion field structure we can see that the red color
(where π̂1 ¼ 1) moves from one side to another, as does the
red on the other side of the Skyrmion. If one imagines the
B ¼ 2 Skyrmion as two B ¼ 1 Skyrmions slightly sepa-
rated along the x-axis, this pion field motion is consistent
with the individual Skyrmions isorotating about the π3-
axis, out of phase. This isorotation distorts the energy
density. This mode demonstrates the difficulty of interpret-
ing modes—is this a breather mode or an out-of-phase
isorotation? This dual interpretation could be a reflection of
the fact that many solitons cannot be easily described in
terms of their individual components.

IV. CONCLUSIONS AND FURTHER WORK

We have generated and classified the low-lying normal
and quasi-normal modes of the B ¼ 1–8 Skyrmions. Based
on these calculations we conjecture that there are 7B such
modes for each Skyrmion. This conjecture would be
confirmed if one could find the missing modes from
Table I. Unfortunately, as ω is increased the density of
scattering modes also increases, making the identification
of QNMs significantly more difficult. Ideally a different
method, specifically designed to find QNMs, should
be used.
To fully understand the Skyrmion configuration

space and do calculations on it, an approximation of
the space is needed. We now know to look for a 7B-
dimensional approximation. It may be possible to restrict
the (holonomy of the) instanton moduli space, which is
(8B − 1)-dimensional, to describe such a space. Or an
entirely new approach is required. The data in Table II
provides a stringent test of any proposed approximation. It
should be able to reproduce the irrep decomposition of the
modes for all of the Skyrmions listed.
Each mode we have generated may be important for

specific nuclear processes and properties. For instance,
most of the low-lying Oxygen-16 energy spectrum can be
understood in terms of a single normal mode once its full
configuration space is studied and understood [6]. Our hope
is that the modes found here provide a useful foundation for
similar calculations. Each mode listed in Appendix B is the
first hint of the structure of a full nonlinear deformation
space. Many of these will have interesting geometric
properties, as has been the case in those studied so far
[5,6]. The modes may also provide a path towards saddle
point solutions in each topological sector. Understanding
these structures and solutions is a crucial step towards an
accurate description of nuclei within the Skyrme model.
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APPENDIX A: SYMMETRIES

Each Skyrmion has a symmetry group generated by
combined rotation-isorotation operators. The modes are
then classified by the irreducible representations (irreps) of
the groups. The symmetry operators commute with the
evolution operator (2.6) and so if an initial perturbation
transforms as a certain irrep, the evolved perturbation will
as well. Modes which transform as different irreps are
automatically orthogonal. Hence we can study each irrep
separately. Doing so means that we study deformation
spaces of lower dimension. These are easier to interpret as
the modes are generally more sparsely spaced in frequency.
This is advantageous as our method converges as
expð−τjω2

i − ω2
iþ1jÞ for the ith mode. In addition, the

QNMs are much easier to identify. Looking again at
Figure 2, the existence of the 1B1g QNM is rather clear.
If the two spectra were combined the identification would
be less obvious.
For multidimensional irreps, we look for a specific

realization of the irrep. The choice of realization depends
on the situation at hand. If a two-dimensional irrep trans-
forms like the Cartesian coordinates ðx; yÞ we will some-
times choose to look for elements which transform like x
and sometimes for elements which transform as x − y.

In practice our numerical scheme takes place in a
rectangular box. Hence the full symmetry group is not
preserved on the lattice—only the subgroup compatible
with the lattice symmetries is realized numerically. The full
group is preserved for the B ¼ 3; 4; 5; 8u and 8t Skyrmions.
For other Skyrmions, such as the B ¼ 6, the full group is
broken. In this case, the D4d group is reduced to the D4

subgroup. We must then make a correspondence between
the irreps of each group. For instance, the 1A1 irrep of the
D4 group is compatible with both the 1A1 and 1B1 irreps of
the D4d group. Hence we cannot search for these irreps
separately and must instead search for them together by
studying the modes which transform as the 1A1 irrep of the
D4 group. Once found, these can be further classified by
applying approximate symmetry operators to the gener-
ated modes.
Details of the symmetry groups and their irreps can be

found in Table III. We have chosen to adopt the notation of
Ref. [30] which is widely used online. The character tables
of the groups can be found in Ref. [30] or at http://
symmetry.jacobs-university.de.

APPENDIX B: THE VIBRATIONAL MODES

Here, we list the normal modes and QNMs of the B ¼
1–8 Skyrmions. Their frequency, dimension, irrep and a
description can be found in Table IV. When describing
modes which fall into a multidimensional irrep, we usually
only describe one possible realization of the mode.

TABLE III. The symmetry groups, G of each Skyrmion, their lattice-compatible subgroupH and a list of G’s irreps
I and their dimension d.

B G H dI

2 D∞h D4h
1A1g; 1A2g; 2E1g; 2E2g;…; 1A1u; 1A2u; 2E1u; 2E2u;…

3 Td Td
1A1; 1A2; 2E; 3T1; 3T2

4 Oh Oh
1A1g; 1A2g; 2Eg; 3T1g; 3T2g; 1A1u; 1A2u; 2Eu; 3T1u; 3T2u

5 D2d D2d
1A1; 1A2; 1B1; 1B2; 2E

6 D4h D4
1A1; 1A2; 1B1; 1B2; 2E1; 2E2; 2E3

7 Ih Th
1Ag; 3T1g; 3T2g; 4Gg; 5Hg; 1Au; 3T1u; 3T2u; 4Gu; 5Hu

8h D6d D2d
1A1; 1A2; 1B1; 1B2; 2E1; 2E2; 2E3; 2E4; 2E5

8t, 8u D4h D4h
1A1g; 1A2g; 1B1g; 2B2g; 2Eg; 1A1u; 1A2u; 1B1u; 2B2u; 2Eu

TABLE IV. The modes of the B ¼ 1 − 8 Skyrmions.

B ω dIrrep Description

1 1.24 1A1g The breather

2 0.37 2E2g The torus splits into two individual Skyrmions
0.99 2E1u Two halves of the torus isorotate in different directions, around the π3 axis. This may

also be interpreted as two individual Skyrmions breathing out of phase
1.03 1A1g The breathing mode
1.08 1A2u The equator of the color wheel moves up and down

(Table continued)
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TABLE IV. (Continued)

B ω dIrrep Description

3 0.43 3T2 A vertex of the tetrahedron moves away from its opposing face. Asymptotically, these
become separate B ¼ 1 and B ¼ 2 clusters

0.56 2E Two opposite edges of the tetrahedron pull away from each other, deforming it into a
pretzel-like shape. This space contains the well-known twisted-line scattering [31]

0.91 3T2 One vertex grows while the other three shrink
0.94 1A1 The breathing mode
1.01 2E Two vertices isorotate out of phase with the other two
1.59 1A2 Each vertex isorotates about the color on its tip

4 0.46 2Eg Two opposite faces pull away from each other to form two B ¼ 2 tori. In the other
direction, four edges pull away to become four B ¼ 1 Skyrmions

0.48 3T2g An opposing pair of square-symmetric faces deform to become rhombus shaped
0.52 1A2u Four vertices of the cube pull away, retaining tetrahedral symmetry. These then come

in again and the other four vertices pull away to form the dual tetrahedron
0.62 3T2u Two opposite edges from the same face pull away from the origin. On the opposite

face, the perpendicular edges also pull away
0.87 1A1g The breathing mode
0.87 3T1u One face inflates while the opposite face deflates
0.94 3T2g Two opposite faces isorotate in opposite directions
1.14 3T2u Four vertices (all lying in a plane that also goes through the origin) isorotate clockwise

around the π1 axis. The other four isorotate anti-clockwise

5 0.10 2E The top edge shears away from the rest of the Skyrmion, which moves to preserve the
center of mass. The bottom edge remains stationary

0.23 1B1 The top and bottom edges twist in opposite directions
0.42 1A1 The entire Skyrmion elongates. Asymptotically, it becomes a chain of five individual

Skyrmions
0.43 1B2 The Skyrmion splits in half, four of its holes lying in the incision plane
0.45 2E A B ¼ 2 torus emerges from the top of the Skyrmion. Asymptotically, the Skyrmion

splits into B ¼ 2 and B ¼ 3 clusters
0.49 1B2 The top edge detaches from the rest, leaving a B ¼ 4 core. In the other direction, the

bottom edge detaches instead
0.51 2E A B ¼ 1 Skyrmion detaches from the equatorial torus
0.57 1A1 The Skyrmion elongates while also pushing outwards. The asymptotic configuration

looks like a riding saddle with D2d symmetry
0.61 1B1 The equator, interpreted as a B ¼ 2 Skyrmion, performs 1þ 1 90° scattering
0.77 1A2 The top and bottom halves of the Skyrmion twist in different directions
0.8 2E One of the four long faces (containing two holes) inflates while the opposite one

deflates. The remaining two remain unchanged
0.81 1A1 The top and bottom edges break away from the equator, which deforms into a square-

like object
0.84 1B1 The top half isorotates clockwise around the π3 axis while the bottom half isorotates in

the other direction
0.89 1B2 The top half inflates while the bottom half deflates
0.95 1B2 Similar to the 0.43 mode but physically due to breathing
0.95 2E Similar to the 0.45 mode but physically due to breathing
1.00 1A1 The breathing mode
1.04 1A2 The top and bottom half isorotate in the same direction, but the equator remains

unchanged. This is similar to the 0.84 mode but in phase
1.09 1A1 Similar to the 0.57 mode but physically due to breathing

6 0.25 1A1 The outer tori move away from the central torus
0.28 1B1 The outer tori rotate in opposite directions
0.33 2E1 The outer tori rotate, deforming the Skyrmion like a hinge
0.40 2E3 The outer tori shear, out of phase

(Table continued)
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TABLE IV. (Continued)

B ω dIrrep Description

0.41 2E2 The outer tori split into two B ¼ 1 Skyrmions in the plane perpendicular to their
common symmetry axis. The bottom mirrors the motion of the top, but rotated by
45°. In both cases, the B ¼ 1’s move towards a vertex of the core

0.46 2E2 A similar motion as the 0.41 mode, but the B ¼ 1’s move towards a hole of the core
0.47 1B2 One of the outer tori pull away, leaving a B ¼ 4 core
0.50 2E1 The center torus pulls away from the Skyrmion while the outer tori deform to maintain

the center of mass
0.52 2E2 Viewing the B ¼ 6 Skyrmion as two overlapping B ¼ 4 cubes, the cubes perform the

B ¼ 4, 0.52 mode out of phase
0.76 1A1 The breathing mode
0.77 2E1 Two of the eight central holes grow while another two shrink
0.80 2E3 Viewing the B ¼ 6 Skyrmion as two overlapping B ¼ 4 cubes, the cubes perform the

B ¼ 4, 0.62 mode out of phase
0.87 1B2 One half of the Skyrmion deflates as the other inflates. The central torus oscillates

between the two outer tori, yielding a Newton’s cradle motion of tori
0.90 2E2 Similar to the 0.46 mode but physically due to breathing
0.95 1A1 The Skyrmion elongates then flattens, maintaining D4h symmetry
0.95 2E3 One face inflates while the diagonally opposite face deflates
1.01 2E1 Viewing the B ¼ 6 Skyrmion as two overlapping B ¼ 4 cubes, the cubes perform the

B ¼ 4, 0.94 mode out of phase
1.08 2E2 Similar to the 0.41 mode but physically due to isorotation
1.11 2E3 Viewing the B ¼ 6 Skyrmion as two overlapping B ¼ 4 cubes, the cubes perform the

B ¼ 4, 1.14 mode in phase

7 0.32 5Hg Two opposite faces pull away from the center of the Skyrmion
0.38 5Hu The energy density concentrates around an edge. Asymptotically this becomes the edge

of a B ¼ 4 Skyrmion. The opposite side of the Skyrmion becomes a B ¼ 3 torus
0.47 3T2u Two nearby faces pull away from the center. The remaining energy density forms a

long hat on the opposite side of the Skyrmion. Asymptotically, it is pulling out 3 tori
and leaving a 1-Skyrmion behind

0.54 4Gu The dodecahedron contains five cubes. Here, a single cube is deformed while retaining
tetrahedral symmetry

0.73 1Ag The breathing mode
0.76 3T1u A dipole breathing mode
0.84 4Gg This is the mode described by Singer and Sutcliffe [32]. Asymptotically, six individual

Skyrmions travel along the Cartesian axes towards one at the origin. They
form the dodecahedron then become a cube. Our deformation is not large enough to
reach the cubic structure. The dodecahedron contains five cubes and so there are
naively five of these modes. However, they are linearly dependent as the sum of all
five modes is trivial

0.91 5Hg Similar to the 0.32 mode but physically due to breathing
0.94 4Gu A nontrivial out-of-phase isorotation which retains the tetrahedral symmetry of one of

the dodecahedron’s cubes
1.01 4Gg Another nontrivial out-of-phase isorotation which retains the tetrahedral symmetry of

one of the dodecahedron’s cubes, but in a different way than the 0.94 mode

8h 0.13 2E3 The top and bottom tori slide back and forth, out of phase, yielding a shear mode
0.21 2E5 The top and bottom tori rotate around an axis perpendicular to their symmetry axis, out

of phase
0.24 2E4 The Skyrmion begins to split in half, along the x-axis and then the y-axis
0.28 2E2 Two opposite vertices of the equatorial hexagon move upwards while the edges which

lie between them move downwards
0.33 1B1 The top and bottom tori rotate, out of phase
0.40 2E1 A single Skyrmion lying on a vertex of the equatorial hexagon pulls away from the

center. The remaining Skyrmion deforms to compensate for this motion

(Table continued)
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TABLE IV. (Continued)

B ω dIrrep Description

0.45 1A1 The top and bottom tori move away from the center at the same time
0.45 1B2 The top and bottom tori move away from, and then towards the center, out of phase
0.45 2E2 The top and bottom tori split into individual Skyrmions, out of phase.
0.49 2E3 The tori move from side to side in phase, while the equator moves in the opposite

direction to keep the center of mass constant
0.5 2E2 The top and bottom tori split into individual Skyrmions, in phase. The equator deforms

significantly to accommodate the splitting
0.57 2E1 Two sides of the hexagonal equator breathe, out of phase
0.69 1B2 The top and bottom tori breathe, out of phase
0.70 1A1 The entire Skyrmion breathes
0.75 2E5 Two opposite quarters of the Skyrmion inflate, pushing the torus closest to them away
0.76 2E1 One half of the Skyrmion inflates, pushing both tori away from the center
0.87 2E5 Two holes which lie on an axis stay stationary. The neighboring holes move towards

one and away from the other
0.88 2E4 The top and bottom tori split into individual Skyrmions, out of phase. Unlike the 0.50

mode, the equator does not deform
0.89 1A1 The top and bottom tori breathe, in phase
0.89 2E4 The equator inflates along one axis and deflates along the perpendicular one
0.90 2E1 Similar to the 0.40 mode but physically due to isorotation
0.96 2E2 Two neighboring faces move towards, then away, from one another
1.01 2E4 Similar to the 0.24 mode but physically due to isorotation
1.02 2E5 Similar to the 0.21 mode but physically due to isorotation
1.03 2E3 A triaxially symmetric breathing motion

8t 0.18 1A1u The cubes rotate around their common C4 symmetry axis, out of phase
0.19 1A2g The cubes isorotate around the π1 isoaxis, out of phase
0.22 2Eu The cubes rotate towards each other forming a bent-arm
0.25 1A1g The cubes move away from each other
0.33 1B1g The cubes isorotate around the π3 isoaxis, out of phase
0.35 1B1u Each cube vibrates like the B ¼ 4, 0.48 mode out of phase
0.38 2Eg Similar to the 0.22 mode, but the rotation is in phase yielding a shear mode of the two

cubes
0.43 1A2u The cubes each vibrate like the B ¼ 4, 0.46 mode out of phase. The outgoing tori lie in

the plane perpendicular to the common C4 symmetry axis
0.44 1A1g The central cube vibrates like the B ¼ 4, 0.46 mode
0.44 2Eu Each cube vibrates like the B ¼ 4, 0.48 mode out of phase
0.45 1B2u Each cube vibrates like the B ¼ 4, 0.46 mode out of phase
0.46 1B1g Each cube vibrates like the B ¼ 4, 0.46 mode in phase
0.47 1B2g The outer tori vibrate like the B ¼ 2, 0.37 mode in phase
0.48 1B2g The central cube vibrates like the B ¼ 4, 0.48 mode
0.48 2Eg Each cube vibrates like the B ¼ 4, 0.48 mode, in phase
0.52 1B1u Each cube vibrates like the B ¼ 4, 0.52 mode, in phase
0.59 2Eg Each cube vibrates like the B ¼ 4, 0.62 mode out of phase realized in such a way that

the central cube’s deformation is small
0.62 1B2u Each cube vibrates like the B ¼ 4, 0.62 mode in phase realized in such a way that the

central cube significantly deforms
0.72 1A1g The center cube breathes
0.72 2Eu Each cube vibrates like the B ¼ 4, 0.94 mode, realized such that two edges of the

central cube pull away from each other
0.81 1B1g The central cube vibrates like the B ¼ 4, 0.87 mode while the top and bottom tori

vibrate like the B ¼ 2, 0.37 mode. All motion is due to breathing
0.83 1B2g Each cube vibrates like the B ¼ 4, 0.94 mode in phase
0.84 1B1u The central cube vibrates like the B ¼ 4, 0.87 mode

(Table continued)
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TABLE IV. (Continued)

B ω dIrrep Description

0.85 1A2u One cube inflates while the other deflates. The central cube moves back and forth
between the two tori

0.86 2Eu Two neighboring faces inflate while the opposite faces deflate. The faces in between
move their positions to compensate

0.88 2Eg Each cube vibrates like the B ¼ 4, 0.87 mode out of phase
0.91 1A1g Both cubes breathe in phase
0.94 2Eu Similar to the 0.22 mode but physically due to isorotation
0.98 1A2u The top and bottom tori inflate and deflate out of phase
1.03 2Eg Each cube vibrates like the B ¼ 4, 0.94 mode out of phase
1.05 1B1g Similar to the 0.46 mode but physically due to a breathing motion
1.06 1B1u Similar to the 0.35 mode but physically due to a breathing motion
1.08 1B2u Similar to the 0.45 mode but physically due to a breathing motion
1.10 2Eu The two cubes vibrate like the B ¼ 4, 1.14 mode in phase

8u 0.12i 1A2g Each cube isorotates around the π1 isospin axis, in opposite directions. This mode
connects the B ¼ 8u Skyrmion to the lower energy B ¼ 8t Skyrmion, hence its
imaginary frequency

0.01 1A1u The cubes rotate around their common C4 symmetry axis, out of phase
0.21 2Eu The cubes rotate towards each other, making a bent-arm shape
0.22 2Eg The cubes rotate away from each other, yielding a shear mode
0.29 1B2u The cubes isorotate about the white/black axis out of phase
0.30 1A1g The cubes move away from each other
0.34 1B2g The outer tori vibrate like the B ¼ 2, 0.37 mode in phase
0.40 1A1g Each cube vibrates like the B ¼ 4, 0.46 mode. The individual tori come out along the

C4 symmetry axis
0.45 1B1g Each cube vibrates like the B ¼ 4, 0.46 mode in phase. The tori come out along the

axes perpendicular to the C4 symmetry axis
0.47 1B1u The outer tori vibrate like the B ¼ 2, 0.37 mode out of phase
0.47 2Eg Each cube vibrates like the B ¼ 4, 0.48 mode in phase
0.48 1A2u The two cubes vibrate like the B ¼ 4, 0.46 mode out of phase
0.49 2Eu Each cube vibrates like the B ¼ 4, 0.48 mode out of phase
0.51 1B1u The central cube vibrates like the B ¼ 4, 0.52 mode
0.52 1B2u Each cube vibrates like the B ¼ 4, 0.46 mode out of phase
0.53 1B2g Each cube vibrates like the B ¼ 4, 0.52 mode out of phase
0.57 1B1g Each cube vibrates like the B ¼ 4, 0.62 mode such that one cube is a mirror image of

the other
0.57 1B2g Each cube vibrates like the B ¼ 4, 0.48 mode in phase
0.68 2Eu Each cube vibrates like the B ¼ 4, 0.62 mode such that one cube is a mirror image of

the other
0.70 2Eg Each cube vibrates like the B ¼ 4, 0.62 mode out of phase
0.78 1A1g The central cube breathes
0.85 1A2u Similar to the 0.40 mode but physically due to a breathing motion
0.86 2Eg Each cube vibrates like the B ¼ 4, 0.87 3T1u mode out of phase
0.86 2Eu The central cube vibrates like the B ¼ 4, 0.87 3T1u mode
0.88 1B1u Each cube vibrates like the B ¼ 4, 0.94 mode out of phase
0.91 1A1g Each cube breathes, in phase
0.92 2Eu Similar to the 0.68 mode but physically due to an isorotation
0.93 1B2u The cubes vibrate like the B ¼ 4, 0.94 mode in phase
0.96 1B1g Similar to the 0.45 mode but physically due to a breathing motion
0.96 1A2u Similar to the 0.48 mode but physically due to a breathing motion
0.97 2Eg Each cube vibrates like the B ¼ 4, 0.94 mode in phase
1.04 1B2g Similar to the 0.53 mode but physically due to a breathing motion
1.09 1B2u The central cube vibrates like the B ¼ 4, 0.94 mode
1.13 2Eu Each cube vibrates like the B ¼ 4, 1.14 mode in phase
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