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Abstract

We consider for the first time the two-dimensional inverse determination of the thermal conductiv-

ity of inhomogeneous orthotropic materials from internal temperature measurements. The inverse

problem is general and is classified as a function estimation since no prior information about the

functional form of the thermal conductivity is assumed in the inverse calculation. The least-squares

functional minimizing naturally the gap between the measured and computed temperature leads

to a set of direct, sensitivity and adjoint problems, which have forms of direct well-posed initial

boundary value problems for the heat equation, and new formulas for its gradients are derived.

The conjugate gradient method (CGM) employs recursively the solution of these problems at each

iteration. Stopping the iterations according to the discrepancy principle criterion yields a stable

solution. The employment of the Sobolev W 1,2-gradient is shown to result in much more robust

and accurate numerical reconstructions than when the standard L2-gradient is used.

Keywords: Heat equation; Thermal conductivity; Inverse problem; Conjugate gradient method;

Orthotropic material

2010 MSC: 35K05, 65M32

1. Introduction

In the classical direct heat transfer problem, the cause (such as thermal conductivity) is given,

and the effect (temperature field in the body) is determined. However, the inverse problem involves
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the estimation of the cause from the knowledge of the effect.

Difficulties encountered in the solution of the inverse problems should be recognized, since they

are in general ill-posed. The solution of a well-posed problem needs to satisfy the requirements

of existence, uniqueness and stability with respect to the input data. The existence of a solution

for an inverse heat conduction problem may be assured according to physical reasoning. However,

the uniqueness of the solution can be mathematically proved only for some special cases [1]. The

solution of an inverse problem may become unstable, as a result of errors inherently present in

measurements.

The use of inverse analysis for the estimation of thermal conductivity by utilizing steady [2]

or transient temperature measurements taken within the medium and/or its boundary has nu-

merous practical applications. The simultaneous determination of the thermal conductivity and

heat capacity depending on space or temperature has been studied using the direct integration

and Levenberg-Marquardt methods in [3, 4], respectively. The constant case of thermal conductiv-

ity has been identified in [5] and the temperature-dependent thermal conductivity was estimated

by the Davidon-Fletcher-Powell method for the nonlinear inverse coefficient problem in [6]. In

[7], a two-dimensional inverse coefficient problem has been studied to construct the time- and

space-dependent thermal conductivity k(x, y, t) of a non-homogeneous medium using the con-

jugate gradient method (CGM) from internal and boundary temperature measurements. The

simultaneous determination of the space-dependent thermal conductivity and reaction coefficient

has been considered in a one-dimensional inverse heat transfer problem using the CGM in [8].

Other applications of the CGM for the reconstruction of the heat transfer coefficient and the heat

flux have recently been considered in [9, 10]. In this paper, we consider a two-dimensional coef-

ficient identification problem to estimate the thermal conductivity of inhomogeneous orthotropic

materials from internal temperature measurements. A quite different approach based on infrared

thermography and pixels correlations has recently been proposed in [11].

Prior to this study, the identification of piecewise constant or linearly dependent functionally

graded anisotropic materials was investigated in [12, 13, 14] using the genetic algorithm for the

resulting finite dimensional optimization problem. However, in many materials, e.g. thermally
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bonded nonwovens, [15], the principal directions are orthogonal and then the anisotropic structure

is called orthotropic. Such orthotropic structures have important characteristics and several in-

verse analyses have been unsertaken, [16, 17, 19, 18], for their estimation. Further, an experimental

device for the simultaneous estimation of the constant thermal conductivity and the specific heat

of orthotropic polymer composite materials was presented in [20]. However, in all these studies the

material properties were piecewise constant or linearly space-dependent and this restricts the gen-

erality of the materials that can be identified. In reality, many materials are highly heterogeneous

and therefore simplified assumptions such as having uniform or linearly varying in space proper-

ties are not appropriate. Therefore, in order to meet this generality manifested by inhomogeneous

materials, in this paper we consider the more general infinite dimensional problem in which no

prior information about the functional form of the thermal conductivity is assumed. Furthermore,

the CGM is developed for solving iteratively the resulting optimization problem.

The CGM [1, 21, 22] derives from the perturbation principle and transforms the direct problem

to the solution of two other related problems involved in the inverse analysis, namely, the sensi-

tivity and the adjoint problems. In the following sections, we present the formulation of the direct

problem which is used to obtain the temperature field T (x, y, t). Then, we introduce the sensitiv-

ity and adjoint problems for the perturbation ∆T (x, y, t) and the Lagrange multiplier λ(x, y, t),

respectively. These three problems are repeatedly solved in the iterative CGM. For noisy data, the

iterative process should be stopped according to the discrepancy principle or other similar stability

criterion in order to prevent the instability setting in. The CGM is found to produce stable and

accurate solutions for the thermal conductivity inside the spatial domain, but near the boundary

the iterative algorithm does not evolve due to the gradient of the least-squares objective functional

which is minimized vanishing at the boundary. In order to deal with this difficulty, the Sobolev

gradient concept [1, 23, 24] is employed.

2. The direct problem

As a mathematical model, we consider a two-dimensional, transient heat transfer problem in

an orthotropic square plate Ω = (0, 1)× (0, 1), over the time interval from the initial time t = 0 to
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a given final time t = tf > 0. The governing equation is given by the parabolic heat equation

∂T

∂t
(x, y, t) =

∂

∂x

[

k11(x, y)
∂T

∂x
(x, y, t)

]

+
∂

∂y

[

k22(x, y)
∂T

∂y
(x, y, t)

]

− q(x, y)T (x, y, t)

+S(x, y, t), (x, y, t) ∈ Ω × (0, tf ), (1)

where T (x, y, t) is the temperature, k11(x, y) > 0 and k22(x, y) > 0 are the components of the

orthotropic thermal conductivity tensor







k11 0

0 k22






, q(x, y) ≥ 0 is a known reaction coefficient,

S(x, y, t) is a known heat source and, for simplicity, the heat capacity has been assumed constant

and taken to be unity.

We consider the Neumann heat flux boundary conditions

−k11(0, y)
∂T

∂x
(0, y, t) = q1(y, t), k11(1, y)

∂T

∂x
(1, y, t) = q2(y, t), (y, t) ∈ (0, 1) × (0, tf ), (2)

−k22(x, 0)
∂T

∂y
(x, 0, t) = q3(x, t), k22(x, 1)

∂T

∂y
(x, 1, t) = q4(x, t), (x, t) ∈ (0, 1) × (0, tf ), (3)

and the initial condition

T (x, y, 0) = T0(x, y), (x, y) ∈ Ω, (4)

where (qi)i=1,4 and T0 are given functions. Dirichlet, mixed or Robin boundary conditions can also

be considered.

The direct problem is concerned with the determination of the temperature T (x, y, t) satisfying

(1)–(4), when the thermal conductivity components k11(x, y) and k22(x, y) are known.

3. The inverse problem

The inverse problem, on the other hand, is concerned with the estimation of the unknown

positive thermal conductivity components k11(x, y) and k22(x, y) by using the transient temperature

readings taken by sensors at some appropriate locations (xi, yj), say xi = (i− 1)/(I − 1), i = 1, I,

yj = (j − 1)/(J − 1) and j = 1, J . Let the temperature readings at these points over the period

tf be denoted by Y (xi, yj, t) ≡ Yi,j(t), i = 1, I, j = 1, J . These may be contaminated with

noise. Note that the above locations are usually fixed and may not necessarily coincide with the
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finite-difference grid points that will be later on employed in the numerical implementation.

The solution of the inverse problem is sought by minimizing the following least-squares objective

functional:

J [k11, k22] =
1

2

I−1
∑

i=2

J−1
∑

j=2

‖T (xi, yj, t; k11, k22) − Yi,j(t)‖2L2[0,tf ]

=
1

2

∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

[T (xi, yj, t; k11, k22) − Yi,j(t)]
2 dt. (5)

For simplicity, we consider in (5) only internal measurements of the temperature Yi,j(t) for

i = 2, I − 1, j = 2, J − 1, noting that boundary temperature measurements can also be easily

incorporated.

We note that previously Huang and Chin [7] considered the CGM for solving the problem of

retrieving a both space- and time-dependent isotropic thermal conductivity k(x, y, t) from temper-

ature measurements Yi,j(t) for i = 1, I, j = 1, J .

4. The conjugate gradient method (CGM)

The CGM, [1, 22, 25], is an iterative method formed using three problems, namely: the direct

problem mentioned in Section 2, the sensitivity problem, which will be described in Subsection 4.1

and the adjoint problem, which will be described in Subsection 4.2.

4.1. The sensitivity problem

The sensitivity problem is obtained from the original direct problem (1)–(4) with k11(x, y) and

k22(x, y) known and T (x, y, t) unknown. Let us suppose that the temperature T (x, y, t) is perturbed

by ε∆T11(x, y, t) when the thermal conductivity k11(x, y) undergoes the increment ε∆k11(x, y),

where ε > 0 is a small number. Substracting the two corresponding direct problems, dividing with

ε, and letting ε ց 0, we obtain the following sensitivity problem for ∆T11(x, y, t):

∂(∆T11)

∂t
=

∂

∂x

[

k11
∂(∆T11)

∂x
+ ∆k11

∂T

∂x

]

+
∂

∂y

[

k22
∂(∆T11)

∂y

]

− q∆T11, (x, y, t) ∈ Ω × (0, tf ),

(6)
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with the Neumann boundary conditions

−k11(0, y)
∂(∆T11)

∂x
(0, y, t) = ∆k11(0, y)

∂T

∂x
(0, y, t), (y, t) ∈ (0, 1) × (0, tf ), (7)

k11(1, y)
∂(∆T11)

∂x
(1, y, t) = −∆k11(1, y)

∂T

∂x
(1, y, t), (y, t) ∈ (0, 1) × (0, tf ), (8)

−k22(x, 0)
∂(∆T11)

∂y
(x, 0, t) = k22(x, 1)

∂(∆T11)

∂y
(x, 1, t) = 0, (x, t) ∈ (0, 1) × (0, tf ), (9)

and the initial condition

∆T11(x, y, 0) = 0, (x, y) ∈ Ω. (10)

We stress that throughout the paper the symbol ∆ does not denote the usual Laplacian operator.

The sensitivity problem established by the same approach for ∆T22(x, y, t) is:

∂(∆T22)

∂t
=

∂

∂x

[

k11
∂(∆T22)

∂x

]

+
∂

∂y

[

k22
∂(∆T22)

∂y
+ ∆k22

∂T

∂y

]

− q∆T22, (x, y, t) ∈ Ω × (0, tf ),

(11)

with the Neumann boundary conditions

−k11(0, y)
∂(∆T22)

∂x
(0, y, t) = k11(1, y)

∂(∆T22)

∂x
(1, y, t) = 0, (y, t) ∈ (0, 1) × (0, tf ), (12)

−k22(x, 0)
∂(∆T22)

∂y
(x, 0, t) = ∆k22(x, 0)

∂T

∂y
(x, 0, t), (x, t) ∈ (0, 1) × (0, tf ), (13)

k22(x, 1)
∂(∆T22)

∂y
(x, 1, t) = −∆k22(x, 1)

∂T

∂y
(x, 1, t), (x, t) ∈ (0, 1) × (0, tf ), (14)

and the initial condition

∆T22(x, y, 0) = 0, (x, y) ∈ Ω. (15)

4.2. The adjoint problem

We can write the minimization of the functional J [k11, k22] as a constrained optimization prob-

lem, since the computed temperature T (xi, yj, t; k11, k22) must satisfy the direct problem. In order

to solve this constrained optimization problem, we can use the Lagrange multiplier method. There-
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fore, we consider the following extended objective functional:

J [k11, k22] =
1

2

∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

[T (xi, yj, t; k11, k22) − Yi,j(t)]
2 dt

+

∫ tf

0

∫ 1

0

∫ 1

0

λ(x, y, t)

{

∂

∂x

[

k11
∂T

∂x

]

+
∂

∂y

[

k22
∂T

∂y

]

− qT + S − ∂T

∂t

}

dxdydt, (16)

where λ(x, y, t) is a Lagrange multiplier.

As in [22, 29], we can use the Dirac delta function δ to rewrite (16). Delta functions select

in the continuous space (x, y) the point (xi, yj) that matches the temperature readings (assumed

local here) and thus allow the double sum to be introduced under the integral operators. Then,

we have

J [k11, k22] =

∫ tf

0

∫ 1

0

∫ 1

0

1

2

I−1
∑

i=2

J−1
∑

j=2

[T − Y ]2 δ(x− xi)δ(y − yj)dxdydt

+

∫ tf

0

∫ 1

0

∫ 1

0

λ(x, y, t)

{

∂

∂x

[

k11
∂T

∂x

]

+
∂

∂y

[

k22
∂T

∂y

]

− qT + S − ∂T

∂t

}

dxdydt, (17)

where, for simplicity, we write T and Y instead of T (xi, yj, t; k11, k22) and Yi,j(t), respectively, in

the corresponding terms attached to the double sum. Alternatively, if one uses an infrared camera

[11], the temperature reading (pixels) Yi,j(t) could be considered as the average temperature of the

sample over a small square corresponding to the projection of the pixel. In that case, the Dirac

delta functions could be replaced by rectangular window functions.

We can then define the directional derivatives of J [k11, k22] using (17) in the directions of the

perturbation in k11(x, y) and k22(x, y) as

∆J11 = lim
ε→0

J [k11 + ε∆k11, k22] − J [k11, k22]

ε
, ∆J22 = lim

ε→0

J [k11, k22 + ε∆k22] − J [k11, k22]

ε
. (18)

Now expanding the generic term [T + ε∆T − Y ]2 and neglecting the second-order terms of

order ε2, we obtain

[T + ε∆T − Y ]2 ≈ T 2 + Y 2 − 2Y T + 2εT∆T − 2εY ∆T = (T − Y )2 + 2ε∆T (T − Y ) (19)

7



and then

J [k11 + ε∆k11, k22]

=

∫ tf

0

∫ 1

0

∫ 1

0

1

2

I−1
∑

i=2

J−1
∑

j=2

[

(T − Y )2 + 2ε∆T11(T − Y )
]

δ(x− xi)δ(y − yj)dxdydt

+

∫ tf

0

∫ 1

0

∫ 1

0

λ

{

∂

∂x

[

(k11 + ε∆k11)
∂(T + ε∆T11)

∂x

]

+
∂

∂y

[

k22
∂(T + ε∆T11)

∂y

]

−q(T + ε∆T11) + S − ∂(T + ε∆T11)

∂t

}

dxdydt. (20)

Now subtracting J [k11, k22] from J [k11 +ε∆k11, k22] and neglecting the second-order terms of order

ε2, we obtain

J [k11 + ε∆k11, k22] − J [k11, k22] =

∫ tf

0

∫ 1

0

∫ 1

0

{

I−1
∑

i=2

J−1
∑

j=2

ε∆T11(T − Y )δ(x− xi)δ(y − yj)

+ λ

{

∂

∂x

[

ε∆k11
∂T

∂x
+ k11

∂(ε∆T11)

∂x

]

+
∂

∂y

[

k22
∂(ε∆T11)

∂y

]

−εq∆T11 −
∂(ε∆T11)

∂t

}}

dxdydt, (21)

and using (18)

∆J11 =

∫ tf

0

∫ 1

0

∫ 1

0

{

I−1
∑

i=2

J−1
∑

j=2

∆T11(T − Y )δ(x− xi)δ(y − yj)

+ λ

{

∂

∂x

[

∆k11
∂T

∂x
+ k11

∂(∆T11)

∂x

]

+
∂

∂y

[

k22
∂(∆T11)

∂y

]

− q∆T11 −
∂(∆T11)

∂t

}}

dxdydt. (22)

Let us analyse each one of the integrals in the expressions of ∆J11 using integration by parts,

as follows:

I1 =

∫ tf

0

∫ 1

0

∫ 1

0

∂(∆T11)

∂t
λdxdydt =

∫ 1

0

∫ 1

0

[

∆T11λ|tft=0 −
∫ tf

0

∆T11
∂λ

∂t
dt

]

dxdy, (23)

I2 =

∫ tf

0

∫ 1

0

∫ 1

0

∂

∂x

[

k11
∂(∆T11)

∂x

]

λdxdydt

=

∫ tf

0

∫ 1

0

[

(

k11
∂(∆T11)

∂x
λ− k11∆T11

∂λ

∂x

)∣

∣

∣

∣

1

x=0

+

∫ 1

0

∆T11
∂

∂x

[

k11
∂λ

∂x

]

dx

]

dydt, (24)
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I3 =

∫ tf

0

∫ 1

0

∫ 1

0

∂

∂x

[

∆k11
∂T

∂x

]

λdxdydt =

∫ tf

0

∫ 1

0

[

∆k11
∂T

∂x
λ

∣

∣

∣

∣

1

x=0

−
∫ 1

0

∆k11
∂T

∂x

∂λ

∂x
dx

]

dydt,

(25)

I4 =

∫ tf

0

∫ 1

0

∫ 1

0

∂

∂y

[

k22
∂(∆T11)

∂y

]

λdxdydt

=

∫ tf

0

∫ 1

0

[

(

k22
∂(∆T11)

∂y
λ− k22∆T11

∂λ

∂y

)∣

∣

∣

∣

1

y=0

+

∫ 1

0

∆T11
∂

∂y

[

k22
∂λ

∂y

]

dy

]

dxdt. (26)

Substituting these integrals into (22), we get

∆J11 =

∫ tf

0

∫ 1

0

∫ 1

0

∆T11

{

I−1
∑

i=2

J−1
∑

j=2

(T − Y )δ(x− xi)δ(y − yj) +
∂λ

∂t

+
∂

∂x

[

k11
∂λ

∂x

]

+
∂

∂y

[

k22
∂λ

∂y

]

− qλ

}

dxdydt−
∫ tf

0

∫ 1

0

∫ 1

0

∆k11
∂T

∂x

∂λ

∂x
dxdydt

+

∫ tf

0

∫ 1

0

k22
∂(∆T11)

∂y
λ

∣

∣

∣

∣

1

y=0

dxdt−
∫ 1

0

∫ 1

0

∆T11λ|tft=0dydx−
∫ tf

0

∫ 1

0

k11∆T11
∂λ

∂x

∣

∣

∣

∣

1

x=0

dydt

−
∫ tf

0

∫ 1

0

k22∆T11
∂λ

∂y

∣

∣

∣

∣

1

y=0

dxdt +

∫ tf

0

∫ 1

0

[

k11
∂(∆T11)

∂x
+ ∆k11

∂T

∂x

]

λ

∣

∣

∣

∣

1

x=0

dydt. (27)

By using (7)–(10) and (12)–(15) into (27), and to nullify the integrands containing ∆T11, the

Lagrange multiplier λ(x, y, t) must be solution of the following adjoint problem:

∂λ

∂t
(x, y, t) = − ∂

∂x

[

k11(x, y)
∂λ

∂x
(x, y, t)

]

− ∂

∂y

[

k22(x, y)
∂λ

∂y
(x, y, t)

]

+ q(x, y)λ(x, y, t)

−
I−1
∑

i=2

J−1
∑

j=2

(T (x, y, t; k11, k22) − Yi,j(t))δ(x− xi)δ(y − yj), (x, y, t) ∈ Ω × (0, tf ), (28)

−k11(0, y)
∂λ

∂x
(0, y, t) = k11(1, y)

∂λ

∂x
(1, y, t) = 0, (y, t) ∈ (0, 1) × (0, tf ), (29)

−k22(x, 0)
∂λ

∂y
(x, 0, t) = k22(x, 1)

∂λ

∂y
(x, 1, t) = 0, (x, t) ∈ (0, 1) × (0, tf ), (30)

λ(x, y, tf ) = 0, (x, y) ∈ Ω. (31)

The adjoint problem can be transformed to an initial value problem by the change of variable

t = tf − t. The following term remains in (27):

∆J11 = −
∫ tf

0

∫ 1

0

∫ 1

0

∆k11(x, y)
∂T

∂x

∂λ

∂x
dxdydt. (32)
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As the gradient functional J ′ of the functional J is defined by

∆J [k]L2(Ω) = (J ′,∆k)L2(Ω) =

∫ 1

0

∫ 1

0

J ′[k]∆k(x, y)dxdy, (33)

we obtain that the gradient component

J ′

11[k11, k22] = −
∫ tf

0

∂T

∂x
(x, y, t)

∂λ

∂x
(x, y, t)dt. (34)

Similarly,

J ′

22[k11, k22] = −
∫ tf

0

∂T

∂y
(x, y, t)

∂λ

∂y
(x, y, t)dt. (35)

Equation (33) defines the L2-gradient of the functional J . However, from (29), (30), (34)

and (35) it can be seen that J ′ vanishes at the boundary ∂Ω. Therefore, in the iterative process

described later on in Subsection 4.4 the boundary values of the unknown thermal conductivity

components k11 and k22 will stay fixed and equal to those of the initial guess. Thus, if the initial

guess is not close to the exact solution on the boundary ∂Ω, the numerical results will also be

far from it. In order to deal with this difficulty, extra H1-smoothness is imposed on the solution

through the introduction of the Sobolev gradient, as described in the next subsection. Other ways

to deal with J ′ vanishing on ∂Ω are suggested in [25] page 81.

4.3. The Sobolev gradient

We introduce the Sobolev gradient denoted by J ′

W 1,2 for the unknown thermal conductivity

components k11(x, y) and k22(x, y) assuming that they belong to the Sobolev functional space

W 1,2(Ω) = H1(Ω) = {u ∈ L2(Ω)|ux and uy ∈ L2(Ω)}. This is obtained via the inner product

in W 1,2(Ω) rather than the gradients (34) and (35) which were obtained in L2(Ω). The Sobolev

gradient is smoother than the L2-gradient as it represents a regularization of the L2-gradient in

the Fourier space such that the oscillating modes are attenuated [23].

The Sobolev gradient J ′

W 1,2 [k] is defined by, [1, 23, 24],

∆J [k]W 1,2(Ω) = (J ′

W 1,2 ,∆k)W 1,2(Ω) , (36)
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where

(J ′

W 1,2 ,∆k)W 1,2(Ω) =

∫ 1

0

∫ 1

0

(r0∆kJ ′

W 1,2 + r1∇(∆k) · ∇J ′

W 1,2) dxdy, (37)

r0 and r1 are some given positive continuous weight functions, and k stands for k11 or k22. Usually,

we take r0 = 1, [23], and vary r1 giving the amount of regularization in the weighted inner product.

Using integration by parts, equation (36) can be transformed to the form without any partial

derivatives of the increment ∆k(x, y) inside the integral, i.e.

∆J [k]W 1,2(Ω) = (J ′

W 1,2 ,∆k)W 1,2(Ω) =

∫ 1

0

∫ 1

0

(r0∆kJ ′

W 1,2 + r1∇(∆k) · ∇ (J ′

W 1,2)) dxdy

=

∫ 1

0

∫ 1

0

(

r0∆kJ ′

W 1,2 − ∆k
∂

∂x

(

r1
∂J ′

W 1,2

∂x

)

− ∆k
∂

∂y

(

r1
∂J ′

W 1,2

∂y

))

dxdy

+

∫ 1

0

∆kr1
∂J ′

W 1,2

∂x

∣

∣

∣

∣

1

x=0

dy +

∫ 1

0

∆kr1
∂J ′

W 1,2

∂y

∣

∣

∣

∣

1

y=0

dx. (38)

By setting
∂J ′

W1,2

∂x

∣

∣

∣

1

x=0
=

∂J ′

W1,2

∂y

∣

∣

∣

1

y=0
= 0 in (38), then we have

∆J [k]W 1,2(Ω) =

(

r0J
′

W 1,2 − ∂

∂x

(

r1
∂J ′

W 1,2

∂x

)

− ∂

∂y

(

r1
∂J ′

W 1,2

∂y

)

,∆k

)

L2(Ω)

. (39)

Thus we obtain the following problem for finding the Sobolev gradient J ′

W 1,2 :

r0J
′

W 1,2 − ∂

∂x

(

r1
∂J ′

W 1,2

∂x

)

− ∂

∂y

(

r1
∂J ′

W 1,2

∂y

)

= J ′, (x, y) ∈ Ω, (40)

∂J ′

W 1,2

∂x
(0, y) =

∂J ′

W 1,2

∂x
(1, y) = 0, y ∈ [0, 1], (41)

∂J ′

W 1,2

∂y
(x, 0) =

∂J ′

W 1,2

∂y
(x, 1) = 0, x ∈ [0, 1], (42)

where J ′ is given by (34) or (35). Note that if k is known on the boundary ∂Ω then (41) and (42)

are replaced by the homogeneous Dirichlet boundary conditions

J ′

W 1,2(0, y) = J ′

W 1,2(1, y) = 0, y ∈ [0, 1], (43)

J ′

W 1,2(x, 0) = J ′

W 1,2(x, 1) = 0, x ∈ [0, 1]. (44)

Standard finite differences, [26], are employed for solving the above Neumann or Dirichlet

problem for the elliptic equation (40). To summarise, the Sobolev gradients for k11(x, y) and

k22(x, y) can be calculated from (40)–(42) by replacing the J ′ in (40) by J ′
11 given by (34) and J ′

22

11



given by (35), respectively.

4.4. Iteration

The following iterative process based on the CGM is now used for the simultaneous estimation

of k11(x, y) and k22(x, y) by minimizing the objective functional (5):

kn+1
11 (x, y) = kn

11(x, y) − βn
11P

n
11(x, y), n = 0, 1, 2, · · · , (45)

kn+1
22 (x, y) = kn

22(x, y) − βn
22P

n
22(x, y), n = 0, 1, 2, · · · , (46)

where the superscript n denotes the number of iterations, k0
11(x, y) and k0

22(x, y) are the initial

guesses, and βn
11 and βn

22 are the step search sizes in passing from iteration n to iteration n + 1,

and P n
11(x, y) and P n

22(x, y) are the directions of descent given by

P 0
11(x, y) = J ′0

11, P n
11(x, y) = J ′n

11 + γn
11P

n−1
11 (x, y), n = 1, 2, · · · , (47)

P 0
22(x, y) = J ′0

22, P n
22(x, y) = J ′n

22 + γn
22P

n−1
22 (x, y), n = 1, 2, · · · . (48)

Different expressions are available for the conjugate coefficients γn
11 and γn

22. The Polak–Ribiere

expression [1, 27] gives

γn
11 =

∫ 1

0

∫ 1

0
J ′n
11

{

J ′n
11 − J ′n−1

11

}

dxdy
∫ 1

0

∫ 1

0

{

J ′n−1
11

}2
dxdy

, n = 1, 2, . . . , (49)

γn
22 =

∫ 1

0

∫ 1

0
J ′n
22

{

J ′n
22 − J ′n−1

22

}

dxdy
∫ 1

0

∫ 1

0

{

J ′n−1
22

}2
dxdy

, n = 1, 2, . . . , (50)

while the Fletcher–Reeves [1, 27, 28] expression gives

γn
11 =

∫ 1

0

∫ 1

0
{J ′n

11}2 dxdy
∫ 1

0

∫ 1

0

{

J ′n−1
11

}2
dxdy

n = 1, 2, · · · , (51)

γn
22 =

∫ 1

0

∫ 1

0
{J ′n

22}2 dxdy
∫ 1

0

∫ 1

0

{

J ′n−1
22

}2
dxdy

n = 1, 2. · · · . (52)

Note that there is also another version of the conjugate coefficient introduced by Powell and Beale

[29, 30]. Preliminary investigations showed that for the problem studied here there is not much

difference between those versions and therefore, in order to make a choice, only the Fletcher–Reeves

expressions (51) and (52) will be employed to illustrate the numerical results in Section 5.
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To find suitable step search sizes βn
11 and βn

22 we proceed as follows. First, based on (5), (45)

and (46), we have

J [kn+1
11 , kn+1

22 ] =
1

2

∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

[T (xi, yj, t; k
n
11 − βn

11P
n
11, k

n
22 − βn

22P
n
22) − Yi,j(t)]

2 dt. (53)

Then, we linearise the temperature T (xi, yj, t; k
n
11 − βn

11P
n
11, k

n
22 − βn

22P
n
22) by the first-order Taylor

series expansion (assuming that βn
11P

n
11 and βn

22P
n
22 are small)

T (xi, yj, t; k
n
11 − βn

11P
n
11, k

n
22 − βn

22P
n
22) ≈ T (xi, yj, t; k

n
11, k

n
22) − βn

11P
n
11

∂T n
i,j(t)

∂kn
11

− βn
22P

n
22

∂T n
i,j(t)

∂kn
22

≈ T (xi, yj, t; k
n
11, k

n
22) − βn

11∆T n
11 − βn

22∆T n
22, (54)

where ∆T n
11 and ∆T n

22 are the solutions of the sensitivity problems (6)–(10) and (11)–(15) with

∆kn
11 = P n

11 and ∆kn
22 = P n

22. Then, introducing (54) into (53) we have

J [kn+1
11 , kn+1

22 ] =
1

2

∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

[T (xi, yj, t; k
n
11, k

n
22) − βn

11∆T n
11 − βn

22∆T n
22 − Yi,j(t)]

2 dt. (55)

To minimize (55) we calculate the partial derivatives of J [kn+1
11 , kn+1

22 ] with respect to βn
11 and βn

22

to obtain

∂J

∂βn
11

= −
∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

[T (xi, yj, t; k
n
11, k

n
22) − βn

11∆T n
11 − βn

22∆T n
22 − Yi,j(t)] ∆T n

11dt

= − C1 + βn
11C2 + βn

22C3, (56)

and

∂J

∂βn
22

= −
∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

[T (xi, yj, t; k
n
11, k

n
22) − βn

11∆T n
11 − βn

22∆T n
22 − Yi,j(t)] ∆T n

22dt

= − C4 + βn
11C3 + βn

22C5, (57)
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where

C1 =

∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

[Ti,j(t) − Yi,j(t)] ∆T n
11dt,

C2 =

∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

[∆T n
11]

2 dt, C3 =

∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

∆T n
11∆T n

22dt,

C4 =

∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

[Ti,j(t) − Yi,j(t)] ∆T n
22dt, C5 =

∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

[∆T n
22]

2 dt.

Finally, setting ∂J
∂βn

11

= ∂J
∂βn

22

= 0, we obtain the search step sizes βn
11 and βn

22 as follows:

βn
11 =

C1C5 − C3C4

C2C5 − C2
3

, βn
22 =

C2C4 − C1C3

C2C5 − C2
3

. (58)

Although from expression (58) it is not obvious that the step search sizes βn
11 and βn

22 are (for

all n) sufficiently small for the first-order Taylor series expansion (54) to be valid, this was not

encountered as an issue in the numerical experiments performed in the next section.

4.5. Stopping criterion

The iterative procedure given by equations (45) and (46) does not provide the CGM with the

stabilization necessary for the minimization of the functional (5) to be classified as well-posed

because of the errors inherently present in the measured temperature. However, the CGM may

become well-posed if the discrepancy principle [1, 21, 22, 31, 32] is used to stop the iterative

procedure. In this criterion, the iterative procedure is stopped at the iteration number ns at which

J [kns ] ≈ 1

2
µ2, (59)

where

µ =

√

√

√

√

∫ tf

0

I−1
∑

i=2

J−1
∑

j=2

[

Yi,j(t) − Y exact
i,j (t)

]2
dt, (60)

represents the amount of noise with which the temperature data Yi,j(t) may be contaminated, and

Y exact denotes the exact temperature data in the absence of noise generated from the analytical

solution, if available, or from solving the direct problem numerically (with care not to commit an

inverse crime).
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4.6. Algorithm

The steps of the CGM algorithm for estimating the unknown thermal conductivities k11(x, y)

and k22(x, y) are, as follows:

1 Choose initial guesses k0
11(x, y) and k0

22(x, y) and set n = 0.

2 Solve the direct problem (1)–(4) by applying alternating–direction–implicit (ADI) scheme,

described in Appendix A, to compute T (x, y, t; kn
11, k

n
22) and J [kn

11, k
n
22] by equation (5).

3 Solve the adjoint problem (28)–(31) to compute the Lagrange multiplier λ(x, y, t; k11, k22),

and the gradient J ′
11[k

n
11, k

n
22] and J ′

22[k
n
11, k

n
22] from the equations (34) and (35) (or the Sobolev

gradient JW 1,2 , as described in Subsection 4.3). Compute the conjugate coefficients γn
11 and

γn
22, and the directions of descent P n

11(x, y) and P n
11(x, y).

4 Solve the sensitivity problems (6)–(10) and (11)–(15) to compute the sensitivity functions

∆T11 and ∆T22 by taking ∆kn
11(x, y) = P n

11(x, y) and ∆kn
22(x, y) = P n

22(x, y), and compute

the search step sizes βn
11 and βn

22 by (58).

5 Compute kn+1
11 (x, y) and kn+1

22 (x, y) by (45) and (46).

6 The stopping condition is:

If J [kn
11, k

n
22] ≈ 1

2
µ2 go to step 7.

Else set n = n + 1 go to step 2.

7 End.

5. Numerical results and discussion

The finite-difference method (FDM), based on the ADI scheme described in Appendix A, is

used to calculate ∆T (x, y, t; k11, k22) and λ(x, y, t; k11, k22) in the sensitivity and adjoint problems,

respectively. Note that in the adjoint problem, the source term contains the Dirac delta function

which can be approximated by

δ(x− xi) ≈
1

a
√
π
e−(x−xi)

2/a2 , i = 1, I (61)
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where a is a small positive constant taken as a = 10−3. The trapezoidal rule is used to approximate

all the integrals in this paper, e.g., for the objective functional (5), we have

J [k11, k22] =
1

2

I−1
∑

i=2

J−1
∑

j=2

||T (xi, yj, t; k11, k22) − Yi,j(t)||2L2[0,tf ]

≈ ∆t

4

I−1
∑

i=2

J−1
∑

j=2

{

(T 1
i,j − Yi,j(t1))

2 + 2
L−1
∑

l=2

(T l
i,j − Yi,j(tl))

2 + (TL
i,j − Yi,j(tL))2

}

. (62)

Note that since t1 = 0, due to the initial condition (4) we always have that the first term in

the bracket of the right-hand side of (62) vanishes. Thus, (62) simplifies as

J [k11, k22] ≈
∆t

4

I−1
∑

i=2

J−1
∑

j=2

{

2
L−1
∑

l=2

(T l
i,j − Yi,j(tl))

2 + (TL
i,j − Yi,j(tL))2

}

. (63)

Next, we define the errors at the iteration number n by

E(kn
11) =

√

√

√

√

1

IJ

I
∑

i=1

J
∑

j=1

(k11
n
i,j − k11

exact
i,j )2, (64)

E(kn
22) =

√

√

√

√

1

IJ

I
∑

i=1

J
∑

j=1

(k22
n
i,j − k22

exact
i,j )2. (65)

The temperature measurements Y containing random errors are simulated by adding to Y exact

an error term generated from a normal distribution by MATLAB in the form:

Y = Y exact + random(′Normal′, 0, σ, I, J, L). (66)

where σ = p
100

max(x,y)∈Ω,t∈[0,tf ]
|T (x, y, t)| is the standard deviation and p% represents the percent-

age of noise.

All the numerical results illustrated in the figures of this paper are obtained with the FDM

mesh size ∆x = ∆y = 0.05, i.e. I = J = 20, and taking tf = 1, the time step ∆t = 0.025,

i.e. L = 40, which were found sufficiently fine so as to ensure that any further decrease in it did

not significantly affect the accuracy of the numerical results. Based on (63), it means that we

have (I − 2) × (J − 2) × (L − 1) = 18 × 18 × 39 = 12636 temperature measurements to solve

for 2 × I × J = 2 × 20 × 20 = 800 thermal conductivity discrete unknowns, which is a highly

over-determined situation. In the Sobolev gradient equation (40) we take r0 = 1 and, by trial and
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error, r1 = 0.1. Nevertheless, more rigorous choices of the parameters r0 and r1, dictating the

amount of W 1,2 regularization, should be investigated in the future.

5.1. Example 1

We first consider an isotropic material with input data generated by

q1(y, t) = −1 + y

12
(1 − e−t)(π sin(πy) + π + 1), q2(y, t) =

2 + y

12
(1 − e−t)(−π sin(πy) + π + 1),

q3(x, t) = −1 + x

12
(1 − e−t)(π sin(πx) + π + 1), q4(x, t) =

2 + x

12
(1 − e−t)(−π sin(πx) + π + 1),

q(x, y) = 0, T0(x, y) = 0,

S(x, y, t) =

(

e−t +
π2

6
(1 + x + y)(1 − e−t)

)

sin(πx) sin(πy) + (π + 1)e−t(x + y)

− 1 − e−t

12
(π sin(π(x + y)) + 2π + 2), (67)

T (x, y, t) = Y exact(x, y, t) = (1 − e−t)(sin(πxi) sin(πyj) + (π + 1)(xi + yj)). (68)

The analytical solution of the inverse problem is

k11(x, y) =
1 + x + y

12
, k22(x, y) =

1 + x + y

12
. (69)

We can use the CGM algorithm described in Section 4 to reconstruct the unknown orthotropic

coefficients k11 and k22, or the CGM of [7] to identify just one unknown isotropic coefficient

k(x, y) = k11(x, y) = k22(x, y) given by (69). We take the initial guess

k0(x, y) = k0
11(x, y) = k0

22(x, y) =
1 + x + y

12
+

1

2
xy(1 − x)(1 − y), (70)

where k0 is used for the CGM of [7], and k0
11, k

2
22 are used for the CGM of this work. The L2-gradient

is applied in both algorithms. From the numerical results with no noise p = 0 shown in Figure 1, it

can be seen that the former method generates slightly more accurate results than the latter one, as

expected, since the method in [7] considers the inverse problem with only one unknown isotropic

coefficient k, whilst the current method is more general as it allows to simultaneously identify two

unknown orthotropic coefficients k11 and k22. We also mention that the initial guess (70) is within

20% of the true solution (69) which may be considered as not too far. For much farther initial

guesses we report that the numerically obtained results were not so accurate and therefore they
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are not presented. Instead, as we shall see in the next example, the Sobolev W 1,2-gradient is able

to overcome the dependence of a subjectively good initial guess.

5.2. Example 2

We now consider an orthotropic material with input data generated by

q1(y, t) = −1 + y

12
e−t(π sin(πy) + π + 1), q2(y, t) =

2 + y

12
e−t(−π sin(πy) + π + 1),

q3(x, t) = −1 + 0.5x

12
e−t(π sin(πx) + π + 1), q4(x, t) =

2 + 0.5x

12
e−t(−π sin(πx) + π + 1),

q(x, y) = 0, T0(x, y) = sin(πx) sin(πy) + (π + 1)(x + y) + 1,

S(x, y, t) = −e−t(sin(πx) sin(πy) + (π + 1)(x + y) + 1) − e−t

12
(2π + 2 + π sin(π(x + y)))

+
π2e−t

12
(2 + 1.5x + 2y) sin(πx) sin(πy), (71)

Y (x, y, t) = Y exact(x, y, t) = e−t(sin(πxi) sin(πyj) + (π + 1)(xi + yj) + 1). (72)

The analytical solution of the inverse problem is

k11(x, y) =
1 + x + y

12
, (73)

k22(x, y) =
1 + 0.5x + y

12
. (74)

In the first instance, we take the initial guesses for the thermal conductivity components

k11(x, y) and k22(x, y) as

k0
11(x, y) =

1

2
xy(1 − x)(1 − y) +

1 + x + y

12
, k0

22(x, y) =
1

2
xy(1 − x)(1 − y) +

1 + 0.5x + y

12
, (75)

which ensure that the boundary values of the initial approximations are equal to the exact ones.

First, we present the results for exact data, i.e., p = 0, in (66). The numerical solutions of

k11(x, y) and k22(x, y) are presented in Figures 2 and 3, respectively. Figure 2 shows that the

numerical results are good approximations of the exact solution (73). Furthermore, the results

obtained with the Sobolev W 1,2-gradient are more accurate than the ones obtained using the L2-

gradient. Similar conclusions can be derived from Figure 3. In addition, one can remark that the

numerical solutions obtained with the standard L2-gradient are not so smooth near the boundary,

but the employment of the Sobolev W 1,2-gradient alleviates this problem and the improvement
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obtained is quite significant.

Figure 4 shows the minimization of the objective functional (5) and the errors (64) and (65), as

functions of the number of iterations n. From this figure, the importance of the stopping criterion

(59), which is necessary to prevent the noise amplification, can be observed. For the given amounts

of noise p ∈ {2, 4, 6} this yields very quick stopping iteration numbers of ns ∈ {3, 2, 2}, respectively,

for the L2-gradient and ns ∈ {4, 3, 2}, respectively, for the W 1,2-gradient, and those values are

consistent with the error curves in Figures 4(b), (c), (e) and (f). One can observe that there is

only a small decrease in the objective functional (5) from the initial to the final value due to the

initial guesses (75) being quite close (within 20%) to the true values given by equations (73) and

(74). However, we shall soon depart from this “good” initial guess when we will choose the rather

arbitrary guess (76) below. Finally, Figures 5 and 6 show the numerical results for the thermal

conductivity components k11(x, y) and k22(x, y) for p ∈ {2, 4, 6} noise. From these figures it can

be seen that the numerical results are significantly smoother, more accurate and stable when using

the Sobolev W 1,2-gradient than when using the L2-gradient.

Next, for an arbitrary initial guesses for the thermal conductivity components k11(x, y) and

k22(x, y), say

k0
11(x, y) = k0

22(x, y) =
1

4
, (76)

we apply the Sobolev W 1,2-gradient satisfying (40)–(42). With the initial guess (76), the stopping

criterion (59) yields ns ∈ {9, 6, 5} for p ∈ {2, 4, 6} noise, respectively. In case of no noise, i.e. p = 0,

we stop the iterations at an arbitrary large threshold, say ns = 30. Figures 7 and 8 show that the

numerical solutions for the thermal conductivity components k11 and k22 are smooth, stable and

they become more accurate as the amount of noise p decreases. Remark also that the standard

L2-gradient produced very inaccurate results for the initial guess (76) due to the incompatibility

between (76) and (73), (74) on the boundary.

6. Conclusions

In this paper, the determination of two-dimensional space-dependent orthotropic thermal con-

ductivity from internal temperature measurements has been accomplished using the CGM together
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with the discrepancy principle. The Sobolev gradient has been utilized in the CGM iterative al-

gorithm to reconstruct smoother and significantly more accurate and stable numerical solutions.

Regularization has been achieved by stopping the iterations at the level at which the least-squares

objective functional, minimizing the gap between the computed and the measured temperature,

becomes just below the noise threshold with which the data is contaminated. The numerical results

illustrate that the CGM together with the discrepancy principle is an efficient stable regularization

method. Furthermore, its robustness with respect to the independence on the initial guess has been

further enhanced by using the Sobolev gradient concept. Further work will consider reconstruction

of an inhomogeneous and fully anisotropic thermal conductivity.
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A.

In this appendix, we describe the ADI scheme employed for discretising the orthotropic heat

equation (1). First, we construct a rectangular network of mesh size ∆x, ∆y over the unit square

Ω = (0, 1) × (0, 1) and consider the time step of size ∆t, namely,

xi = (i− 1)∆x, i = 1, I, ∆x = 1/(I − 1),

yj = (j − 1)∆y, j = 1, J, ∆y = 1/(J − 1),

tl = (l − 1)∆t, l = 1, L, ∆t = tf/(L− 1).

We approximate (1) as

T
l+ 1

2

i,j − T l
i,j

1
2
∆t

=
k11i+ 1

2
,j

(∆x)2
T

l+ 1

2

i+1,j −
k11i+ 1

2
,j + k11i− 1

2
,j

(∆x)2
T

l+ 1

2

i,j +
k11i− 1

2
,j

(∆x)2
T

l+ 1

2

i−1,j

+
k22i,j+ 1

2

(∆y)2
T l
i,j+1 −

k22i,j+ 1

2

+ k22i,j− 1

2

(∆y)2
T l
i,j +

k22i,j− 1

2

(∆y)2
T l
i,j−1 − qi,jT

l
i,j + Sl

i,j, (A1)

and

T l+1
i,j − T

l+ 1

2

i,j

1
2
∆t

=
k11i+ 1

2
,j

(∆x)2
T

l+ 1

2
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k11i+ 1

2
,j + k11i− 1

2
,j

(∆x)2
T
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2

i,j +
k11i− 1

2
,j
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l+ 1
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+
k22i,j+ 1

2

(∆y)2
T l+1
i,j+1 −

k22i,j+ 1

2

+ k22i,j− 1

2

(∆y)2
T l+1
i,j +

k22i,j− 1

2

(∆y)2
T l+1
i,j−1 − qi,jT

l+ 1

2

i,j + S
l+ 1

2

i,j , (A2)

where T l
i,j = T (xi, yj, tl), k11i,j = k11(xi, yj), k22i,j = k22(xi, yj), qi,j = q(xi, yj) and Sl

i,j =

S(xi, yj, tl). Rearranging (A1) and (A2) we obtain the ADI method [33], which has the accu-
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racy of O(∆t2 + ∆x2 + ∆y2), namely,

− αi− 1

2
,jT

l+ 1

2

i−1,j + (2 + αi− 1

2
,j + αi+ 1

2
,j)T

l+ 1

2
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2
,jT
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i+1,j

= βi,j− 1

2

T l
i,j−1 + (2 − βi,j− 1

2

− βi,j+ 1

2

− ∆tqi,j)T
l
i,j + βi,j+ 1

2

T l
i,j+1 + ∆tSl

i,j, (A3)

and

− βi,j− 1

2

T l+1
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+ βi,j+ 1

2

)T l+1
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,jT
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i,j + αi+ 1

2
,jT
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i+1,j + ∆tS
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2

i,j , (A4)

where α(x, y) = k11(x, y)∆t/(∆x)2, β(x, y) = k22(x, y)∆t/(∆y)2, αi,j = α(xi, yj), βi,j = β(xi, yj),

αi±1/2,j = (αi,j + αi±1,j)/2 and βi,j±1/2 = (βi,j + βi,j±1)/2.

Next, we discretise the Neumann boundary conditions (2)–(3) as

T l
1,j = (4T l

2,j − T l
3,j + 2∆x(q1)

l
j/k111,j)/3, T l

I,j = (4T l
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Introducing (A5) and (A6) into (A3) and (A4) we obtain
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NOMENCLATURE

E root-mean-square error t time variable

J objective functional tf final time

J ′ gradient of objective functional x, y space coordinates

J ′

W 1,2 Sobolev gradient Y temperature data

k11, k22 thermal conductivity components Y exact exact temperature

n number of iterations β search step size

P direction of decent γ conjugate coefficient

q perfusion coefficient ε small perturbation

q1, q2, q3, q4 heat fluxes δ Dirac delta function

r0, r1 weight functions λ Lagrange multiplier

S source term µ amount of noise

T temperature σ standard deviation

T0 initial temperature
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List of Figures

Figure 1 (a) The exact and numerical thermal conductivity (b) k(x, y) obtained using the CGM of

[7] for isotropic material in comparison with (c) k11(x, y) and (d) k22(x, y) obtained by the

CGM of this paper for orthotropic material, for Example 1.

Figure 2 The exact (73) thermal conductivity component k11(x, y) together with the initial guess (75)

and the numerical solutions at locations (a) y = 0.2, (b) y = 0.4, (c) y = 0.6 and (d) y = 0.8,

for no noise, i.e., p = 0, obtained with the standard L2-gradient and with the Sobolev W 1,2-

gradient. (e) The exact k11(x, y), (f) k11(x, y) obtained by standard L2-gradient and (g)

k11(x, y) obtained by Sobolev W 1,2-gradient, for Example 2.

Figure 3 The exact (74) thermal conductivity component k22(x, y) together with the initial guess (75)

and the numerical solutions at locations (a) y = 0.2, (b) y = 0.4, (c) y = 0.6 and (d) y = 0.8,

for no noise, i.e., p = 0, obtained with the standard L2-gradient and with the Sobolev W 1,2-

gradient. (e) The exact k22(x, y), (f) k22(x, y) obtained by standard L2-gradient and (g)

k22(x, y) obtained by Sobolev W 1,2-gradient, for Example 2.

Figure 4 (a) The objective functional (5), (b) the error (64) and (c) the error (65), obtained with

the initial guess (75) using the standard L2-gradient (34) and (35), and the similar results

(d)–(f) using the Sobolev W 1,2-gradient satisfying (40), (43) and (44), for p ∈ {2, 4, 6} noise,

for Example 2.

Figure 5 (a) The exact (73) and the numerical thermal conductivity component k11(x, y) obtained

with the standard L2-gradient (34) and (35) (——) and the Sobolev W 1,2-gradient (40), (43)

and (44) (– – –) for (b) p = 2, (c) p = 4 and (d) p = 6 noise, for Example 2.

Figure 6 (a) The exact (74) and the numerical thermal conductivity component k22(x, y) obtained

with the standard L2-gradient (34) and (35) (——) and the Sobolev W 1,2-gradient (40), (43)

and (44) (– – –) for (b) p = 2, (c) p = 4 and (d) p = 6 noise, for Example 2.

Figure 7 The exact (73) and numerical thermal conductivity component k11(x, y) obtained using the

Sobolev W 1,2-gradient with the initial guess (76) at locations (a) y = 0.2, (b) y = 0.4, (c)
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y = 0.6 and (d) y = 0.8, for p ∈ {0, 2, 4, 6} noise, for Example 2.

Figure 8 The exact (74) and numerical thermal conductivity component k22(x, y) obtained using the

Sobolev W 1,2-gradient with the initial guess (76) at locations (a) y = 0.2, (b) y = 0.4, (c)

y = 0.6 and (d) y = 0.8, for p ∈ {0, 2, 4, 6} noise, for Example 2.
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Figure 1: (a) The exact and numerical thermal conductivity (b) k(x, y) obtained using the CGM of [7] for isotropic
material in comparison with (c) k11(x, y) and (d) k22(x, y) obtained by the CGM of this paper for orthotropic
material, for Example 1.
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Figure 2: The exact (73) thermal conductivity component k11(x, y) together with the initial guess (75) and the
numerical solutions at locations (a) y = 0.2, (b) y = 0.4, (c) y = 0.6 and (d) y = 0.8, for no noise, i.e., p = 0,
obtained with the standard L2-gradient and with the Sobolev W 1,2-gradient. (e) The exact k11(x, y), (f) k11(x, y)
obtained by standard L2-gradient and (g) k11(x, y) obtained by Sobolev W 1,2-gradient, for Example 2
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Figure 3: The exact (74) thermal conductivity component k22(x, y) together with the initial guess (75) and the
numerical solutions at locations (a) y = 0.2, (b) y = 0.4, (c) y = 0.6 and (d) y = 0.8, for no noise, i.e., p = 0,
obtained with the standard L2-gradient and with the Sobolev W 1,2-gradient. (e) The exact k22(x, y), (f) k22(x, y)
obtained by standard L2-gradient and (g) k22(x, y) obtained by Sobolev W 1,2-gradient, for Example 2.
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Figure 4: (a) The objective functional (5), (b) the error (64) and (c) the error (65), obtained with the initial guess
(75) using the standard L2-gradient (34) and (35), and the similar results (d)–(f) using the Sobolev W 1,2-gradient
satisfying (40), (43) and (44), for p ∈ {2, 4, 6} noise, for Example 2.
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Figure 5: (a) The exact (73) and the numerical thermal conductivity component k11(x, y) obtained with the standard
L2-gradient (34) and (35) (——) and the Sobolev W 1,2-gradient (40), (43) and (44) (– – –) for (b) p = 2, (c) p = 4
and (d) p = 6 noise, for Example 2.
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Figure 6: (a) The exact (74) and the numerical thermal conductivity component k22(x, y) obtained with the standard
L2-gradient (34) and (35) (——) and the Sobolev W 1,2-gradient (40), (43) and (44) (– – –) for (b) p = 2, (c) p = 4
and (d) p = 6 noise, for Example 2.
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Figure 7: The exact (73) and numerical thermal conductivity component k11(x, y) obtained using the Sobolev
W 1,2-gradient with the initial guess (76) at locations (a) y = 0.2, (b) y = 0.4, (c) y = 0.6 and (d) y = 0.8, for
p ∈ {0, 2, 4, 6} noise, for Example 2.
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Figure 8: The exact (74) and numerical thermal conductivity component k22(x, y) obtained using the Sobolev
W 1,2-gradient with the initial guess (76) at locations (a) y = 0.2, (b) y = 0.4, (c) y = 0.6 and (d) y = 0.8, for
p ∈ {0, 2, 4, 6} noise, for Example 2.
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