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THE LASCAR GROUPS AND THE FIRST
HOMOLOGY GROUPS IN MODEL THEORY

JAN DOBROWOLSKI, BYUNGHAN KIM, AND JUNGUK LEE

Abstract. Let p be a strong type of an algebraically closed tuple
over B = acleq(B) in any theory T . Depending on a ternary rela-

tion ⌣|
∗
satisfying some basic axioms (there is at least one such,

namely the trivial independence in T ), the first homology group
H∗

1 (p) can be introduced, similarly to [3].
We show that there is a canonical surjective homomorphism

from the Lascar group over B to H∗
1 (p). We also notice that the

map factors naturally via a surjection from the ‘relativised’ Lascar
group of the type (which we define in analogy with the Lascar
group of the theory) onto the homology group, and we give an
explicit description of its kernel. Due to this characterization, it
follows that the first homology group of p is independent from the

choice of ⌣|
∗
, and can be written simply as H1(p).

As consequences, in any T , we show that |H1(p)| ≥ 2ℵ0 unless
H1(p) is trivial, and we give a criterion for the equality of stp and
Lstp of algebraically closed tuples using the notions of the first
homology group and a relativised Lascar group.

We also argue how any abelian connected compact group can
appear as the first homology group of the type of a model.

In this paper we study the first homology group of a strong type in
any theory.

Originally, in [3] and [4], a homology theory only for rosy theories
is developed. Namely, given a strong type p in a rosy theory T , the
notion of the nth homology group Hn(p) depending on thorn-forking
independence relation is introduced. Although the homology groups
are defined analogously as in singular homology theory in algebraic
topology, the (n + 1)th homology group for n > 0 in the rosy theory
context has to do with the nth homology group in algebraic topology.
For example as in [3], H2(p) in stable theories has to do with the
fundamental group in topology. This implies that, already in rosy
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2 JAN DOBROWOLSKI, BYUNGHAN KIM, AND JUNGUK LEE

theories, H1(p) is detecting somewhat endemic properties of p existing
only in model theory context.

Indeed, in every known rosy example, Hn(p) for n ≥ 2 is a profinite
abelian group. In [5], it is proved to be so when T is stable under a
canonical condition, and conversely, every profinite abelian group can
arise in this form. On the other hand, we show in this paper that the
first homology groups appear to have distinct features as follows.

Let p = tp(a/B) be a strong type over B = acleq(B) in any theory
T . Fix a ternary invariant independence relation ⌣|

∗
among small sets

satisfying finite character, normality, symmetry, transitivity and exten-
sion. (There is at least one such relation, by putting A⌣| C D for any
sets A,C,D.) Then we can analogously define H∗

1 (p) depending on⌣
| ∗
,

(which of course is the same as H1(p) when ⌣
| ∗

is thorn-independence
in rosy T ). In this note, a canonical epimorphism from the Lascar
group over B of T to H∗

1 (p) is constructed. Indeed, we also introduce
the notion of the relativised Lascar group of a type which is proved to
be independent from the choice of the monster model of T , and the
homomorphism factors through a surjection from the relativised Las-
car group of p̄ = tp(acl(aB)/B) onto H∗

1 (p). Moreover, we can identify
its kernel. Roughly, H∗

1 (p) has to do with the abelianization of the
relativised Lascar group of p̄. More precisely, H∗

1 (p) = G/K, where
G is the group of automorphisms of the realization set of p̄, and K is
the normal subgroup of G fixing each orbit under the action of the de-
rived subgroup of G. Surprisingly, this conclusion is independent from
the choice of ⌣|

∗
satisfying the axioms.1 Hence, we can write the first

homology group simply as H1(p), which makes sense in any theory.
Consequently, we show that |H1(p)| ≥ 2ℵ0 unless H1(p) is trivial,

and exhibit a non-profinite example in a rosy theory. In conclusion,
we find a criterion for the coincidence of notions of strong types and
Lascar types of algebraically closed tuples in any theory, in terms of
the triviality of the first homology groups and the abelianness of a
relativised Lascar group (Corollary 4.7). It seems reasonable to ask
whether this criterion can be applied in verifying or refuting stp≡Lstp
in simple theories.

In Section 1, we introduce/recall basic definitions of the first homol-
ogy group of a strong type for any theory. In Section 2, as mentioned
above, we construct a surjective homomorphism from the Lascar group
to the first homology group. In Section 3, we introduce the aforemen-
tioned concept of relativized Lascar groups, and in Section 4, we prove

1However it is not clear whether the same feature can happen for nth homology
groups of types for n > 1.
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the characterization theorem (Theorem 4.4) of the first homology group
and give a criterion for Lstp≡stp. We also argue that the size of the
first homology group of a strong type is either 1 or ≥ 2ℵ0 (in Theorem
4.8, and a more detailed explanation is given in Section 6). In Section
5, we state that any connected compact abelian group can appear as
the first homology group of the type of a model (Theorem 5.2), which
follows from a result by Bouscaren, Lascar, Pillay, and Ziegler. We
also give a more precise example of a type in a rosy theory having a
non-profinite first homology group. We point out here that this paper
is a result of merging two notes. The first one, single-authored by Jun-
guk Lee, covered Section 2, Theorem 4.8 in Section 4, and Section 5.2,
and the second note, jointly written by the three authors, consisted of
Section 1,3, 4 and Section 5.1.

1. Introduction

Throughout this paper, we work in a large saturated model M(=
Meq) of a complete theory T , and we use standard notations. For
example, unless stated otherwise, a, b, . . . , and A,B, . . . are small but
possibly infinite tuples and sets from M, respectively, and a ≡A b,
a ≡s

A b, a ≡L
A b mean tp(a/A) = tp(b/A), stp(a/A) = stp(b/A),

Lstp(a/A) = Lstp(b/A), respectively. For the general theory of model
theory, of the Lascar groups, and of rosy theories, we refer to [6], [11],
and [2], respectively. For the homology theory in model theory, see
[4, 3]. A particular case of the first homology group with respect to
thorn-forking in rosy theories is studied in [7],[8]. The main difference
of the first homology groups introduced in this section from those in
the references is that the groups are defined with respect to a fixed
independence notion in an arbitrary theory as follows, not necessarily
thorn-forking/Shelah-forking in rosy/simple theories. However, as the
reader will see, all the arguments from the rosy theory context can
follow in the general context.

For the rest of this section (and also for Section 4), we fix a ternary
automorphism-invariant relation⌣|

∗
between small sets ofM satisfying

• finite character: for any sets A,B,C, we have A⌣|
∗
C B iff a⌣|

∗
C b

for any finite tuples a ∈ A and b ∈ B;
• normality: for any setsA, B and C, ifA⌣|

∗
C B, thenA⌣|

∗
C acl(BC);

• symmetry: for any sets A,B,C, we have A⌣|
∗
C B iff B⌣|

∗
C A;

• transitivity: A⌣|
∗
BD iff A⌣|

∗
B C and A⌣|

∗
C D, for any sets A

and B ⊆ C ⊆ D;
• extension: for any sets A and B ⊆ C, there is A′ ≡B A such
that A′⌣|

∗
B C.
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Throughout this paper we call the above axioms the basic 5 ax-
ioms. We say that A is ∗-independent from B over C if A⌣|

∗
C B.

Notice that there is at least one such relation for any theory, namely,
the trivial independence relation: For any sets A,B,C, put A⌣|

∗
B C.

Of course there is a non-trivial such relation when T is simple or rosy,
given by forking or thorn-forking, respectively.

Now, we also fix a strong type p of possibly infinite arity over B =
acl(B). We shall define the first homology group of p with respect to
⌣|

∗
, analogously to that in the references. Hence we begin by recalling

some notations from the references.

Notation 1.1. Let s be an arbitrary finite set of natural numbers.
Given any subset X ⊆ P(s), we may view X as a category where for
any u, v ∈ X, Mor(u, v) consists of a single morphism ιu,v if u ⊆ v, and
Mor(u, v) = ∅ otherwise. If f : X → C is any functor into some category
C, then for any u, v ∈ X with u ⊆ v, we let fu

v denote the morphism
f(ιu,v) ∈ MorC(f(u), f(v)). We shall callX ⊆ P(s) a primitive category
if X is non-empty and downward closed ; i.e., for any u, v ∈ P(s), if
u ⊆ v and v ∈ X then u ∈ X. (Note that all primitive categories have
the empty set ∅ ⊂ ω as an object.)

We use now CB to denote the category whose objects are all the small
subsets ofM containing B, and whose morphisms are elementary maps
over B. For a functor f : X → CB and objects u ⊆ v of X, fu

v (u)
denotes the set fu

v (f(u))(⊆ f(v)).

Definition 1.2. By a ∗-independent functor in p, we mean a functor
f from some primitive category X into CB satisfying the following:

(1) If {i} ⊂ ω is an object in X, then f({i}) is of the form acl(Cb)
where b |= p, C = acl(C) = f ∅

{i}(∅) ⊇ B, and b⌣|
∗
B C.

(2) Whenever u( 6= ∅) ⊂ ω is an object in X, we have

f(u) = acl

(
⋃

i∈u

f {i}
u ({i})

)

and {f
{i}
u ({i})| i ∈ u} is ∗-independent over f ∅

u(∅).

We let A∗
p denote the family of all ∗-independent functors in p.

A ∗-independent functor f is called a ∗-independent n-simplex in p
if f(∅) = B and dom(f) = P(s) with s ⊂ ω and |s| = n+ 1. We call s
the support of f and denote it by supp(f).

In the rest we may call a ∗-independent n-simplex in p just an n-
simplex of p, as far as no confusion arises. We are ready to define
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the first homology group H∗
1 (p) of p depending on our choice of the

independence relation ⌣|
∗
.

Definition 1.3. Let n ≥ 0. We define:

Sn(A
∗
p) := { f ∈ A∗

p | f is an n-simplex of p }

Cn(A
∗
p) := the free abelian group generated by Sn(A

∗
p).

An element of Cn(A
∗
p) is called an n-chain of p. The support of a chain

c, denoted by supp(c), is the union of the supports of all the simplices
that appear in c with a non-zero coefficient. Now for n ≥ 1 and each
i = 0, . . . , n, we define a group homomorphism

∂in : Cn(A
∗
p) → Cn−1(A

∗
p)

by putting, for any n-simplex f : P(s) → C in Sn(A
∗
p) where s = {s0 <

· · · < sn} ⊂ ω,

∂in(f) := f ↾ P(s \ {si})

and then extending linearly to all n-chains in Cn(A
∗
p). Then we define

the boundary map

∂n : Cn(A
∗
p) → Cn−1(A

∗
p)

by

∂n(c) :=
∑

0≤i≤n

(−1)i∂in(c).

We shall often refer to ∂n(c) as the boundary of c. Next, we define:

Zn(A
∗
p) := Ker ∂n

Bn(A
∗
p) := Im ∂n+1.

The elements of Zn(A
∗
p) andBn(A

∗
p) are called n-cycles and n-boundaries

in p, respectively. It is straightforward to check that ∂n ◦ ∂n+1 = 0.
Hence we can now define the group

H∗
n(p) := Zn(A

∗
p)/Bn(A

∗
p)

called the nth ∗-homology group of p.

Notation 1.4. (1) For c ∈ Zn(A
∗
p), [c] denotes the homology class

of c in H∗
n(p).

(2) When n is clear from the context, we shall often omit n in ∂in
and in ∂n, writing simply as ∂i and ∂.

Definition 1.5. A 1-chain c ∈ C1(A
∗
p) is called a 1-∗-shell (or just a

1-shell) in p if it is of the form

c = f0 − f1 + f2
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where fi’s are 1-simplices of p satisfying

∂ifj = ∂j−1fi whenever 0 ≤ i < j ≤ 2.

Hence, for supp(c) = {n0 < n1 < n2} and k ∈ {0, 1, 2}, it follows that

supp(fk) = supp(c)r {nk}.

Notice that the boundary of any 2-simplex is a 1-shell.

Notation/Remark 1.6. Let p(x) = tp(a/B) be fixed, and let p̄(x̄) =
tp(acl(aB)/B) (with some enumeration of acl(aB)). Obviously p̄(x̄)
only depends on p (not on its realizations). By the definitions of the
∗-independent functors and the first homology group, H∗

1 (p) and H
∗
1 (p̄)

are identical.
If c is a 1-shell, then in H∗

1 (p), we shall see in Remark 2.5 that
[−c] = [c′] where c′ is another 1-shell with supp(c′) = supp(c).
We note now that in [4], the notion of an amenable collection of

functors into a category is introduced, and due to the 5 axioms that
⌣|

∗
satisfies, it is clear that A∗

p forms such a collection of functors into
CB. Therefore the following corresponding fact holds.

Fact 1.7. ([3] or [4])

H∗
1 (p) = {[c] | c is a 1-∗-shell with supp(c) = {0, 1, 2} }.

So if any 1-shell is the boundary of some 2-chain then H∗
1 (p) = 0.2

Remark 1.8. The following Fact 1.9 directly comes from [7, Theorem
2.4] (and above 1.6), since the proof of the theorem only uses the fact
that thorn-independence in any rosy theory satisfies the basic 5 axioms.
But we point out that corrections should be made in the theorem and
other results in [7]. Namely, p(x) there should be changed to p̄(x̄)
since a vertex of a simplex in p is an algebraically closure over B of
a realization of p. In fact it is not clear whether p(x) being a Lascar
type implies that p̄(x̄) is also a Lascar type (the converse always holds
though), unless T is G-compact over B: Let T be G-compact over B,
and let p be a Lascar type; i.e., for any a, b |= p, we have a ≡L

B b.
We claim that p̄ is a Lascar type, too. Since T is G-compact over B,
equality of Lstp over B is B-type-definable and a conjunction of those
of finite arities. Thus by compactness for a |= p and finite c ∈ acl(aB),
it suffices to show that q(x, y) := tp(ac/B) is a Lascar type. Now
since p is a Lascar type, for any a′ |= p there is c′ ∈ acl(a′B) such that
ac ≡L

B a′c′. Since there are only finitely many conjugates of c′ over a′B,

2Notice that in Definition 1.2, we take algebraic closures, rather that bounded

closures. Hence even when ⌣|
∗
is nonforking in simple T , it is not known whether

H∗
1 (p) is trivial. We put this as an open question in Question 4.9.
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it follows that there are at most finitely many distinct Lascar types in
q. This implies that equality of Lstp in q is relatively definable over B.
But since q is a strong type over B = acl(B), there is only one Lascar
class in q.

Fact 1.9. Suppose that p̄(x̄) is a Lascar type. Then H∗
1 (p) = 0.

For the rest of this paper, for notational simplicity, we suppress B
to ∅ by naming it (and reuse B to mean an arbitrary small set). In
particular, C denotes CB. We further suppose (until the end of
Section 4) that the fixed strong type p is a type of an alge-
braically closed set (by assuming p = p̄) or that the algebraic
closure of its realization is the same as its definable closure.
This process is necessary as pointed out in Remark 1.8, and will not
affect in computing H∗

1 (p) due to 1.6.

2. Lascar groups and the first homology groups

In this section, we show that there is a canonical epimorphism from
the Lascar group GalL(T ) onto the first homology group H∗

1 (p) of p.

2.1. Representations of 1-shells.

Definition 2.1. (1) We introduce some notation which will be used
throughout. Let f : P(s) → C be an n-simplex in p. For u ⊂ s
with u = {i0 < . . . < ik}, we shall write f(u) = [a0 . . . ak]u,
where each aj |= p is an algebraically closed tuple as assumed

before, if f(u) = acl(a0 . . . ak), and acl(aj) = f
{ij}
u ({ij}). So,

{a0, . . . , ak} is ∗-independent. Of course, if we write f(u) ≡
[b0 . . . bk]u, then it means that there is an automorphism send-
ing a0 . . . ak to b0 . . . bk.

(2) Let s = f12 − f02 + f01 be a 1-∗-shell in p such that supp(fij) =
{ni, nj} with ni < nj for 0 ≤ i < j ≤ 2. Clearly there is a
quadruple (a0, a1, a2, a3) of realizations of p such that f01({n0, n1}) ≡
[a0a1]{n0,n1}, f12({n1, n2}) ≡ [a1a2]{n1,n2}, and f02({n0, n2}) ≡
[a3a2]{n0,n2}. We call this quadruple a representation of s. For
any such representation of s, call a0 an initial point, a3 a termi-
nal point, and (a0, a3) an endpoint pair of the representation.

In the next theorem, we will see that the endpoint pairs of repre-
sentations determine the classes of 1-shells in H∗

1 (p), and the group
structure of H∗

1 (p) can be described by endpoint pairs.

Theorem 2.2. Let s0 and s1 be 1-shells with support {0, 1, 2}. Suppose
they have some representations with the same endpoint pair. Then
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s0 − s1 is a boundary of a 2-chain, that is, s0 and s1 are in the same
homology class in H∗

1 (p)

Proof. Let sk := fk
12−f

k
02+f

k
01 for k = 0, 1, where for each 1-shell fk

ij in p,

supp(fk
ij) = {i, j}. Suppose s0 and s1 have representations (a, b0, c0, a

′)

and (a, b1, c1, a
′), respectively. Take b |= p such that b⌣|

∗
ab0b1c0c1a

′.
Then, there is a 2-chain α = (a001+ a012− a002)− (a101+ a112− a102), where
for each k = 0, 1 and 0 ≤ i < j ≤ 2, akij is a 2-simplex satisfying the
following: For k = 0, 1,

(1) supp(akij) = {i, j, 3};

(2) akij ↾ P({i, j}) = fk
ij; and

(3) ak01({0, 1, 3}) = [abkb]{0,1,3}, a
k
12({1, 2, 3}) = [bkckb]{1,2,3},

ak02({0, 2, 3}) = [a′ckb]{0,2,3},

and ∂(ak01 + ak12 − ak02) = sk − (fk − gk), where fk = ak01 ↾ P({0, 3})
and gk = ak02 ↾ P({0, 3}). So ∂α = (s0 − s1) − ((f1 − g1) − (f0 −
g0)). It is enough to show that a 1-chain (f1 − g1) − (f0 − g0) is a
boundary of a 2-chain. (Notice that even if for f0, f1 (similarly for
g0, g1), f0({0, 3}) = f1({0, 3}) = [ab]{0,3}, it need not be that f0 = f1
since f0({0}) = f 0

01({0}) and f1({0}) = f 1
01({0}).)

Now by the extension axiom, we can choose c, c′ |= p such that

c⌣|
∗
ab, c′⌣|

∗
a′b, and ca ≡ c′a′. For k = 0, 1, consider 2-simplices f̂k

and ĝk such that:

(1) supp(f̂k) = supp(ĝk) = {0, 3, 4};

(2) f̂k({0, 3, 4}) = [abc]{0,3,4} and ĝk({0, 3, 4}) = [a′bc′]{0,3,4};

(3) ∂0f̂0 = ∂0f̂1, ∂
0ĝ0 = ∂0ĝ1;

(4) ∂1f̂k = ∂1ĝk; and

(5) ∂2f̂k = fk, ∂
2ĝk = gk.

Then the 1-chain (f1 − g1) − (f0 − g0) is the boundary of the 2-chain

(f̂1 − ĝ1)− (f̂0 − ĝ0). �

Remark 2.3. Notice that in the proof above, that s0, s1 have the same
support is not at all essential, so Theorem 2.2 still holds even if their
supports are distinct. Moreover, if (a, b, c, a) is a representation of some
1-shell s, even if a and bc need not be ∗-independent, [s] = 0 in H∗

1 (p).

Theorem 2.4. Let s0 and s1 be 1-shells with support {0, 1, 2}, and let
a, a′, a′′ |= p be such that (a, a′) and (a′, a′′) are the endpoint pairs of
representations of s0 and s1, respectively. Then there is a 1-shell s with
support {0, 1, 2} having a representation with the endpoint pair (a, a′′)
such that [s] = [s0] + [s1] in H

∗
1 (p).
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Proof. Let s0 = f 0
01 + f 0

12 − f 0
02, and let s1 = f 1

01 + f 1
12 − f 1

02 with
supp(fk

ij) = {i, j}. Since (a, a′) and (a′, a′′) are some endpoint pairs of
s0 and s1 respectively, by Theorem 2.2, we may assume the restrictions
of f 0

01 and f 1
01 to the domain P({0}) are the same, hence so are the

restrictions of f 0
02 and f 1

02 to P({0}). Let b0, b1, c0, c1 |= p be such that
the two quadruples (a, b0, c0, a

′) and (a′, b1, c1, a
′′) are representations of

s0 and s1, respectively. Consider two ∗-independent elements d, e |= p
with de⌣|

∗
aa′a′′b0b1c0c1. Then there is a 2-chain α = (a001+a

0
12−a

0
02)−

b + (a101 + a112 − a102), where for k = 0, 1 and 0 ≤ i < j ≤ 2, akij and b
are 2-simplices satisfying the following:

(1) supp(akij) = {i, j, 3 + k} and supp(b) = {0, 3, 4};

(2) akij ↾ P({i, j}) = fk
ij;

(3) a001({0, 1, 3}) = [ab0d]{0,1,3}, a
0
12({1, 2, 3}) = [b0c0d]{0,2,3}, a

0
02({0, 2, 3}) =

[a′c0d]{0,2,3}, a
1
01({0, 1, 4}) = [a′b1e]{0,1,4}, a

1
12({1, 2, 4}) = [b1c1e]{1,2,4},

a102({0, 2, 4}) = [a′′c1e]{0,2,4}, and b({0, 3, 4}) = [a′de]{0,3,4};

and ∂(α) = s0+s1−s
′, where s′ = a001 ↾ P({0, 3})+b ↾ P({3, 4})−a102 ↾

P({0, 4}) is a 1-shell of a support {0, 3, 4} having (a, a′′) as its endpoint
pair. Now by Remark 2.3, for a 1-shell s of a support {0, 1, 2} obtained
from s′ by simply changing the support {0, 3, 4} to {0, 1, 2}, we have
[s] = [s′] inH∗

1 (p). Thus, there is a 2-chain α
′ having a 1-chain s0+s1−s

as its boundary, and so [s] = [s0] + [s1]. �

Now, we summarize some properties of endpoint pairs of 1-shells
which follow from Theorem 2.2 and Theorem 2.4. We define an equiv-
alence relation ∼ on the set of pairs of realizations p as follows: For
a, a′, b, b′ |= p, (a, b) ∼ (a′, b′) if two pairs (a, b) and (a′, b′) are end-
point pairs of 1-shells s and s′ respectively such that [s] = [s′] ∈ H∗

1 (p).
We write E∗ = p(M) × p(M)/ ∼. We denote the class of (a, b) ∈
p(M)× p(M) by [a, b]. By 2.2, if ab ≡ a′b′, then [a, b] = [a′, b′]. Now,
define a binary operation +E∗ on E∗ as follows: For [a, b], [b′, c′] ∈ E∗,
[a, b] +E∗ [b′, c′] = [a, c], where bc ≡ b′c′. Due to Theorem 2.4, this
operation is well-defined.

Remark 2.5. The pair (E∗,+E∗) forms a commutative group which is
isomorphic toH∗

1 (p). More specifically, for a, b, c |= p and σ ∈ Aut(M),
we have:

• [a, b] + [b, c] = [a, c];
• [a, a] is the identity element;
• −[a, b] = [b, a];
• σ([a, b]) := [σ(a), σ(b)] = [a, b]; and
• f : E∗ → H∗

1 (p) sending [a, b] 7→ [s], where (a, b) is an endpoint
pair of s, is a group isomorphism.
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From now on, we identify E∗ and H∗
1 (p). Notice that, indeed,

the group structure of E∗ depends only on the types of (a, b)’s with
[a, b] ∈ E∗. Hence one may similarly define an equivalence relation on

{q(x, y) : p(x) ∪ p(y) ⊆ q(x, y) a complete type over ∅}

to form E∗
tp, and give a corresponding group operation to conclude that

E∗ and E∗
tp are isomorphic.

Due to the same proof in [7], we can restate Fact 1.9 as follows using
the endpoint notion:

Fact 2.6. Let a, b |= p be such that a ≡L b. Then any 1-shell having
(a, b) as its endpoint pair is the boundary of a 2-chain; i.e., [a, b] = 0
in H∗

1 (p).

2.2. The Lascar group and the first homology groups. Here,
using the notion of an ordered bracket, for each a |= p we define a map
ϕ∗
a from the automorphism group over B(= ∅) into the first homology

group of p as follows: For σ ∈ Aut(M), we let ϕ∗
a(σ) = [a, σ(a)]. This

map will be proven to be a surjective homomorphism not depending
on the choice of a |= p. Thus, we get a canonical epimorphism from
Aut(M) onto H∗

1 (p) and we study its kernel.

Theorem 2.7. (1) Each ϕ∗
a is an epimorphism.

(2) For a, b |= p, ϕ∗
a = ϕ∗

b . So we get a canonical map ϕ∗
p from

Aut(M) into H∗
1 (p).

(3) There is a canonical epimorphism Φ∗
p from GalL(M) onto H∗

1 (p).

Proof. (1) Fix a |= p. At first, surjectivity of ϕ∗
a comes from the fact

that for b |= p, there is a σ ∈ Aut(M) such that σ(a) = b. It is enough
to show that ϕa is a homomorphism. For σ, τ ∈ Aut(M),

ϕ∗
a(στ) = [a, στ(a)]

= [a, σ(a)] + [σ(a), στ(a)]
= [a, σ(a)] + σ[a, τ(a)]
= [a, σ(a)] + [a, τ(a)]
= ϕ∗

a(σ) + ϕ∗
a(τ).

So ϕ∗
a is a homomorphism.

(2) Choose a, b |= p. Then there exists τ ∈ Aut(M) such that
b = τ(a). For σ ∈ Aut(M),

ϕ∗
b(σ) = ϕ∗

a(τ
−1στ)

= ϕ∗
a(τ

−1) + ϕ∗
a(σ) + ϕ∗

a(τ)
= ϕ∗

a(σ).
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Thus ϕ∗
a = ϕ∗

b , and we get a canonical epimorphism

ϕ∗
p : Aut(M) → H∗

1 (p),

defined by: ϕ∗
p := ϕ∗

a for some a |= p.

(3) By Fact 2.6, the kernel of ϕ∗
p contains Autf(M) and ϕ∗

p induces
a canonical epimorphism Φ∗

p from GalL(M) onto H∗
1 (p). �

3. The relativised Lascar groups

In this section, we introduce some candidates for the notion of Lascar
group of a strong type p, which are intended to be the Lascar group
relativised to p. We begin by presenting several automorphism groups.
Let Σ(x̄) be a partial type over ∅ (with x̄ of possibly infinite length,
and realizations of Σ need not be algebraically closed.) Recall that
AutfB(M) is the subgroup of AutB(M) generated by

{f ∈ AutB(M) : f ∈ AutM(M) for some model (B ⊆)M ≺ M},

and

GalL(T,B) := AutB(M)/AutfB(M)

(which does not depend on the choice of the monster model M).

Definition 3.1. (1) Aut(Σ(M)) := {σ ↾ Σ(M) : σ ∈ Aut(M)};
(2) Autfres(Σ(M)) := {σ ↾ Σ(M) : σ ∈ Autf(M)};
(3) for a cardinal λ > 0, Autfλfix(Σ(M)) :=

{σ ↾ Σ(M) : σ ∈ Aut(M) such that for any ai |= Σ and ā = (ai)i<λ, ā ≡L σ(ā)};

and
(4) Autffix(Σ(M)) :=

{σ ↾ Σ(M) : σ ∈ Aut(M) such that ā ≡L σ(ā) where ā is some enumeration of Σ(M)}.

It is straightforward to see that each of the groups Autfres(Σ(M)) ≤
Autffix(Σ(M)) ≤ Autfλfix(Σ(M)) is a normal subgroup of Aut(Σ(M)).

Definition 3.2. (1) GalresL (Σ(M)) := Aut(Σ(M))/Autfres(Σ(M));

(2) Galfix,λL (Σ(M)) := Aut(Σ(M))/Autfλfix(Σ(M)); and
(3) GalfixL (Σ(M)) := Aut(Σ(M))/Autffix(Σ(M)).

Remark 3.3. We have Autffix(Σ(M)) = Autfωfix(Σ(M)). So GalfixL (Σ(M)) =

Galfix,ωL (Σ(M)).



12 JAN DOBROWOLSKI, BYUNGHAN KIM, AND JUNGUK LEE

Proof. We will show by induction on λ ≥ ω that tuples (aj)j<λ, (bj)j<λ

with aj, bj |= Σ are Lascar-equivalent iff all their corresponding count-
able subtuples are. The base case is clear. Suppose the statement is
true for all cardinal numbers smaller than λ, and assume that corre-
sponding countable subtuples of (aj)j<λ and (bj)j<λ are Lascar-equivalent.
By the inductive hypothesis, for every i < λ there is ni < ω such that
the Lascar distance of a<i(:= (aj)j<i) and b<i is equal to ni. If there
is n < ω such that {i ∈ λ : n = ni} is cofinal in λ, then the Lascar
distance of (ai)i<λ and (bi)i<λ is n and we are done. So let us assume
it is not the case, and hence there are (ik < λ)k<ω such that nik ≥ k.
Then by compactness, for each k < ω, there is a finite subset Ik of ik
such that the Lascar distance of aIk := (aj)j∈Ik and bIk is at least k.
Considering the countable set I :=

⋃

k<ω Ik, we get that aI and bI are
not Lascar equivalent, a contradiction. �

Remark 3.4. (1) In [11] or [6], how to endow GalL(T ) with a
canonical topology to make it a topological group is explained
as follows. For fixed small submodels M and N of M, it eas-
ily follows that if f(M) ≡N g(M) for f, g ∈ Aut(M), then
fg−1 ∈ Autf(M). Hence there are the canonical maps µ :
Aut(M) → SM(N) (where SM(N) denotes the Stone space of
types overN of all conjugates ofM) mapping f to tp(f(M)/N),
and ν : SM(N) → GalL(T ) such that νµ : Aut(M) → GalL(T )
is the quotient map sending f to f Autf(M). The quotient
topology under the map ν is given to GalL(T ).

(2) Analogously, we consider ν ′ : SM(N) → GalresL (Σ(M)) such
that ν ′µ : Aut(M) → GalresL (Σ(M)) is the quotient map send-
ing f to (f ↾ Σ(M)) Autfres(Σ(M)). Again, we put on GalresL (Σ(M))
the quotient topology with respect to ν ′. Notice that ν ′ = ξν,
where ξ : GalL(T ) → GalresL (Σ(M)) is given by ξ(hAutf(M)) =
(h ↾ Σ(M)) Autfres(Σ(M)) (it is easy to see that ξ is well-
defined).

(3) The topology on GalresL (Σ(M)) defined above is the same as the
quotient topology induced from GalL(T ) by ξ. In particular,
the topology on GalresL (Σ(M)) does not depend on the choice of
modelsM andN above, and ξ is a continuous map: For a subset
W of GalresL (Σ(M)), we have that W is open iff ν ′−1[W ] =
ν−1[ξ−1[W ]] is open in SM(N) iff ξ−1[W ] is open in GalL(T ).

(4) In a similar manner, by considering the map ν ′′ : SM(N) →
GalfixL (Σ(M)) such that ν ′′µ : Aut(M) → GalfixL (Σ(M)) is the
quotient map, we equip the group GalfixL (Σ(M)) with the topol-
ogy induced by ν ′′, which coincides with the topology induced
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on GalfixL (Σ(M)) by the quotient map GalL(T ) → GalfixL (Σ(M)).
Since the quotient of a topological group by a normal subgroup
is always a topological group with respect to the quotient topol-
ogy, using the fact that GalL(T ) is a topological group ([11,
Theorem 16]) we obtain the following corollary.

Corollary 3.5. With the topologies defined above, GalresL (Σ(M)) and
GalfixL (Σ(M)) are topological groups.

Proposition 3.6. The group Galfix,λL (Σ(M)) (for λ ≤ ω, so in partic-
ular GalfixL (Σ(M))) does not depend on the choice of the monster model
M.

Proof. Consider two monster models M ≺ M′, such that M′ is |M|+-
saturated and |M|-strongly homogeneous. We define a map

η : Galfix,λL (Σ(M)) → Galfix,λL (Σ(M′))

by
η([f ↾ Σ(M)]) = [f ′ ↾ Σ(M′)],

where f ′ ∈ Aut(M′) is any extension of f ∈ Aut(M). Let us check that
η is well-defined. Suppose that two automorphisms f1, f2 ∈ Aut(M)

determine the same element in Galfix,λL (Σ(M)); i.e. g := (f1f
−1
2 ) ↾

Σ(M) belongs to Autfλfix(Σ(M)). Take any f ′
1, f

′
2 ∈ Aut(M′) extend-

ing f1 and f2 respectively. To see that g′ := (f ′
1f

′−1
2 ) ↾ Σ(M′) is in

Autfλfix(Σ(M
′)), take any λ-tuple a′ of elements of Σ(M′). Pick a ∈ M

which is Lascar equivalent to a′. Then g′(a′) ≡L g′(a) = g(a) ≡L a ≡L

a′, which shows that g′ ∈ Autfλfix(M
′) (by Remark 3.3), and so η is

well-defined.
Now it is clear that η is an injective homomorphism. To see that

it is onto, consider any element [g ↾ Σ(M′)] of Galfix,λL (Σ(M′)), where
g ∈ Aut(M′). By the argument in Remark 3.4(1), we can find g′ ∈
Aut(M′) such that gg′−1 ∈ Autf(M′) and g′[M] = M. Then η([g′ ↾
Σ(M)]) = [g′ ↾ Σ(M′)] = [g ↾ Σ(M′)]. This shows that η is an
isomorphism. �

Notation 3.7. Due to above Proposition 3.6, we write Galfix,nL (Σ),GalfixL (Σ)

for the groups Galfix,nL (Σ(M)),GalfixL (Σ(M)), respectively.

Question 3.8. Is the group GalresL (Σ(M)) independent from the choice
of the monster modelM? What is an example in which Autfres(Σ(M))
differs from Autffix(Σ(M))?

Remark 3.9. If there are realizations ai ∈ Σ(M) and a small submodel
(B ⊆)M of M such that M ⊆ dcl(Bai| i < λ), then Autfres(Σ(M)) =
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Autffix(Σ(M)). In particular, if M ⊆ dcl(Ba0), then Autfres(Σ(M)) =
Autffix(Σ(M)) = Autf1fix(Σ(M)).

Fact 3.10. Recall from Section 2.2 that we have a canonical epimor-
phism

ψ∗
p : Aut(p(M)) → H∗

1 (p)

sending each σ ∈ Aut(p(M)) to [a, σ(a)] for some/any realization a
of p. Due to Fact 2.6, Ker(ψ∗

p) contains Autffix(p(M)). Hence, this

induces a canonical epimorphism Ψ∗
p : GalfixL (p) → H∗

1 (p) as well.

Remark 3.11. Note that Aut(p(M))/Ker(ψ∗
p) is isomorphic toH∗

1 (p),
which is independent from the choice of the monster model. Since
H∗

1 (p) is abelian, Ker(ψ∗
p) contains the derived subgroup of Aut(p(M)).

We shall figure out what Ker(ψ∗
p) is, and it will turn out that even the

kernel (so H∗
1 (p) too) is independent from the choice of ⌣|

∗
.

4. Characterization of the first homology groups

The goal of this section is to identify what Ker(ψ∗
p) is. In [7],[8], the

2-chains in p (in the sense of thorn-independence) with 1-shell bound-
aries are classified when T is rosy. However, again, the only properties
of thorn-forking used there are the basic 5 axioms: finite character,
normality, symmetry, transitivity, and extension. Therefore, the same
conclusion can be obtained in our context of ∗-independence in any T .

In particular we obtain the following from [7, 3.14]:

Remark 4.1. Let s = f01 + f12 − f02 be a 1-∗-shell with supp(fij) =
{i, j}. Then s is the boundary of some 2-∗-chain in p iff s is the
boundary of some 2-∗-chain

α =
2n∑

i=0

(−1)iai

with 2-∗-simplicies ai, which is a chain-walk from f01 to f12. We call
the 2-∗-chain α a chain-walk from f01 to f12 if,

(1) there are non-zero numbers k0, . . . , k2n+1 (not necessarily dis-
tinct) such that k0 = k2n = 1, k2n+1 = 2, and for i ≤ 2n,
supp(ai) = {0, ki, ki+1};

(2) ∂2a0 = f01, ∂
2a2n = f12; and

(3) for 0 ≤ i < n,

∂0a2i = ∂0a2i+1, ∂
2a2i+1 = ∂2a2i+2.

Note that actually in [7, 3.14], it is given as a chain-walk from f01 to
−f02 but the same proof gives a chain-walk from f01 to f12.
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Now due to the fact that ∂(α) = s and α is a chain-walk, we can
directly obtain the following fact.

Theorem 4.2. A 1-∗-shell s in p is the boundary of a 2-chain if and
only if there is a representation (a, b, c, a′) of s such that for some n ≥ 0
there is a finite sequence (di)0≤i≤2n+2 of realizations of p satisfying the
following conditions:

(1) d0 = a, d2n+1 = c and d2n+2 = a′;
(2) {dj, dj+1, b} is ∗-independent for each 0 ≤ j ≤ 2n+ 1; and
(3) there is a bijection

σ : {0, 1, . . . , n} → {0, 1, . . . , n}

such that d2id2i+1 ≡ d2σ(i)+2d2σ(i)+1 for 0 ≤ i ≤ n.

Proof. Let s be a 1-shell with supp(s) = {0, 1, 2} in p, which is the
boundary of a 2-chain. Then, by Remark 4.1, we have a 2-∗-chain-

walk
2n∑

i=0

(−1)iai from f01 to f12 with the boundary s. Then there are

d0, d1, . . . , d2n+1, b |= p such that

(1) {dj, dj+1, b} is ∗-independent for each 0 ≤ j ≤ 2n;
(2) a2i({0, 1, 2}) ≡ [d2ibd2i+1]{0,1,2} and a2i+1({0, 1, 2, }) ≡ [d2i+2bd2i+1]{0,1,2}

for each 0 ≤ i ≤ n− 1; and
(3) f02({0, 2}) ≡ [d2i0d2i0+1]{0,2} for some 0 ≤ i0 ≤ n− 1.

Take a tuple (d0, b, d2n+1, d2i0), which is a representation of s. Since α
is a 2-∗-chain-walk, there is a bijection

σ : {0, 1, · · · , n}r {i0} → {0, 1, · · · , n− 1}

such that d2id2i+1 ≡ d2σ(i)+2d2σ(i)+1 for 0 ≤ i 6= i0 ≤ n. Set σ′ :=
σ∪{(i0, n)} and d2n+2 := d2i0 . We get a desired result from the bijection
σ′ and the sequence (d0, d1, . . . , d2n+1, d2n+2).

Conversely, we assume that there are a representation (a, b, c, a′), a
finite sequence (di)0≤i≤2n+2 of realizations of p, and a bijection σ on
{0, 1, . . . , n} for some n ≥ 0 such that

(1) d0 = a, d2n+1 = c and d2n+2 = a′;
(2) {dj, dj+1, b} is ∗-independent for each 0 ≤ j ≤ 2n+ 1; and
(3) d2id2i+1 ≡ d2σ(i)+2d2σ(i)+1 for 0 ≤ i ≤ n.

Put i0 = σ−1(n). From the subsequence (di)0≤i≤2n+1, we get a 2-∗-

chain-walk α =
2n∑

i=0

(−1)iai from f01 to f12 with the boundary f01 −

a2i0 ↾ {0, 2} + f12. Since d2i0d2i0+1 ≡ d2n+2d2n+1 = a′c, we can make
a2i0 ↾ {0, 2} = f02 so that ∂α = s.

�
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Corollary 4.3. For a, a′ |= p, [a, a′] = 0 in H∗
1 (p) if and only if for

some n ≥ 0 there is a finite sequence (di)0≤i≤2n+2 of realizations of p
satisfying the following conditions:

(1) d0 = a, and d2n+2 = a′;
(2) {dj, dj+1} is ∗-independent for each 0 ≤ j ≤ 2n+ 1; and
(3) there is a bijection

σ : {0, 1, . . . , n} → {0, 1, . . . , n}

such that d2id2i+1 ≡ d2σ(i)+2d2σ(i)+1 for 0 ≤ i ≤ n.

Proof. Fix a, a′ |= p. The left-to-right direction is clear from Theorem
4.2. For the right-to-left direction, we assume that there is a finite
sequence (di)0≤i≤2n+2 of realizations of p satisfying the following con-
ditions:

(1) d0 = a, and d2n+2 = a′;
(2) {dj, dj+1} is ∗-independent for each 0 ≤ j ≤ 2n+ 1; and
(3) there is a bijection

σ : {0, 1, . . . , n} → {0, 1, . . . , n}

such that d2id2i+1 ≡ d2σ(i)+2d2σ(i)+1 for 0 ≤ i ≤ n.

Take b |= p such that b⌣|
∗
d0d1 . . . d2n+2. Then the tuple (a, b, d2n+1, a

′)
and the sequence (di)0≤i≤2n+2 gives a 1-∗-shell which is a boundary of
a 2-∗-chain by Theorem 4.2. �

By now, as promised, we can identify Ker(ψ∗
p).

Theorem 4.4. For each h ∈ K := Ker(ψ∗
p) and a |= p, there is

an automorphism h′ in the derived subgroup G′ of G := Aut(p(M))
such that h(a) = h′(a). Thus, K(≥ G′) is the normal subgroup of G
consisting of all automorphisms fixing all orbits of elements of p(M)
under the action of G′, and H∗

1 (p) = G/K.

Proof. If the first statement is true then the second statement clearly
follows since G′ ≤ K = Ker(ψ∗

p) (as G/K
∼= H∗

1 (p) is abelian). So let
us prove the first statement.

Let h ∈ K and a |= p. Thus [a, h(a)] = 0 (in E∗ = H∗
1 (p)). By Corol-

lary 4.3, there are an integer n ≥ 0 and a finite sequence (di)0≤i≤2n+2

of realizations of p such that

(1) d0 = a, and d2n+2 = h(a);
(2) {dj, dj+1} is ∗-independent for each 0 ≤ j ≤ 2n+ 1; and
(3) there is a bijection

σ : {0, 1, . . . , n} → {0, 1, . . . , n}

such that d2id2i+1 ≡ d2σ(i)+2d2σ(i)+1 for 0 ≤ i ≤ n.
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By (3), we have the following automorphisms in G:

• ηi : d2i 7→ d2i+1 for 0 ≤ i ≤ n;
• η′j : d2j+1 7→ d2j+2 for 0 ≤ j ≤ n; and
• fi : d2id2i+1 7→ d2σ(i)+2d2σ(i)+1 for 0 ≤ i ≤ n.

Thus for 0 ≤ i ≤ n, ηiη
′
i−1ηi−1 · · · η

′
0η0(d0) = d2i+1, η

′
iηi · · · η

′
0η0(d0) =

d2i+2, and

η′nηnη
′
n−1ηn−1 · · · η

′
0η0(d0) = d2n+2 = h(a) (†).

Moreover, η′σ(i)(d2σ(i)+1) = fiη
−1
i f−1

i (d2σ(i)+1) for 0 ≤ i ≤ n, so η′i(d2i+1) =

fσ−1(i)η
−1
σ−1(i)f

−1
σ−1(i)(d2i+1) (‡). From (†) and (‡), we get that g0(a) =

h(a), where

g0 := (fσ−1(n)η
−1
σ−1(n)f

−1
σ−1(n))ηn · · · (fσ−1(0)η

−1
σ−1(0)f

−1
σ−1(0))η0.

We claim that g0 ∈ G′: Since G/G′ is abelian (so gkG′ = kgG′), we
get that g0G

′ = g1G
′, where

g1 := η−1
σ−1(n)ηn · · · η

−1
σ−1(0)η0.

Moreover, since σ is a permutation of {0, 1, . . . , n}, it follows (using
again that G/G′ is abelian) that g1G

′ = 1GG
′ = G′, so g1, g0 ∈ G′.

�

Remark 4.5. Due to above Theorem 4.4, H∗
1 (p), which of course does

not depend on the choice of a monster model, is always the same re-
gardless of our choice of independence⌣|

∗
satisfying the 5 basic axioms.

Hence, we can denote it simply by H1(p). Moreover, H1(p) can also be
considered as a quotient group of GalL(T ) or GalfixL (p), which equiva-
lently endow H1(p) with a topological group structure.

Remark 4.6. If p is a strong type of a model, then for G := GalL(T ),

G ∼= Galfix,1L (p) = GalfixL (p) and H1(p) ∼= G/G′ as topological groups.

Proof. Suppose p is a strong type of a small submodel M of M. By
Remark 3.9, Autf1fix(p(M)) = Autffix(p(M)) = Autfres(p(M)). It re-

mains to show that Galfix,1L (p(M)) ∼= GalL(T ). Consider the projection

πfix,1 : Aut(M) → Galfix,1L (p(M)) sending σ to (σ ↾ p(M)) Autf1fix(p(M)).
Suppose σ is in the kernel of πfix,1. Then σ(M) ≡L M , and there is
τ ∈ Autf(M) such that σ ↾ M = τ ↾ M . Thus τ−1 ◦ σ ↾ M = idM .
So τ−1 ◦ σ ∈ Autf(M) and σ ∈ Autf(M). Therefore, the kernel
of πfix,1 is a subgroup of Autf(M). Also, it is easy to check that
Autf(M) is a subgroup of the kernel of πfix,1. Thus we have that

GalL(T ) ∼= Galfix,1L (p(M)), witnessed by the isomorphism induced from
πfix,1 (actually this is an isomorphism of topological groups).
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Now let ϕp : Aut(M) → H1(p) be the epimorphism sending σ ∈
Aut(M) to [M,σ(M)], as defined in 2.7. It is enough to show that the
kernel of ϕp is generated by the automorphisms in Aut(M)′∪Autf(M),
so Ker(ϕp) = Aut(M)′ Autf(M). It is clear from Theorem 4.4 that
Aut(M)′ Autf(M) ⊆ Ker(ϕp). Conversely, suppose σ ∈ Ker(ϕp). By
Theorem 4.4, there is τ ∈ Aut(M)′ such that σ ↾ M = τ ↾ M . So
(τ−1 ◦ σ) ↾M = idM and τ−1 ◦ σ ∈ Autf(M). Thus, σ ∈ τ Autf(M) ⊆
Aut(M)′ Autf(M). Therefore H1(p) ∼= G/G′, and furthermore they
are homeomorphic as topological groups. �

As a corollary to Theorem 4.4, we get the following characterization
of the equality of strong types and Lascar strong types, for any theory:

Corollary 4.7. The following conditions are equivalent :

(1) p, a strong type of an algebraically closed tuple, is a Lascar
strong type;

(2) Galfix,1L (p) is abelian and H1(p) = 0; and

(3) Both Galfix,1L (p) and H1(p) are trivial.

In particular, if GalfixL (p) is abelian, then p is a Lascar strong type if
and only if H1(p) = 0. Moreover, if p is a strong type of a model, then p
is a Lascar strong type if and only if GalL(T ) is abelian and H1(p) = 0.

Proof. The implication from (3) to (2) is trivial. The implications from
(1) to (2) and (3) are easy. Suppose p is a Lascar strong type. Then,

by the definition, Galfix,1L (p) = 0 and H1(p) = 0. It is enough to show

(2) ⇒ (1). Suppose Galfix,1L (p) is abelian and H1(p) = 0. It is enough
to show that for any a ∈ p(M) and any σ ∈ Aut(p(M)), a ≡L σ(a).
Choose a ∈ p(M) and σ ∈ Aut(p(M)) arbitrarily. Since H1(p) = 0,
there is τ ∈ Aut(p(M))′ such that σ(a) = τ(a) by Theorem 4.4. The
derived group of Aut(p(M)) is a subgroup of Autf1fix(p(M)), because

Galfix,1L (p) is abelian. Therefore, we have a ≡L σ(a)(= τ(a)).
The rest comes from Remark 4.6. �

Next, we consider the orbit equivalence relation ≡H1 on p(M) under
the action of K (equivalently G′) in Theorem 4.4 (i.e., for a, b |= p,
a ≡H1 b iff there is f ∈ K (or ∈ G′) such that b = f(a) iff [a, b] = 0 ∈
H1(p)). We show now that this equivalence relation is an Fσ-relation (in
any theory); i.e., there are countably many B-type-definable reflexive,
symmetric relations Ri(x, y) such that

p(x) ∧ p(y) |= x ≡H1 y ↔
∨

i<ω

Ri(x, y) :
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Consider an invariant, symmetric, reflexive relation R such that for
ā, b̄ ∈ M, R(ā, b̄) if and only if there are σ, τ ∈ Aut(M) such that
b̄ = [σ, τ ](ā), where [σ, τ ] := σ−1τ−1στ , if and only if there are c1, c2,
and c3 such that ac3 ≡ c1c2 and c2c3 ≡ c1b. Define

Ri(x̄, ȳ) ≡







x̄ = ȳ if i = 0
i

︷ ︸︸ ︷

R ◦ · · · ◦R(x̄, ȳ) if i ≥ 1.

Then by Theorem 4.4,

p(x) ∧ p(y) |= x ≡H1 y ↔
∨

i<ω

Ri(x, y).

Next, define the H1-distance on p as follows: For a, b |= p,

dH1
(a, b) :=

{

min{n|Rn(a, b)} if a ≡H1 b

∞ otherwise,

and the H1-diameter on p by:

dH1
(p) := max{dR(a, b)| a, b |= p}.

Applying the Newelski’s result from [9] on the possible cardinality of
the set of classes of bounded invariant equivalence relations on a type,
we know that the cardinality of H∗

1 (p) is at least 2ℵ0 if the equiva-
lence relation ≡H1 on p is not type-definable, and in the other case, we
also have that the possible cardinality of H1 is one or at least 2ℵ0 by
Appendix A.

Theorem 4.8. For any theory T :

(1) The equivalence relation ≡H1 on p is type-definable if and only
if dH1

(p) is finite.
(2) The cardinality of H1(p) is one or ≥ 2ℵ0.

We finish this section by posing the following question for simple
theories.

Question 4.9. In a simple theory, is the first homology group of a
strong type always trivial?

5. Examples

5.1. Topological groups and the first homology groups of types.
In this subsection, we argue that all connected abelian compact groups
can occur as the first homology groups of strong types (Here, compact
topological spaces are Hausdorff by definition). At first, note that in
[11] M. Ziegler showed (using a result of E. Bouscaren, D. Lascar, and
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A. Pillay) that any compact group occurs as the Lascar Galois group
of a complete theory.

Fact 5.1. [11] Let G be a compact group. Then there is a complete
theory TG whose Lascar Galois group is isomorphic to G.

From Remark 4.6, we also know that the first homology group of a
strong type of a model is isomorphic to the abelianization of the con-
nected component of Lascar Galois group. So, if we take G in Fact 5.1
as an abelian and connected group, we conclude that the first homol-
ogy group of a strong type of model in TG is isomorphic to the Lascar
Galois group G itself.

Theorem 5.2. For each abelian connected compact group G, there is a
strong type of a model of a complete theory whose first homology group
is isomorphic to G.

Remark 5.3. There is a strong type p in a theory with trivial first
homology group, which is not a Lascar strong type. In other words,
in Corollary 4.7 (2), we cannot omit the condition of abelianness of
GalfixL (p) to conclude that a given strong type p is a Lascar strong
type. If G is a non-trivial connected compact group whose commutator
subgroup is itself, then the first homology group of a strong type of a
model of TG is trivial. In this case, the strong type is not a Lascar strong
type because the Lascar Galois group is not trivial. For example, we
can take G := SU(3) as such a group.

5.2. Some computation of the first homology group of a type.
Here we give a more concrete example of a strong type in a rosy theory
with a non-trivial first homology group. In [7], S. Kim, and the second
and third authors considered the structures Mn = (M ;S; g1/n) (which
were earlier studied in [1]) for each n ∈ N \ {0}, where

(1) M is a saturated circle;
(2) g1/n is the clockwise rotation by 2π/n radians; and
(3) S is a ternary relation such that S(a, b, c) holds if a, b, c are

distinct and b comes before c going around the circle clockwise
starting at a,

and it was shown that the unique strong 1-type pn in S1(∅) has the
trivial first homology group for every n, and is actually a Lascar strong
type. Now, we consider a structure M = (M ;S; g1/n : n ∈ N \ {0})
expanding the structures Mn by adding all rotation functions by 2π/n-
radians for each n ∈ N \ {0} at the same time (when we write gr for
r = m/n in Q ∩ [0, 1), it means gm1/n). We show that Th(M) is a rosy
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theory. In [2], C. Ealy and A. Onshuus gave a sufficient condition for
a theory to be rosy.

Fact 5.4. Any theory T which weakly eliminates imaginaries and for
which the algebraic closure defines a pregeometry is rosy of thorn U-
rank 1.

At first, we show that Th(M) has weak elimination of imaginaries.
In [10], B. Poizat defined a theory T to have weak elimination of imag-
inaries if every definable set has a smallest algebraically closed set over
which it is definable. By repeating the argument from [7], we obtain
the following sufficient condition for weak elimination of imaginaries in
an ℵ0-categorical theory:

Theorem 5.5. Let T be ℵ0-categorical and let M = (M, . . .) be a
saturated model of T . Suppose that if X ⊂ M1 is definable over each
of two algebraically closed sets A0 and A1, then X is definable over
B := A0 ∩ A1.

Then, for any subset Y of Mn, if Y is both A0-definable and A1-
definable, then it is B-definable. Furthermore, in this case, T has weak
elimination of imaginaries.

Proof. Let A0 = acl(A0), A1 = acl(A1), and B = A0 ∩ A1. We use
induction on n. If n = 1, the conclusion holds by assumption. Let
us show that the conclusion holds for n + 1 assuming it holds for n.
Put A0 = acl(A0), A1 = acl(A1), and B = A0 ∩ A1. Since, by ℵ0-
categoricity, the algebraic closure of a finite set is finite, we may assume
that A0 and A1 are finite, and so is B. Let Y ⊂Mn+1 be Ai-definable
by a formula φi(x0, . . . , xn; āi) with āi ⊂ Ai for i = 0, 1. Then, for
each c ∈ M , the fiber of Y over c, Yc := {x̄ ∈ Mn| φi(x̄, c; āi)} is cB-
definable by induction. By ℵ0-categoricity, there are only finitely many
formulas over ∅ modulo T , and it easily follows that for each c ∈ M1,
φi(x0, . . . , xn−1, c, āi) is B-definable. Thus, Y is B-definable.
Since (again by ℵ0-categoricity) there is no infinite descending chain

of algebraically closed sets generated by finitely many elements, we
conclude that any definable set has a smallest algebraically closed set
over which it is definable. Thus, T weakly eliminates imaginaries. �

As a corollary to Theorem 5.5, it was shown in [7] that for each n ≥ 2,
Th(Mn) has weak elimination of imaginaries.

Fact 5.6 ([7]). For each n ≥ 2, Th(Mn) weakly eliminates imaginar-
ies.

Next, we will see that the theory of M has quantifier-elimination.
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Definition 5.7. LetM be the non-standard circle which is the universe
of M. For A ⊂ M , let cl(A) := {gr(a)| a ∈ A, r ∈ Q ∩ [0, 1)}. Later,
we will see that cl(A) = dcl(A) = acl(A) in the home sort of M. It is
also easy to see that cl(A) is a substructure of M.

Theorem 5.8. The theory of M has quantifier-elimination.

Proof. Take two small subsets A,B ⊂ M such that A = cl(A) and
B = cl(B) in M , and a partial isomorphism f : A → B. Take a ∈
M \ A. We will find b ∈ M \ B such that the map f ∪ {(a, b)} can
be extended to an embedding from cl(Aa) to cl(Bb) in M. Then, the
quantifier-elimination in Th(M) comes from a standard argument. We
divide A into two parts: A0 := {x ∈ A| S(a, x, g1/2(a))} and A1 := {x ∈
A| S(g1/2(a), x, a)}. Then B is also divided into two parts: B0 = f(A0)
and B1 = f(A1). Take arbitrary b ∈M such that for all y0 ∈ B0, y1 ∈
B1, we have that S(y1, b, y0). Then b is a desired element. �

Theorem 5.9. The theory of M weakly eliminates imaginaries, and
is rosy of thorn U-rank 1.

Proof. By quantifier elimination, in the structure M there is no infinite
descending chain of algebraic closures of finite sets. It is enough to
show that if X ⊂ Mn is A0(= acl(A0))-definable and A1(= acl(A1))-
definable, then X is A0 ∩ A1(= B)-definable. (Then X has a smallest
algebraically closed set over which it is definable, and Th(M) has weak
elimination of imaginaries.)

Let Ai = acl(Ai) = cl(Ai) for i = 0, 1 and put B = A0 ∩ A1. Let
X ⊂Mm be Ai-definable inM. ThenX is definable over Ai for i = 0, 1
in some reduct Mn of M. Since Mn weakly eliminates imaginaries, X
is definable over B in Mn by a formula ψ(x̄, b̄). Then X is B-definable
in M by the same formula ψ(x̄, b̄).

By quantifier elimination, it is easily verified that the algebraic clo-
sure in M gives a trivial pregeometry (i.e. acl(A) = ∪a∈A acl({a})).
Thus, by Fact 5.4, Th(M) is a rosy theory of thorn U -rank 1. �

There is only one 1-strong type over the empty set in M: p0(x) ≡ {x =
x}.

In M, for a fixed a ∈ M , we observe that the types in S1(a) cor-
respond to elements of the unit circle, where the points with rational
spherical coordinates are tripled. Using this observation, we compute
the first homology group of p0 in M:

Theorem 5.10. In M, the first homology group of p0 is isomorphic
to R/Z.
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We start with defining a distance-like notion between two points
on M . We fix an infinitesimal ǫ. For a subset Y ⊂ Q, we define
Y ∗ := Y ∪ {y± ǫ|y ∈ Y }. We write XQ for X ∩Q for a subset X in R.

Definition 5.11. Let a, b ∈ M be two elements. We define the S-
distance from a to b, denoted by Sd(a, b). The S-distance has values in
[0, 1) ∪ [0, 1)∗Q ∪ {1− ǫ}. Let r ∈ (0, 1)Q and r′ ∈ (0, 1) \Q.

(1) Sd(a, b) = 0 if b = a;
(2) Sd(a, b) = ǫ if for all s ∈ (0, 1)Q, M |= S(a, b, gs(a));
(3) Sd(a, b) = 1− ǫ if for all s ∈ (0, 1)Q, M |= S(gs(a), b, a);
(4) Sd(a, b) = r if b = gr(a);
(5) Sd(a, b) = r−ǫ if for s ∈ (0, 1)Q with s < r, M |= S(gs(a), b, gr(a));
(6) Sd(a, b) = r+ǫ if for t ∈ (0, 1)Q with r < t, M |= S(gr(a), b, gt(a));
(7) Sd(a, b) = r′ if for s < t ∈ [0, 1)Q such that s < r′ < t, M |=

S(gs(a), b, gt(a)).

In Appendix B, using Dedekind cuts, we develop multivalued oper-
ations +∗ and −∗ to make R ∪ Q∗ a group-like structure. Now, we
extend the values of S-distance to R ∪Q∗. Since gk = id for all k ∈ Z,
we write Sd(a, b) = r for r ∈ R ∪ Q∗ if Sd(a, b) = r′, where r′ is
the unique number in [0, 1) ∪ [0, 1)∗Q such that r ∈ r′ +∗ n for some
n ∈ Z. Then this values depend only on the type of (a, b), that is, for
a0, a1, b0, b1 ∈ M , if a0b0 ≡ a1b1, then Sd(a0, b0) = Sd(a1, b1) (taking
values in [0, 1) ∪ [0, 1)∗Q). Then the following fact is easily verified:

Fact 5.12. Let a, b, c ∈M .

(1) Sd(b, a) = 1−∗ Sd(a, b).
(2) Sd(a, c) = Sd(a, b) +∗ Sd(b, c) modulo Z∗, that is, Sd(a, b) +∗

Sd(b, c)−∗ Sd(a, c) ⊂ Z∗.

By (1), Sd is not symmetric, that is, for some a, b ∈ M , Sd(a, b) 6=
Sd(b, a) and so it is called a directed distance.

Now, we assign to each 1-simplex f a value nf in R ∪ Q∗ as follows.
There are a, b ∈M such that [a, b] = f ; we define nf as Sd(a, b). Then
nf is well-defined, that is, it does not depend on the choice of a and b,
because if ai, bi ∈M satisfy [a0, b0] = [a1, b1] = f , then a0b0 ≡ a1b1 and
Sd(a0, b0) = Sd(a1, b1). We also assign to each 1-shell s = f01+f12−f02
a multivalue ns in R∪Q∗ as follows: ns = nf01+

∗nf12−
∗nf02 . This value

is also related to the distance of endpoints. Let (a, a′) be an endpoint
pair of s. Then Sd(a, a′) = ns modulo Z∗. Using this assignments, we
give a necessary and sufficient condition for a 1-shell to be the boundary
of a 2-chain:
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Theorem 5.13. A 1-shell s = f12 − f02 + f01 is the boundary of a
2-chain in p if and only if

ns = n01 +
∗ n12 +

∗ n20 ⊂ Z∗,

where n01 = nf01 , n12 = nf12 , n20 = −∗nf02. Moreover, it is equivalent
to the condition that the two endpoints of s are Lascar equivalent over
∅.

Proof. (⇒) Let α be a 2-chain with boundary s. By Remark 4.1,

we may assume that α =
2n∑

i=0

(−1)iai is a chain-walk from f01 to f12

with supp(α) = {0, 1, 2}. Let [3] = {0, 1, 2}. By Theorem 4.2 and the
extension axiom, there are independent elements b and d0, d1, · · · , d2n+2

such that

• ai([3]) ≡ [bdidi+1][3] if i is even, and ai([3]) ≡ [bdi+1di][3] if i is
odd;

• For some even number 0 ≤ i0 ≤ 2n, [di0di0+1]{1,2} ≡ f12({1, 2});
and

• For each even number 0 ≤ j0 6= i0 ≤ 2n, there is an odd number
0 ≤ j1 ≤ 2n such that [dj0dj0+1]{1,2} ≡ [dj1+1dj1 ]{1,2}.

Then Sd(d1, d0) +
∗ Sd(d0, d2n+2) = −∗n01 −

∗ n20 and by Fact 5.12 (1),
Sd(d1, d2)+

∗Sd(d2, d3)+
∗· · ·+∗Sd(d2n+1, d2n+2) = n+∗n12. By Fact 5.12

(2), Sd(d1, ddn+2) ∈ (−∗n01−
∗n20)∩(n+∗n12). Since {0}

∗ = (−∗n01−
∗

n20)+
∗(n01+

∗n20) and (n+∗n12)+
∗(n01+

∗n20) = n+∗(n01+
∗n12+

∗n20),
these two equations imply that n+∗ (n01+

∗ n12+
∗ n20) ⊂ {0}∗. There-

fore, n01 +
∗ n12 +

∗ n20 ⊂ {0}∗ −∗ {n}∗ = {−n}∗ for n ∈ N ⊂ Z.

(⇐) Suppose n01 +
∗ n12 +

∗ n20 ⊂ {n}∗ for some n ∈ Z. There are
independent elements a, b, c, a′ such that

[ab]{0,1} = f01({0, 1}), [bc]{1,2} = f12({1, 2}), [a
′c]{0,2} = f02({0, 2}).

So, Sd(a, b) = n01, Sd(b, c) = n12, Sd(c, a) = n20, and Sd(a, a′) ∈
n01 +

∗ n12 +
∗ n20. Thus Sd(a, a′) ∈ {n}∗ and Sd(a, a′) ∈ {0}∗. Since

{a, a′} is independent, Sd(a, a′) ∈ {0}∗ \ {0}, that is, Sd(a, a′) = ǫ or
Sd(a, a′) = 1− ǫ.

We will find d ∈ M such that a ≡d a
′ and d⌣| abca′, where ⌣| is

the thorn-forking independence. Consider a partial type Σ(x) = {s <
Sd(x, a) < t ↔ s < Sd(x, a′) < t}s<t∈[0,1]Q . Consider finitely many
pairs (si, ti) with si < ti and a formula

∧

(si < Sd(x, a) < ti ↔ si < Sd(x, a′) < ti).
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We may assume si ≤ s0 < t0 ≤ ti. It is enough to show that the
formula

s0 < Sd(x, a) < t0 ↔ s0 < Sd(x, a′) < t0

is satisfiable. Suppose the formula s0 < Sd(x, a) < t0 is satisfiable.
Then, there is a pair (s, t) such that s0 < s < t < t0 and s < Sd(x, a) <
t is satisfiable. Let e ∈M be an element independent from a such that
s < Sd(e, a) < t holds. Since Sd(a, a′) ∈ {0}∗\{0}, there is a pair (s′, t′)
such that s′ < t′, s0 < s+s′ < t+t′ < t0, and s

′ < Sd(a, a′) < t′. Then,
s < Sd(e, a) < t and s′ < Sd(a, a′) < t′ imply s+ s′ < Sd(e, a′) < t+ t′.
Since s0 < s+s′ < t+t′ < t0, s0 < Sd(e, a′) < t0 and s0 < Sd(x, a′) < t0
is satisfiable. By the same argument, s0 < Sd(x, a′) < t0 → s0 <
Sd(x, a) < t0.

Therefore, there is d ∈ M such that Σ(d) and Sd(d, a) = Sd(d, a′).
Moreover, we may assume that {a, b, c, a′, d} is independent by taking
d⌣| aa′ bc. Consider the 2-chain α = a0 + a1 − a2, where

• supp(a0) = {0, 1, 3}, supp(a1) = {1, 2, 3}, and supp(a2) =
{0, 2, 3};

• a0({0, 1, 3}) = [abd]{0,1,3}, a1({1, 2, 3}) = [bcd]{1,2,3}, and a2({0, 2, 3}) =
[a′cd]{0,2,3};

• a0 ↾ P({0, 1}) = f01, a1 ↾ P({1, 2}) = f12, and a2 ↾ P({0, 2}) =
f02; and

• a0 ↾ P({0, 3}) = a2 ↾ P({0, 3}), a0 ↾ P({1, 3}) = a1 ↾ P({1, 3}),
and a1 ↾ P({2, 3}) = a2 ↾ P({2, 3}).

Then ∂α = f01 + f12 − f02 + (a2 ↾ P({0, 3}) − a0 ↾ P({0, 3})) =
f01 + f12 − f02.

We show the ‘moreover’ part. Let a, a′ be endpoints of s. If a ≡L a′,
then s is a boundary of a 2-chain, and ns ⊂ {n}∗ for some n ∈ Z.
Conversely, we assume that ns ⊂ {n}∗ for some n ∈ Z. In the proof
of the right-to-left implication, we found d ∈ M such that a ≡d a

′.
Consider the substructure cl(d) = dcl(d) = acl(d) generated by d.
Then a ≡cl(d) a

′, and a ≡L a′. �

Now we are ready to prove Theorem 5.10. Define a map Φ : H1(p0) →
(R∪Q∗)/Z∗ by sending [s] to ns +

∗ Z∗ (note that (R∪Q∗)/Z∗ ∼= R/Z,
as shown in Appendix B). It is easy to see that this map is surjective.
Since for an endpoint pair (a, b) of s, ns +

∗ Z∗ = Sd(a, b) +∗ Z∗, the
map Φ depends only on the endpoint pairs of 1-shells. By Theorem
2.4, given 1-shells s0 and s1, and endpoint pairs (a, b) and (b, c) of s0
and s1, there is a 1-shell s such that [s] = [s0] + [s1] and (a, c) is an
endpoint pair of s, so the map Φ is a group homomorphism. Moreover,
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by Theorem 5.13 it is injective, and therefore it is an isomorphism.
This completes the proof of Theorem 5.10.

6. Appendix

6.1. Appendix A. We show that the possible number of equivalence
classes of a bounded type-definable equivalence relation on a strong
type is 1 or at least 2ℵ0 . Let T (= T eq) be any theory in a language L
and let M be a monster model of T . Fix a small subset A = acl(A),
and choose a strong type p(x) over A with x of possibly infinite length.

Theorem 6.1. Let E(x, y) be a bounded A-type-definable equivalence
relation on p(x), and denote the set of E-classes on p by p/E. Then,

|p/E| = 1 or |p/E| ≥ 2ℵ0.

Proof. For convenience, we assume that A = ∅. We consider two cases:

Case 1. p/E is finite: Let a0, · · · , an |= p be representatives of
all distinct classes in p/E, and put ā = (a0, a1, . . . , an). At first, we
show that E is relatively definable on p. Consider two types E(x, a0)
and

∨

i>0E(x, ai) partitioning p. By compactness, p(x) |= E(x, a0) ↔
φ(x, a0) for some formula φ(x, z) such that E(x, a0) |= φ(x; a0). Since
a0 ≡ ai, p(x) |= E(x, ai) ↔ φ(x, ai) for all i ≤ n. Thus, p(x) ∧
p(y) |= E(x, y) ↔ ψ(x, y; ā), where ψ(x, y; z̄) =

∨

i[φ(x, zi) ∧ φ(y, zi)].
Since E is invariant, p(x) ∧ p(y) ∧ ψ(x, y; z̄) ∧ tp(ā)(z̄) |= ψ(x, y; ā)(↔
E(x, y)). By compactness, there is a formula ψ′(z̄) in tp(ā)(z̄) such that
p(x) ∧ p(y) ∧ ψ(x, y; z̄) ∧ ψ′(z̄) |= ψ(x, y; ā). Take θ(x, y) ≡ ∃z̄(ψ′(z̄) ∧
ψ(x, y; z̄)). Then p(x) ∧ p(y) |= θ(x, y) ↔ ψ(x, y; ā). Therefore, E is
relatively definable on p by the formula θ. Moreover, we may assume
θ(x, y) is a reflexive and symmetric relation by replacing it with x =
y ∨ (θ(x, y) ∧ θ(y, x)).
Next, we find a finite ∅-definable equivalence relation E ′ such that

p(x) ∧ p(y) |= E(x, y) ↔ E ′(x, y). Since E is an equivalence relation,

p(x) ∧ p(y) ∧ p(z) |=
∨

i

θ(x, ai) ∧
∨

i

θ(y, ai) ∧
∨

i

θ(z, ai)

∧
∧

i

(θ(x, ai) →
∧

i 6=j

¬θ(x, aj))

∧
∧

i

(θ(y, ai) →
∧

i 6=j

¬θ(y, aj))

∧
∧

i

(θ(z, ai) →
∧

i 6=j

¬θ(z, aj))

∧ (θ(x, y) ∧ θ(y, z) → θ(x, z)). (∗)

Again by compactness, there is δ(x) ∈ p(x) such that

δ(x) ∧ δ(y) ∧ δ(z) |= (∗).
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Define a definable equivalence relation E ′(x, y) ≡ [¬δ(x) ∧ ¬δ(y)] ∨
[δ(x) ∧ δ(y) ∧ ∀z(δ(z) → (θ(z, x) ↔ θ(z, y)))].

Claim 6.2. The equivalence relation E ′ is finite.

Proof. First, ¬δ(x) defines an E ′-class. We show that on δ, the E ′-
classes are of the form of θ(x, ai) ∧ δ(x). By the choice of δ, it is
partitioned by {θ(x, ai) ∧ δ(x)}i≤n.

1) We show that |= θ(x, ai)∧ δ(x) → E ′(x, ai): Choose b |= θ(x, ai)∧
δ(x). Take c |= δ(x) ∧ θ(x, ai). Since θ is transitive on δ and θ(b, ai)
holds, θ(c, b) holds. Conversely, if d |= δ(x)∧ θ(x, b), then by transitiv-
ity of θ on δ, θ(d, ai) holds. Therefore, E

′(b, ai) holds.

2) For i 6= j, ¬E ′(ai, aj): Suppose that for some i 6= j, E ′(ai, aj)
holds. Then θ(ai, aj) holds, but it is impossible, since ai, aj |= p and θ
coincides with E on p× p.

By 1) and 2), the E ′-classes are of the form θ(x, ai)∧ δ(x) or ¬δ(x), so
E ′ is a finite equivalence relation. �

By the proof of Claim 6.2, E ′ and E give the same equivalence relation
on p × p. Since E ′ is finite and p is a strong type, p/E = p/E ′ and
there is only one E-class in p.

Case 2. p/E is infinite. Let κ = |p/E|. If E is definable, then by
compactness, |p/E| ≥ κ′ for any small κ′ and E is not bounded. So E
is not definable but type-definable; write E(x, y) ≡

∧

i<λ

φi(x, y), where

each φi(x, y) is a formula and λ is an infinite cardinal. Furthermore
we assume that for each i, j < λ there is k < λ such that φk(x, y) ≡
φi(x, y) ∧ φj(x, y). We may assume φi(x, y) is reflexive and symmetric
(by replacing it with x = y ∨ (φi(x, y) ∧ φi(y, x))) for each i < λ. Let
{ak |= p}k<κ be a set of representatives of all E-classes.

Claim 6.3. For each i < λ and k < κ, φi(x, ak)(M) contains infinitely
many E-classes.

Proof. Fix i < λ. By compactness, there are finitely many k0 < k1 <
· · · < kn such that p |=

∨

j φi(x, akj). By the Pigeonhole Principle,

some φi(x, akl) contains infinitely many ak’s so that φi(x, akl) contains
infinitely many E-classes. Since an ≡ am for all n,m < κ and E is
invariant, each φi(x, ak) contains infinitely many E-classes. �
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Claim 6.4. For each i < λ and k < κ, there are j < λ and k0, k1 < κ
such that

|= ∀x[(φj(x, ak0)∨φj(x, ak1)) → φi(x, ak)]∧[¬∃x(φj(x, ak0)∧φj(x, ak1))].

Proof. Fix i < λ and k < κ. By Claim 6.3, φi(x, ak) contains in-
finitely many E-classes. Choose two different E-classes in φi(x, ak)
and let ak0 and ak1 be representatives of two classes respectively. Since
E(x, ak0)(M) and E(x, ak1)(M) are disjoint, by compactness, for some
j0, j1 < λ, φj0(x, ak0)(M) and φj1(x, ak1)(M) are disjoint subsets of
φi(x, ak)(M). Take j < λ such that φj(x, y) ≡ φi(x, y) ∧ φj0(x, y) ∧
φj1(x, y) and we are done. �

By Claim 6.3, 6.4 and the fact that the cofinality of λ is at least ℵ0,
we get a binary tree B : 2<ω → ω × κ such that for each b ∈ 2<ω,

B(b a 0) = (j, k0) and B(b a 1) = (j, k1), where j < ω and k0, k1 < κ
are given by the Claim 6.4 for (i, k) := B(b). Then, for each τ ∈
2ω, we obtain a set of formulas {φi(τ↾n)(x, ak(τ↾n))}, where B(τ ↾ n) =
(i(τ ↾ n), k(τ ↾ n)) for each n ∈ ω. By the choice of B, for τ0 6=
τ1 ∈ 2ω,

⋂

n φi(τ0↾n)(x, ak(τ0↾n))(M) and
⋂

n φi(τ1↾n)(x, ak(τ1↾n))(M) are
disjoint, and each of them contains at least one E-class. Thus, p/E
has at least 2ℵ0 many elements. �

6.2. Appendix B. We shall see how to recover the ordered group
(R,+) of real numbers from a dense linear order extending (Q, <) using
Dedekind cuts. Consider the language Lod,Q = {<} ∪ {r}r∈Q and an
Lod,Q-structure U = (U,<, r : r ∈ Q) which is a saturated dense linear
order extending (Q, <). Then Th(U) has quantifier elimination.

Consider S1(∅), the space of 1-types over the empty set (which we
will denote just by S1). By quantifier elimination, any 1-type p is
equivalent to a type of one of the following forms (where r ∈ Q and
r′ ∈ R \Q):

(1) {x = r};
(2) {l < x < r| l < r};
(3) {r < x < u| r < u}; and
(4) {l < x < u| l < r′ < u}.

For a subset Y ⊂ Q, we write Y ∗ := Y ∪ {y ± ǫ| y ∈ Y }, where ǫ is an
infinitesimal. So we can identify S1 with the set R∪Q∗ in the following
way : For r ∈ Q and r′ ∈ R \Q,

(1) {x = r} ↔ r;
(2) {l < x < r| l < r} ↔ (r − ǫ);
(3) {r < x < u| r < u} ↔ (r + ǫ); and
(4) {l < x < u| l < r′ < u} ↔ r′.
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Next, we define a group-like structure on S1. Define a plus-like opera-
tion +∗ : S1 × S1 → P(S1) as follows :

p1 +
∗ p2 := {p| p |= (l1 + l2 < x < u1 + u2), pi |= li < x < ui},

and define a minus-like operation −∗ : S1 → S1 as follows:

(−∗p) := {−u < x < −l| p |= l < x < u}.

We extend +∗ and −∗ to operations defined on P(S1): For A,B ⊂ S1,

A+∗ B :=
⋃

a∈A,b∈B

a+∗ b, and (−∗A) :=
⋃

a∈A

(−∗a).

We identify each element a ∈ S1 with its singleton {a} ∈ P(S1). Then
+∗ and −∗ are commutative, associative and distributive. For any
p1, · · · , pk ∈ S1 and k ≥ 1, we have

|p1 +
∗ · · ·+∗ pk| ≤ 3.

We write p1 −
∗ p2 for p1 +

∗ (−∗p2). These two notions are naturally
assigned to R ∪Q∗ and they are defined as follows:

(1) (a) If both r1 and r2 are in R and r = r1 + r2, then

r1 +
∗ r2 :=







{r} if r ∈ R \Q
{r} if r ∈ Q and r1, r2 ∈ Q

{r − ǫ, r, r + ǫ} if r ∈ Q and r1, r2 /∈ Q

(b) If r1 ∈ R\Q and r2 = q± ǫ ∈ Q∗, then r1+
∗ r2 := {r1+q};

(c) If r1 ∈ Q and r2 = q±ǫ ∈ Q∗, then r1+
∗r2 := {(r1+q)±ǫ};

(d) If r1 = p ± ǫ and r2 = q ± ǫ ∈ Q∗, then r1 +∗ r2 :=
{(p+ q)± ǫ};

(e) If r1 = p ± ǫ and r2 = q ∓ ǫ ∈ Q∗, then r1 +∗ r2 :=
{(p+ q)− ǫ, (p+ q), (p+ q) + ǫ}.

(2) (a) If r1 ∈ R, then −∗r1 := −r1;
(b) If r1 = p± ǫ ∈ Q∗, then −∗r1 := −p∓ ǫ.

Now, we induce a group structure from (S1,+
∗,−∗). Define an equiv-

alence relation ≡0 on S1 by

p1 ≡0 p2 iff p1 −
∗ p2 ⊂ {0− ǫ, 0, 0 + ǫ},

and denote by [p]0 the equivalence class of an element p ∈ S1 with
respect to that relation. Since {0−ǫ, 0, 0+ǫ} is closed under +∗ and−∗,
+∗ and −∗ can be extended on S1/ ≡0. Then (S1/ ≡0,+

∗,−∗, [tp(0)]0)
is a group. Actually, it is isomorphic to (R,+,−, 0).

Theorem 6.5. (S1/ ≡0,+
∗,−∗, [tp(0)]0) ∼= (R,+,−, 0).

Define an equivalence relation ≡Z on S1 by

p1 ≡Z p2 iff p1 −
∗ p2 ⊂ Z∗,
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and denote by [p]Z the corresponding equivalence class. As above, since
Z∗ is closed under +∗ and −∗, we can extend +∗ and −∗ to on S1/ ≡Z.
Then (S1/ ≡Z,+

∗,−∗, [tp(0)]Z) is isomorphic to (R/Z,+,−, 0) as a
group.

Theorem 6.6. (S1/ ≡Z,+
∗,−∗, [0]Z) ∼= (R/Z,+,−, 0).

The equivalences ≡0 and ≡Z are defined on R ∪Q∗,

(R ∪Q∗)/ ≡0
∼= R and (R ∪Q∗)/ ≡Z

∼= R/Z.
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