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Abstract: In this paper, a new on-line Proportional-Integral-Derivative (PID) controller
parameter optimization method is proposed by incorporating the philosophy of the model
predictive control (MPC) algorithm. The future system predictive output and control
sequence are first written as a function of the controller parameters. Then the PID
controller design is realized through optimizing the cost function under the constraints
on the system input and output. The MPC based PID on-line tuning is easy to handle
the constraints and time delay. Simulation results in three situations, changing the
control weight, adding constraints on the overshoot and control signal and changing the
reference value, confirm that the proposed method is capable of producing good tracking
performance with low energy consumption and short settling time.

Keywords: On-line parameter optimization; PID controller; model predictive control;
tracking performance; control energy.

Biographical notes: Yongling Wu received her B.Sc. degree in Automation from the
School of Control Science and Engineering, Shandong University in 2008 and M.Sc. degree
in Control Theory and Control Engineering, from the School of Electronic Information
and Electrical Engineering, Shanghai Jiao Tong University in 2011. She joined the Energy,
Power and Intelligent Control Cluster at Queen’s University Belfast as a joint Ph.D.
student in 2012-2014. Her research interests include controller parameters design based
on energy saving and model predictive control.

Shaoyuan Li was born in Hebei, China, in 1965. He received the B.Sc. and M.Sc. degrees
in automation from Hebei University of Technology, Tianjin, China, in 1987 and 1992,
respectively, and the Ph.D. degree from the Department of Computer and System Science,
Nankai University, Tianjin, in 1997. He is currently a professor with the Department
of Automation, Shanghai Jiao Tong University, Shanghai, China. His research interests
include fuzzy systems, model predictive control, dynamic system optimization, and system
identification. Professor Li is a vice president of Chinese Association of Automation and
a senior member of IEEE.

Kang Li received the B.Sc. degree from Xiangtan University in 1989, the M.Sc. degree
from Harbin Institute of Technology in 1992, and the Ph.D. degree from Shanghai Jiao
Tong University in 1995, all in China. He is currently a Professor of Intelligent Systems
and Control with the School of Electronics, Electrical Engineering and Computer Science,
Queens University, Belfast, UK. His research interests are in nonlinear system modeling
and control, and bio-inspired computational intelligence, with recent applications to
decarbonizing the whole energy system, from integration of renewable energy, smart grid,
and electrical vehicles, to low cost energy monitoring and energy saving in industrial
processes, in particular polymer processing. He has published over 200 papers and edited
12 conference proceedings (Springer).



Int. J. Modelling, Identification and Control, Vol. x, No. x, 2017 2, Vol. x, No. x, 2017 2

1 Introduction

With the rapid development of science and technology
in the past century, many advanced control strategies
have been successfully applied across many sectors, like
MPC (Mayne (2014)), linear quadratic regulator (LQR),
fuzzy control and neural network control methods, etc.
Nevertheless, PID control, though has been developed
for over a century and has various limitations, is still
the most widely used method, particularly in power and
energy system where reliability is a primary concern. In
some cases, the PID controller is used in the low-level
regulation loop while some advanced control methods
are used at a higher-level control loop.

Further, the combination of the PID with advanced
control strategies, such as the fuzzy control (Patel and
Mohan (2002); Kim et al. (2016)), adaptive control
(Pomerleau et al. (1996); Mahmoodabadi et al. (2014)),
and MPC control (Liu et al. (2014); Singh et al.
(2013)), etc, are proposed in many literatures. All these
references show a well-tuned PID controller is required to
realize the successful implementation of advanced control
methods and the on-line parameter tuning is one of
the most important popular approaches to improve its
performance in real-time applications.

Ziegler and Nichols method (Ziegler and Nichols
(1942)) is one of the early and well known PID tuning
methods, which is based on the time domain or frequency
domain response characteristics of the process. However,
it may produce a quite large overshoot, which could
not satisfy the system requirements. After that, various
methods such as Cohen and Coon method (Cohen and
Coon (1953)), feedback relay method, parametric or non-
parametric (Boiko (2013)) method, model-free or model-
based method, and optimal or non-optimal method have
been developed. Tuning the parameters with the genetic
algorithm (GA), particle swarm optimization (PSO) and
artificial bee colony (ABC) algorithms (Elkhateeb and
Badr (2014); Taeib and Chaari (2015)), etc, may cause
the convergence and computation complexity problems.
The strategies of matching the specified gain and phase
margins (Keyu (2013); Wang and Tian (2013)) are not
very clear and intuitional on the requirements of the
control performance and energy.

A multi-objective optimal method for PID controller
design with almost every performance parameter in the
criterion, like steady-state error, overshoot, settling time,
etc, is proposed in Zamani et al. (2009), which increases
the difficulty on the selection of the weightings. Another
two references (Jin et al. (2014); Sánchez et al. (2017))
propose a tuning rule by minimizing the integral of the
time weighted absolute error (ITAE) and the integrated
absolute error (IAE) of the system output respectively,
which however, do not take the control energy into
account. And no constraints on the maximum system
response and control signal are considered in the PID
controller design in these references.
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Over the years, modified PID algorithms have been
proposed combining with the strategies of modern
control methods. A receding horizon method for auto-
tuning PID controller parameters under controlled auto-
regressive integrated moving average (CARIMA) model
is proposed in Xu et al. (2005) based on generalized
predictive control (GPC) method. Another MPC-based
method using a neural model is given in Majdabadi-
Farahani et al. (2014). In real-time applications, more
effective on-line parameter tuning methods are often
important though challenging when both the control
energy and system control performance are considered
simultaneously.

In our previous research, we have shown that the
choice of controller parameters should be an elegant
trade-off between tracking performance and control
energy use (Wu et al. (2016)). The aim of this paper is
to extend the previous off-line numerical experimental
results in continuous system to the on-line PID controller
parameter optimization in a discrete domain, considering
both the tracking performance and energy consumption
in the cost function using the philosophy of MPC
strategy. The linear quadratic optimal form is chosen
as the objective index subject to the constrains on the
overshoot and control signal.

For many systems one or two terms, like P, PI
or PD control are enough to satisfy the system
requirements. To facilitate analytic results, a simple two-
layer voltage source converters (VSCs) system model, a
first-order plus dead time (FOPDT) model, which can
sufficiently describe many industrial processes (Bagheri
and Sedigh (2013)) and a second-order plus dead time
(SOPDT) system are used to verify the P, PI and PID
controller parameter on-line tuning in three situations.
The simulation results, comparing the control effects
by changing the control weight, adding constraints
and observing the change of controller parameters
and tracking performance by changing the reference
respectively, show the MPC-PID tuning can provide a
good tracking performance with low control energy.

The remainder of the paper is outlined as follows.
In section 2, the PID and MPC control algorithm are
introduced briefly and the MPC-PID on-line tuning
strategy is represented. In section 3, the theoretical
derivations of the on-line PID parameter optimization
are proposed. The simulation results are presented in
section 4. Finally, section 5 concludes the paper.

2 Problem formulation

In this section, the basic theory of the PID and
MPC algorithm are first introduced with some variables
defined. And then the idea of MPC based PID controller
parameter on-line optimization strategy is proposed.

Copyright c© 201X Inderscience Enterprises Ltd.
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2.1 PID algorithm

PID control is a complete data-driven control method
without knowing any priori knowledge of the controlled
plant. The control effect totally depends on the user
defined controller parameters. However to obtain a
better control effect, the system model, which represents
the mathematical description of the plant, should be
known first. Especially with the increasing of the system
complexity, and to deal with both the constraints and
large time delay, PID controller design becomes more
difficult.

The standard discrete PID control law is given by

ut = Kpet +Ki

t
∑

k=1

ekTs +Kd

et − et−1

Ts

(1)

where Ts is the sampling time and the discrete
transfer function of the PID controller is

Gc(z) =
U(z)

E(z)
=

d0z
2 + d1z + d2

c0z2 + c1z
(2)

The parameters are related to the controller
parameters Kp, Ki, Kd and the sampling time Ts.

c0 = Ts

c1 = −Ts

d0 = KpTs +KiT
2
s +Kd

d1 = −KpTs − 2Kd

d2 = Kd

(3)

Define two vectors of the coefficients in the transfer
function.

vc =
(

c0 c1
)

vd =
(

d0 d1 d2
) (4)

Also, vd could be transformed into the product
of a coefficient matrix and a vector of the controller
parameters, which are more intuitive. That is

vT
d = T pid

s kpid =





Ts T 2
s 1

−Ts 0 −2
0 0 1









Kp

Ki

Kd



 (5)

kpid is the variable to be optimized.

2.2 MPC algorithm

Model predictive control (MPC) is an advanced control
method that was first used in the process industries
since 1970s. It relies on the dynamic model of the
process obtained by system identification. MPC takes
control actions according to the error between the
predictive future events and reference trajectory in
a prediction horizon. PID however does not have
the predictive ability, it depends on the current and
historical tracking errors to take the control actions.
The model used in the MPC usually represents a

relationship between the behaviour of the dynamic
system output and manipulated variables. In this paper,
the relationship is between the system output and the
controller parameters.

ỹf = f(kpid) (6)

The structure of a discrete MPC-PID control system
is shown in Figure 1. All the reference value, historical
tracking error, historical system input and output are
sent to the MPC module, and then the optimized
controller parameters are sent to the PID controller
module.

Gc(z)

R(z)
Y(z)U(z)E(z)

Gp(z)

MPC

, ,
p i d

K K K

Figure 1 Discrete MPC-PID control System.

3 MPC based PID controller synthesis

System model

The general form of a discrete model is

Gp(z) =
Y (z)

U(z)
=

b0z
m + b1z

m−1 + · · ·+ bm

a0zn + a1zn−1 + · · ·+ an
(7)

where n ≥ m. Similarly to the definition of vectors vc

and vd, the parameters of the plant are also written in
a vector form.

va =
(

a0 a1 c2 · · · an
)

vb =
(

b0 b1 b2 · · · bm
) (8)

Define time delay td = n−m, then Equation (7) can
be rewritten as the following form.

A(z−1)yt = B(z−1)ut (9)

where A(z−1) = a0z
td + a1z

td−1 + · · ·+ anz
−m,

B(z−1) = b0 + b1z
−1 + · · ·+ bmz−m. The relationship

between input and output of the plant is given below,
which is shown in Figure 2.

a0yt+td + a1yt+td−1 + · · ·+ anyt−m

=b0ut + b1ut−1 + · · ·+ bmut−m

(10)

In this paper, not only the constraints are
considered in the PID controller parameter on-line
tuning procedure, but also the time delay is fully utilized
in the proposed method. The tracking errors from the
current time t to t+N2 − 1 are used to construct the
error matrix Er, where N2 is the prediction horizon and
N2 ≤ td.
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Figure 2 Relationship between output and input with
time delay.

Derivation of the predictive outputs

In most cases, the characteristics of the closed-loop
system transfer function are analysed, which gives the
relation between Y (z) and R(z). However, in this paper
the relationship between the system output and the
tracking error is produced, which is the product of the
controller and controlled plant transfer function.

Y (z)

E(z)
= Gc(z)Gp(z) (11)

Define another two matrices of the system
parameters.

Ma =

(

va1

va2

)

Mb =





vb1

vb2

vb3





(12)

where va1 =
(

va 0
)

, va2 =
(

0 va

)

, vb1 =
(

vb 0 0
)

,

vb2 =
(

0 vb 0
)

and vb3 =
(

0 0 vb

)

. Then the following
equation can be derived from Equation (11).

vcMa











yt+td

yt+td−1

...
yt−m−1











=
(

et et−1 · · · et−m−2

)

MT
b vT

d (13)

Define cA = vcMa and BT
d = MT

b vT
d . Suppose the

current time is t, by placing the time subscript of the
output in Equation (13) from t+ td to t+ td +N2 − 1,
the following equation group of the relationship between
the system output and tracking error can be derived.

The algebraic equations in (14) can be written in a
vector-matrix form, that is, the future system predictive
output ỹf as a function of the controller parameter kpid.

ỹf = Ξykpid + Γyy0 (15)

where Ξy = C
y
A

−1

Ey
r , Γy = C

y
A

−1

C0

A and Ey
r =

ErM
T
b T pid

s . The definitions of all symbols are given
below.

C
y
A =













cA(1) 0 · · · 0

cA(2) cA(1)
...

...
. . .

0 · · · cA(n+ 2) · · · cA(1)













(16)

Er =











et et−1 · · · et−m−2

et+1 et et−m−1

...
. . .

...
et+N2−1 et+N2−2 · · · et+N2−m−3











(17)

and

C0

A =













−cA(n+ 2) · · · −cA(3)−cA(2)
. . . −cA(4)−cA(3)

...
...

0 · · · 0













(18)

The vectors of the future and historical system output
are

ỹf =
(

yt+td yt+td+1 · · · yt+td+N2−1

)T
(19)

y0 =
(

yt−m−1 · · · yt+td−2 yt+td−1

)T
(20)

As we know, the cost function in MPC algorithm is
composed of two or more items. In the next subsection,
the future system input in Nu control horizon, where
1 ≤ Nu ≤ N2, is derived.

Future control sequence

From Equation (2), it is easy to obtain the relationship
between the future system input and tracking error.
Writing it in a vector-matrix form with the same
procedure of the derivation of system future predictive
output,

uf = Ξukpid + Γuu0 (21)

where Ξu = Cu−1

Eu
r , Γu = −Cu−1

c1 and Eu
r =

Er(1 : Nu,1 : 3)T pid
s . Matrix Er(1 : Nu,1 : 3) means

its elements are extracted from the first Nu rows and
three columns of the matrix Er.

Cu =













c0 0 · · · 0

c1 c0 0 · · ·
...

...
. . .

0 · · · 0 c1 c0













(22)

The vectors of the future and historical system input
are

uf =
(

ut ut+1 · · · ut+Nu−1

)T
(23)

u0 =
(

ut−1 0 · · · 0
)T

(24)
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cA(1)yt+td + cA(2)yt+td−1 + · · ·+ cA(n+ 2)yt−m−1 = Bd(1)et + · · ·+Bd(m+ 3)et−m−2

cA(1)yt+td+1 + cA(2)yt+td + · · ·+ cA(n+ 2)yt−m = Bd(1)et+1 + · · ·+Bd(m+ 3)et−m−1

...

cA(1)yt+td+N2−1 + cA(2)yt+td+N2−2 + · · ·+ cA(n+ 2)yt+N2−m−2 = Bd(1)et+N2−1 + · · ·+Bd(m+ 3)et+N2−m−3

(14)

Constraints and the cost function

Almost every practical controlled plant considers the
constraints in the output, input and the change of
the input. Take the limitation of the maximum output
overshoot yub and the operating limits uub for example.

ỹf ≤ yub

uf ≤ uub

(25)

Substituting Equation (15) and Equation (21) into
the above equation, it can be written in the following
regular form

Aconkpid≤bcon (26)

where

Acon =

(

Ξy

Ξu

)

bcon =

(

yub − Γyy0

uub − Γuu0

) (27)

The on-line tuning problem is to minimize the cost
function constructed by the tracking performance and
the control energy. And Equation (26) forms a linear
constraint of the cost function.

min
kpid

J = ‖rf − ỹf‖
2 + λ‖uf‖

2

s.t. Eq. (15), Eq. (21) & Eq. (26)
(28)

where rf is the reference trajectory and λ is the
control weight coefficient.

4 Simulation results

In the simulation, all the transfer functions in S domain
are transfered into the form of Eq.(9) according to the
backward difference method, that is

z−1 = e−Tss ≈ 1− Tss

⇒ s =
z − 1

Tsz

(29)

4.1 Study of the control weight

In this section, the P controller synthesis for a VSCs
system is first introduced to verify the proposed on-line
tuning method and the effect of the control weight on the
system performance in the cost function is illustrated.

The model of a two-level VSCs for high voltage direct
current (HVDC) is given as

Gp(s) =
1

Ts
e−τs (30)

where T = 0.02 is the time constant and equals to the
capacitor value in a VSCs system, and time delay τ =
7.4× 10−4s. For the detailed physical meaning of the
parameters, see Wu et al. (2016). The sampling time
Ts is chosen to be 0.74× 10−4s, so the delay td in the
discrete domain is 10 sampling intervals. The change of
the P controller parameter Kp, the dynamic response
and the system input under different control weighting
λ compared with the off-line simulation results in the
continous domain are shown in Figures 3, 4 and 5. The
numerical results are given in Table 1, where Ey and Eu

are the 2-norm of the tracking error and control signal
multiplying the square root of the sampling time Ts,
that is the square root of the integral square error (ISE),
which are equivalent to the definitions in continuous
system in Wu et al. (2016).

0 2 4 6 8 10 12 14 16 18 20

t

0

5

10

15

20

25

30

35

40

K
p

λ = 0

λ = 2.5 ∗ 10−3

Figure 3 Change of Kp with different control weight.

Table 1 Numerical results of P control.

Type Ey Eu ts(ms)

λ = 0 0.0305 0.6739 2.00

λ = 2.5× 10−3 0.0361 0.4088 5.33

Kp = 22.4 0.0328 0.7355 6.60

Kp = 11.2 0.0369 0.4130 3.73

Figures 3-5 and Table 1 reveal the following
observations:
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Figure 4 System response with different control weight.
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Figure 5 System input with different control weight.

Our previous work provides a range of Kp from 11.2
to 22.4 which makes the control energy and tracking
error minimum respectively. The final value of Kp

in this range is user-decided according to the system
requirements and in this paper the change ofKp depends
on the choice of λ. As the weighting for the control energy
increases, the tracking performance gets worse. However,
the energy consumption is reduced. To make the energy
consumption minimum, the value of Kp is the lower
boundary of its range and accordingly λ should increase
infinitely which makes Kp close to zero and inadvisable.

The system performance of Kp = 22.4 is compared
to the results of λ = 0, both are to minimize the value
of ISE. Obviously, the on-line parameter optimization
not only produces a better tracking performance, but
also reduces the control energy and the settling time,
compared to the fixed off-line numerical result. However,
the control signal at the beginning is very big. In the next
section, we are discussing the effect of the constraints in
the proposed method.

4.2 Study of the constraints

A heating, ventilation, and air conditioning (HVAC)
system can be modelled as a FOPDT system (Xu

and Li (2007)), which is also widely used to describe
many industrial processes. The three parameters, namely
amplification gain K, time constant T and time delay
τ can be estimated from the step response curve of the
system.

Gp(s) =
K

Ts+ 1
e−τs (31)

The parameters are chosen as K = 72, T = 60 and
τ = 5m from Bai and Zhang (2007). Figures 6-7 show
the on-line tuning of the controller parameters Kp and
Ki. The system response and control signal are given in
Figures 8-9 under the constraints on the system output
and input, which are compared to the results obtained in
our previous work. The numerical results are summarised
in Table 2.

0 20 40 60 80 100

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
p

MPC-PID

Figure 6 On-line tuning of Kp.

0 20 40 60 80 100

t

0

0.02

0.04

0.06

0.08

0.1

0.12

K
i

MPC-PID

Figure 7 On-line tuning of Ki.

Figures 8-9 and Table 2 show that the controller
parameters obtained with the method we proposed in
this paper can produce a good tracking performance and
give a low energy consumption with the consideration
of the constraints on the system input and output,
which is very intuitional to control the overshoot
and control signal to the desired requirements. It
provides a convenient and effective method to adjust
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Figure 8 System response under the constraints.
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ỹf ≤ 30.1

uf ≤ 2.3
Kp = 0.075

Ki = 1.25× 10−3

Figure 9 Control signal under the constraints.

Table 2 Numerical results of PI control.

Constraints Ey Eu ymax umax ts(m)

ỹf ≤ 30.1

uf ≤ 2.3
89.59 8.68 30.1 2.3 18.75

Kp = 0.075

Ki = 1.25 × 10
−3 89.85 8.47 30.41 2.44 21.30

PI controller parameters to meet the requirements on
tracking performance, control energy, overshoot and
settling time by adding the constraints to the optimal
function.

4.3 Study of the change of the setpoint

In this section, the PID controller parameters on-line
optimization with the change of the setpoint is verified
and compared to the control effect with the numerical
optimization approach NOA-PID algorithm proposed
in C. B. Kadu and S. B. Lukare (2015). Likewise,
Figures 10-12 show the change of PID controller
parameters. The control effect and control sequence
are given in Figures 13-14. The numerical results are
summarized in Table 3. The model below is one of the
simulation example in C. B. Kadu and S. B. Lukare
(2015).

Gp(s) =
e−2.5s

s2 + 2s+ 1
(32)

0 5 10 15 20 25 30 35 40
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Figure 10 On-line tuning of controller parameter Kp.
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Figure 11 On-line tuning of controller parameter Ki.

Figures 10-14 and numerical results show the
effectiveness of the proposed MPC-PID method. It
greatly improves the control effect than the fixed
controller parameters.
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Figure 12 On-line tuning of controller parameter Kd.

0 5 10 15 20 25 30 35 40

t

0

0.2

0.4

0.6

0.8

1

1.2

y

Reference

MPC-PID

NOA-PID

Figure 13 System response with the change of setpoint.
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Figure 14 System input with the change of setpoint.

Table 3 Numerical results of PID control.

Type Ey Eu

MPC-PID 1.8136 1.0759

NOA-PID 2.1969 14.4545

Improvement 17.45% 92.56%

5 Conclusions and future work

Inspired by the framework of MPC, this paper
extends the off-line P and PI controller parameters
optimization in continuous systems to the on-line PID
parameter adjustment in discrete systems. The two main
contributions of this paper are: first, we proposed a
convenient method to realize on-line optimization for
PID controller parameters, which not only produces
good tracking performance but also gives a low control
energy; second, it is easy to deal with constraints in the
PID controller design to meet the desired requirements
on the overshoot and operation limit. The simulation
results verify the effectiveness of the proposed MPC-PID
method.

As a future work, the idea of this paper will be
extended to the MIMO sytem. And the model mismatch,
disturbance or some other situations will be considered
in the on-line PID controller design. Though comparing
with tuning three parameters of the PID controller,
selecting a control weight λ is much easier, the effect of
λ on the control performance will be further studied.
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