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Trajectory length prediction for intelligent traffic

signalling: a data driven approach
Shaojun Gan, Shan Liang, Member, IEEE, Kang Li, Senior Member, IEEE, Jing Deng, Member, IEEE,

and Tingli Cheng

Abstract—Yangtze River is one of the world’s most important
cargo-carrying rivers. However, the traffic capacity is becoming
the bottleneck for further developments. This has been high-
lighted in recent Yangtze River economic zone proposal in which
the improvement of the Yangtze River traffic capacity is a key
project. Efficient traffic management based on ships’ trajectory
length prediction is a key way to improve the traffic capacity.
Yet, in existing intelligent traffic signalling systems (ITSSs), ships
are supposed to travel exactly along the central line of the
Yangtze River which is often not a valid assumption and has
caused a number of problems. Over the past few years, traffic
data have been accumulated exponentially, leading to the big
data era. This trend allows more accurate prediction of ships’
travel trajectory length based on historical data. In this paper,
ships’ historical trajectories are first grouped by using the Fuzzy
C-Means clustering algorithm. The relationship between some
known factors (i.e. ship speed, loading capacity, self-weight,
maximum power, ship length, ship width, ship type and water
level) and the resultant memberships are then modeled using
Artificial Neural Networks (ANN). The trajectory length is then
estimated by the sum of the predicted probabilities multiplied by
the trajectory cluster centers’ length. The experimental results
show that the proposed method can reduce the probability of
generating wrong traffic control signals by 89% over existing
ITSSs. This will significantly improve the efficiency of the Yangtze
river traffic management system, and increase the traffic capacity
by reducing the travelling time.

Index Terms—trajectory prediction, data driven, fuzzy c-
means (FCM), artificial neural networks (ANN), intelligent traffic
signalling system (ITSS).

I. INTRODUCTION

Yangtze River has been the world’s busiest navigable inland

waterway since 2010 as more freights are transported through

the Yangtze River than the other inland waterways [1]. Record

shows that 2.18 billion tons of cargo were shipped through the

main reaches of the Yangtze river in 2015, which accounts for

80% of the river freight in China [2]. The figure is expected

to reach 6.2 billion tons in 2030, which is about 17% of the

global total shipping volume [3].

Controlled waterways are special areas in the Yangtze

River with unfavorable geographical conditions, e.g. narrow
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channels, sharp curves and raging water. Fig. 1 shows the map

of the Shenbeizui Controlled Waterway in Sichuan Province,

China. Ships are only allowed to pass in one direction at a

time in this U-shape controlled waterways for safety reasons.

This means, if two ships intend to pass through the Shenbeizui

Controlled Waterway from both directions, only one ship is al-

lowed to pass at one time while the other must wait outside the

controlled zone until it is cleared. This becomes much more

complicated if more ships arrive at both directions. A number

of intelligent traffic signalling systems have been deployed

along the Yangtze River to control the traffic. However, the

accuracy of the generated traffic signals is quite low, which

becomes the key factor limiting the traffic capacity of the

Yangtze river [4].

The traffic signalling of the controlled waterways entirely

relies on the time a ship needs to pass through the controlled

waterways. This can be computed through the trajectory length

and the speed of the each ship. In our previous work, a novel

algorithm has been proposed to build ship speed model for

long-term prediction in the Yangtze River traffic management

[5]. Although the trajectories of each downstream ship follow

nearly the same trend and end up with similar length, the

upstream ships are in a different scenario. It varies a lot due

to ragging water, limited engine power, etc. Thus, this paper

mainly focuses on the trajectory length prediction for upstream

ships.

Ships’ trajectory has been studied from different perspec-

tives in the literature, and a few were reported for inland

waterway applications. However, most efforts were made to

avoid ship collisions instead of improving the traffic efficiency.

A three layered BP neural network was built to predict the

ship’s trajectory where the ship’s speed and course were

used as the input of the BP network, and the ship’s position

change was the output [6]. Even though the proposed model is

computationally efficient, It can only achieve 1 minute ahead

trajectory prediction with satisfactory accuracy. Sutulo et al.

proposed a simplified realistic dynamic mathematical model

by eliminating a number of secondary effects and using a very

small number of input data. The model can be computed at

high speed, but it is still limited to short time prediction [7].

Perera et al. proposed an extended Kalman filter (EKF) to

predict ship states and trajectory for both vessel navigation

systems and vessel traffic monitoring systems [8]. The EKF

was shown to have perfect performance in estimating ship

speed and acceleration from noised data. However, it has the

same limitations listed above, and thus is not suitable for

trajectory length prediction in Yangtze River. Gerben et al.
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proposed an unsupervised long-term ship trajectory modeling

and prediction method for a certain marine region [9]. The

trajectories used in the experiment is more or less the same

within a week, thus the trajectory can be predicted directly

by using clustering algorithm, which is not the case in the

controlled waterways in the Yangtze River. Serrano built a

three-degree ship freedom model to control the ships to follow

trajectories previously established [10]. The model was built

based on the surge, sway and yaw which are very difficult to

obtain for most manual operation ships travelling along the

Yangtze river.

According to our previous study, the ships’ trajectories

heavily depend on the ship speed, loading capacity, self-

weight, engine power, ship size, ship type and water level. Due

to the fast development of information and communication

technologies, the volume of historic traffic data has been

growing rapidly, leading to the era of big data. Transportation

management and control is becoming more data-driven based.

Although many ship trajectory prediction systems and models

have been proposed, the majority can only achieve short-term

trajectory prediction and the performance is still unsatisfac-

tory. This inspires us to reconsider the ship trajectory length

prediction problem based on big historical traffic data.

In this paper, the historical trajectories were first partitioned

into 5 segments according to its variance and then clustered

into smaller groups using the Fuzzy C-Means (FCM) algo-

rithm for each segment. The clustered trajectories along with

their memberships which are obtained by the FCM algorithm,

and together with other traffic data were then used to train the

ANN models. The predicted trajectory length is obtained by

summing the weighted mean length of clustered trajectories.

The experimental results confirm that the resultant models

can predict ships’ trajectory lengths with a fairly satisfactory

accuracy and significantly reduce the error of traffic control

signals. The contribution of this work are four-fold: 1) Overall

trajectory length prediction. 2) Build a model which relates the

unknown ship trajectory with its known factors (ship speed,

loading capacity, self-weight, maximum power, ship length,

ship width, ship type and water level). 3) Data peprocessing.

4) Reduce the probability of generating wrong traffic control

signals by 89% over existing ITSSs. The developments will

become an important part of the ITSSs, where the optimal

traffic control signals are highly dependent on the accuracy of

the ships’ predicted trajectory length.

The rest of the paper is organized as follows. Section 2 gives

a brief introduction of the controlled waterways in Yangtze

River and issues around the traffic management in controlled

waterways. In section 3, the adopted method will be presented

in detail. Then in section 4, the ship trajectories are clustered

and modelled, and the effectiveness of the proposed models

are tested and verified. Finally, section 5 concludes the paper

with remarks on future work.

II. PROBLEM STATEMENT

A. Traffic Management in Controlled Waterways of Yangtze

River

Controlled Waterways are dangerous areas which widely

exist in the upper reaches of the Yangtze River as well as other

Fig. 1. Electronic Navigational Chart of Shenbeizui Controlled Waterway.

inland waterways around the world. In a controlled waterway,

due to the hazard condition, such as narrow channel, sharp

curve, and raging water, ships are only allowed to pass in

one direction at a time to ensure transportation safety. Ships

travel toward the opposite direction have to wait outside the

controlled waterway until it is cleared. In order to guide

ships passing through the controlled waterways efficiently and

safely, ITSSs are used to generate control signals based on

current traffic conditions, e.g., the number of ships in waiting

areas, the distance of ships from controlled waterway, and the

ship speeds etc.
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Fig. 2. The trajectory of a downstream ship turn round outside Shenbeizui
Controlled Waterway.

Another issue is that downstream ships have to turn round

and head upstream in order to make a stop because of the

torrential water flow in the controlled waterways, as shown

in Fig. 2. Due to harsh geological features of the controlled

waterways, it is very dangerous for ships to turn round.

Thus, the ITSSs were deployed to improve the controlled

waterways’ traffic efficiency while avoid the stop and waiting

of downstream ships. Due to the above reason, downstream

ships should be given higher priority when passing through

the controlled waterways.

However, as current ITSSs often assume that all ships

travel exactly along the middle line of the Yangtze River,

the predicted ship passing time is inaccurate, leading to

ineffective even wrong traffic control signals. In reality, the
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Fig. 3. Waiting time of a ship passing through Shenbeizui Controlled
Waterway from Mar. 2014 to Aug. 2014

controlled waterways are often occupied by upstream ships

when downstream ships arrive. Therefore, the downstream

ships have to wait and thus need to make unnecessary U-

turns. Such non-optimal traffic control signals not only lead

to hours of waiting, but also impose potential risks to the ships

when making the U-turns. Fig. 3 shows the waiting time of a

randomly selected ship passing through the Shenbeizui Con-

trolled Waterway from March 2014 to August 2014. Each bar

represents the waiting time of this ship when passed through

the controlled waterway. During this six months period, this

ship has travelled through the Shenbeizui Controlled Waterway

for 86 times. Its total waiting time is 90 hours, with an average

of 62.6 minutes per journey. Since hundreds of thousands of

ships are operating on the Yangtze River every day, accurate

trajectory length prediction is urgently needed for intelligent

traffic signalling.

B

A

s

Controlled waterway

sA

sB Upper waiting area

Lower waiting area

Ship

Fig. 4. Simplest situation in Controlled Waterway

Fig. 4 illustrates a basic situation of traffic management

in a controlled waterway. Ships A and B are going to travel

through the controlled waterway. The existing ITSSs generate

the traffic signals by the following simplified model if two

ships are about to pass through the controlled waterway from

different directions at the same time.

tA = SA

VA
; tB = SB

VB
;

tSA = S
VA

; tSB = S
VB

;

A = 1, B = 0
WTB = tB − tA − tSA

}

if tB ≥ tA + tSA

A = 0, B = 1
WTA = tB + tSB − tA

}

if tB < tA + tSA

(1)

where S denotes the length of the controlled waterway, SA

and SB are the distances of ships A and B from the controlled

waterway. VA and VB represent the velocity of ships A and B

respectively. tA and tB are the time of ships A and B arriving

at the controlled waterway. tSA and tSB indicate their time of

passing through the controlled waterway. WTA and WTB are

their waiting times. A,B ∈ {0, 1}, 0 and 1 are red waiting

signal and green pass signal respectively. The objective of

the decision making process is to minimise the total waiting

time while guaranteeing the priority of downstream ships. It is

obvious that the performance of the model (1) highly depends

on the accuracy of the trajectory length prediction.

Upstream ships also have some difficulties in choosing a

short trajectory due to their power limitation and ragging water

conditions. They need to turn frequently in the controlled wa-

terways to compensate for adverse water stream force, and end

up with tranquil but long trajectories. This situation is often

more frequent when ships are full loaded and underpowered.
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Fig. 5. Trajectories of upstream ships passing through the Shenbeizui
Controlled Waterway

Fig. 5 shows the trajectories of 2000 randomly selected

upstream ships passing through the Shenbeizui Controlled

Waterway. It is clear that the actual ship trajectories don’t

follow the middle line which is adopted in current ITSSs to

calculate the trajectory as well as passing time. Thus, the non-

optimal signal generation becomes inevitable due to incorrect

prediction of SA and SB . Fig. 6 shows the length of the 2000

ships’ trajectories, which indicates large variation from the

middle line (red). The incorrect trajectory length prediction in

current ITSSs not only leads to hours of unnecessary waiting,

but also increases the chance of waiting for downstream ships

which is against the controlled waterway traffic management

regulations.
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B. Problem Formulation

Based on the above analysis, accurate trajectory length

prediction is vital for the traffic signalling on the Yangtze

River. However, manually controlled ships have lots of uncer-

tainties in their travelling trajectories. thus it is very difficult

to predict the trajectory or its length accurately based on

historical data. However, the trajectories can be clustered into

small groups based on their similarities. The trajectories within

the same cluster have similar length distribution. Our previous

studies show that, the upstream ships’ trajectories are related

to ship speed, loading capacity, self-weight, maximum power,

ship size and water level. Therefore, a mathematical model

based on these known factors could be built to calculate the

probability of a trajectory belonging to each cluster. The length

of the predicted trajectory can be presented by summing the

probability weighted cluster means.

Suppose {xi}
m

i=1 ⊆ Rn denotes the trajectories which will

be clustered into C groups, g1,g2, . . . gC . The aim of the first

stage is to estimate the membership wij which denotes the

probability of trajectory xi belonging to cluster gj . The second

stage will calculate the probability of wij for all possible i and

j (j ∈ [1, C]) based on known factors of ship i, i.e. speed vi,

loading capacity lci, self-weight swi, maximum power mpi,

ship length leni, ship width widi, ship type tyi and water level

wli, as shown in (2). The function f is normally unknown

and needs to be identified. In this paper, an Artificial Neural

Network (ANN) is adopted.

wij = f(vi, lci, swi,mpi, leni, widi, tyi, wli) (2)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , C.

Thus, the predicted length of the ith trajectory l̂i can be

obtained by summing the probability weighted cluster centers

length.

l̂i =

C
∑

j=1

wij ‖gj‖ (3)

where ‖gj‖ denotes the mean length of cluster j.

III. METHODOLOGY

A. FCM clustering

FCM is a soft clustering algorithm which assigns mem-

berships to each data corresponding to all clusters based on

the distances of the data and the cluster centers [11]. Let

X = (x1, x2, . . . , xN ) denotes N data samples to be clustered

into C groups. The algorithms aims to minimize the objective

function (4) iteratively.

J =

N
∑

i=1

C
∑

j=1

µm
ij‖xi − gj‖

2
(4)

where m = 1, 2, · · · ,∞ is an index that controls the fuzziness

of the resulting partition. In the absence of experimentation

or domain knowledge, m is usually set to 2. µij ∈ [0, 1] is

the membership indicating the probability of xi belonging to

cluster j, thus,

N
∑

i=1

µij = 1 (j = 1, 2, . . . , C) (5)

gj is the center of jth cluster, and ‖∗‖ denotes the similarity

between data xi and the cluster center cj .

The objective function J is minimized when larger member-

ship values are assigned to data closer to the cluster centers,

and vice versa. The memberships and the cluster centers are

updated by:

µij =
1

C
∑

k=1

(

‖xi−gj‖
‖xi−gk‖

)

2

m−1

(6)

gj =

N
∑

i=1

µm
ijxi

N
∑

i=1

µm
ij

(7)

if m is set to 1, the memberships µij converge to 0 or 1, which

transforms to a hard clustering method.

The pseudo code of FCM algorithm is summarised in

Algorithm 1. Specifically, an appropriate number of clusters

C are determined first followed by the initialization of C

centres randomly selected from the data set. The centers and

memberships are then updated iteratively until a stop criterion

is met, such as the changes of memberships become small as

shown in Eq.(8) or the centres don’t change in two successive

iteration steps.

max
ij

{∣

∣

∣
µ
(k+1)
ij − µ

(k)
ij

∣

∣

∣

}

< ε (8)

B. Artificial Neural Network

Artificial neural networks, which were initially inspired by

biological neural net, usually contain at least 3 layers: input

layer, hidden layer and output layer. The input data are fed

to the network through the input layer and then delivered to

the hidden layers by multiplying layer weights. In the hidden

layers, the weighted sum of the input data is fed to a nonlinear

activation function, e.g. sigmoid function. The processed data
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Algorithm 1: Pseudo Code of FCM

Input:

Number of clusters C, Data set X , Fuzziness index m;

Output:

Cluster centers c, membership of all data µ;

1: Randomly select C cluster centers;
2: Calculate the initial memberships;
3: repeat:

3: for(i=1;i<=N;i++) do

4: for(j=1;j<=C;j++) do
5: update the cluster centers according to (7);
6: end for

7: end for

8: for(i=1;i<=N;i++) do
9: for(j=1;j<=C;j++) do

10: update membership values according to (6);
11: end for

12: end for

13: Until stop criteria (8)

is finally transferred to the output layer to calculate neural

network outputs. All layers in neural network consist of

neurons which are the fundamental processing elements, and

the neurons from neighbouring layers are interconnected with

weights. It has been proved that the artificial neural network

is capable of representing any continuous function with an

arbitrary degree of accuracy by tuning the weights [12].

Fig. (7) schematically illustrates a typical m−k−n network.

Let wl
ji denotes the weight of the ith neuron in (l−1)th layer

to the jth neuron in lth layer. The output of jth neuron in lth

layer can be computed as

alj = f

(

∑

i

wl
jia

l−1
i

)

(9)

where f is the activation function of the neurons in jth layer.

Consequently, the output of the network can be calculated as:

a3j = τ

(

k
∑

i=1

w3
jiσ

(

m
∑

l=1

w2
jla

1
l

))

(10)

where j = 1, 2, . . . , n is the number of neurons in the output

layer. τ and σ are the activation function of output layer and

hidden layer respectively.

1
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1

2

3

k

1

Input 
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Input n

2

n
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Fig. 7. Basic Structure of BP network

The most commonly used artificial neural network for

classification problem is the multilayer perceptron (MLP)

Algorithm 2: Pseudo Code of BP

Input

Training data set
Output

Neural network

1:Initialize all weights with random values
2:repeat:

//Propagated the input forward through the network:
3: for each layer in the network
4: for every node in the layer
5: Calculate the weighted sum of inputs to the nodes
6: Calculate the node outputs
7: end

8: end

//Propagate the errors backward through the network:
9: for every node in the output layer
10: calculate the error signal
11: end

12: for all hidden layers
13: for every node in the layer
14: Calculate the node’s signal error
15: Update each node’s weight in the network
16: end

17: end

18:until stop criteria

trained by the back-propagation (BP) algorithm [13]. BP is a

supervised training method for neural networks which relies on

errors between network outputs and desired outputs. This error

is minimized by tuning the weights using gradient descent

optimization methods. Therefore, the training process can be

divided into two phases. In the forward phase, the input data

is fed to generate the network output. While in the back

propagation phase, the network error was used to tune the

weights backwards. The pseudo code for the BP algorithm is

given in Algorithm 2.

IV. EXPERIMENTS

A. Data Description

The real data collected from the Shenbeizui Controlled

waterway ITSS are used in the experiment as a numerical

example. The ITSS retrieves data from a AIS (Automatic

Identification System) station which transmits ships’ infor-

mation by radio. AIS is an automatic tracking system used

for identifying ships by exchanging information (i.e. Maritime

Mobile Service Identity (MMSI), ship name, type, dimension,

draught, navigation status, rate of turn, speed over ground,

longitude, latitude, true heading etc.) with nearby AISs through

161.975 and 162.025 MHz VHF (Very High Frequency) radio.

Fig. 8 depicts the basic structure of AIS data acquisition

system. In the Yangtze Rive, all ships are required to deploy

AIS. Thus, the ITSS could estimate traffic conditions by

analysing the ships’ AIS information.

In this paper, 2000 randomly selected upstream ships’

trajectories corresponding with their speed, maximum power,

self-weight, loading capacity, ship type, ship width, ship length

and the water level were used. All the 2000 trajectories

were first clustered by the FCM algorithm to obtain their

memberships belonging to the clusters. Then, 70% of the

data were used for ANN training, while the remaining 30%

data were reserved for testing. The detailed procedure of the

experiment is illustrated in Fig.9.
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B. Data pre-processing

1) Dimension reduction: In practice, ships broadcast their

status at different frequencies relating to their speed [14]. This

causes the ship trajectories nonaligned, and the sampling rates

vary. FCM cannot be applied to these raw data. Thus data pre-

processing becomes necessary. Firstly, all the 2000 trajectories

were aligned to the same starting and ending lines, and then

re-sampled to the same size, i.e. same number of points in

each trajectory. Fig. 10 shows the pre-processing of two raw

trajectories, • and ∗ are the position points of two different

trajectories. Let trajectories = {tra1, tra2, . . . tra2000} de-

notes the total 2000 trajectories to be used in the experiment,

where trai =
{

p
j
i

}m

j=1
⊆ R2 is the ith trajectory with m

sampling points, p
j
i =

{

x
j
i , y

j
i

}

represents the jth point in

ith trajectory and x
j
i and y

j
i are the longitude and latitude

respectively.

Controlled waterway area

Re-sampled to
the same size
(number of points
in each trajectory)

Two raw
trajectories

Aligned to the
same starting
and ending lines

Fig. 10. Example of alignment and re-sampling of two raw trajectories

It has been proven that high data dimension increases

TABLE I
NUMERIC NOTATION OF SHIP TYPES

Ship type Code Ship type Code

Cargo ship 1 Ferry 5
Oil tanker 2 Motor boat 6
Multi-purpose ship 3 Bulk carrier 7
Container ship 4 Passenger ship 8

difficulty for clustering algorithm due to more expensive

computational cost and sensitivity to redundancies [15], [16].

To tackle this issue, all the trajectories’ coordinates were

transformed from GPS to the distances from the bank of

the controlled waterway, shown in Fig. 11. The resultant

trajectories can be represented as trai =
{

d
j
i

}m

∈ R where

d
j
i denotes the distance of ith point in jth trajectory to the

bank of the Shenbeizui Controlled Waterway. This leads to

reduced data dimension without losing any information in the

original trajectories. The data dimension has reduced from 2m
to m.
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Fig. 11. Example of the coordinates transformation

2) Trajectory partitioning: Another challenge in trajectory

clustering is to deal with large uncertainties and complicated

waterway geography. [17].

From historical data, it has been noticed that the branch area

in controlled waterway significantly restricted the freedom of

travelling. Thus the ship trajectories are very close to each

other at these points as shown in Fig. 12. This can be further

confirmed by their variations. As a result, the trajectories were

partitioned into 5 segments as illustrated in Fig. 12. The FCM

algorithm was then applied to each of these five segments. In

addition, The ANN model was also built for each segment

to learn the latent relationship between ships’ trajectory and

other known factors where ship types were coded according

as in table I.

C. Index of performance

To evaluate the performances of the proposed algorithm,

three indexes, i.e. normalized prediction error (NPE), mean

absolute error (MAE) and mean squared error (MSE) were

used in this paper. They are defined as

NPE =

√

√

√

√

√

∑N

i=1

(

l̂i − li

)2

∑n

i=1 li
2 × 100% (11)

MAE =
1

N

N
∑

i=1

∣

∣

∣
l̂i − li

∣

∣

∣
(12)
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Fig. 12. The divided trajectory segments in the transformed coordinates

MSE =
1

N

N
∑

i=1

(

l̂i − li

)2

(13)

where li is the actual length of ith trajectory, and l̂i is the

predicted length.

D. Trajectory clustering

FCM clustering needs the similarity information between

trajectories. In this case, the similarity between trajectories i

and k was defined as the sum of gaussian distance between

the corresponding points

d(trai, trak) =

m
∑

j=1

dis(pji , p
j
k) (14)

where dis(pji , p
j
k) gives the gaussian distance between the jth

point of trajectories i and k.

Another parameter to be determined for FCM is the number

of clusters. This requires some prior knowledge about the data

set otherwise a guess has to be made. In this study, prior

knowledge and Akaikes information criterion are adopted to

estimate the optimal number of clusters [18] which are 3, 2, 2,

3 and 4 for the above five segments. Trajectories were assigned

to the clusters based on their memberships. The clustering

results are shown in Fig. 13. The length of each cluster center

is given in Table II. Note that there is no standard right answer

for the clustering results, the effectiveness of the clustering

results depends on the clustering purpose.

TABLE II
THE LENGTH OF CLUSTER CENTRES IN EACH SEGMENT

Cluster Labels 1 2 3 4

1st segment (km) 2.3912 2.2843 2.3234 -
2nd segment (km) 1.8219 1.8110 - -
3rd segment (km) 2.2547 2.3770 - -
4th segment (km) 2.4573 2.9713 2.2171 -
5th segment (km) 2.7040 2.6230 2.6681 2.7499

E. Trajectory modelling

The second phase of the experiment was to build ANN

models to predict the ships’ probabilities of selecting different

trajectory clusters based on their known information, i.e. ship

speed, loading capacity, self-weight, maximum power, ship

size, ship type and water level. These variables were selected

as the inputs of the ANN and the outputs were memberships

to each cluster. This offers several advantages over traditional

methods which use clustering label as the targets. In this

application, the clusters do not have clear boundaries, thus a

small error in membership would lead to a completely wrong

cluster label. Using membership values as the targets can avoid

these problems and improve the modelling accuracy.

Softmax function [19] was selected as the activation func-

tion of the output layer in the ANN to make sure the model

gives a valid probability distribution, i.e, all outputs are greater

than 0 and their sum equals to 1. The output of ith neuron

in last layer is calculated using (15). The cross entropy cost

function [20] was used to obtain an error vector in the output

layer, which was then backpropagated to the hidden layer and

input layer to tune the weights of the ANN.

s(z)i =
ezi

L
∑

j=1

ezj

(15)

where L is the number of neurons in output layer, and ezj is

the input of jth neuron in this layer.

Five ANN models were then built to predict the ships’

probabilities of choosing different trajectory clusters in the

above five segments. The predicted trajectory length is given

by the sum of cluster center lengths weighted by the predicted

memberships. The experimental results show that the built

model can achieve much better performance in predicting the

ships’ trajectory length when compared to the existing method.

The MSE, MAE and NPE from both proposed method and

existing systems were shown in table III. The built models

have achieved the best performance for the 2nd trajectory

segment with 0.0014 MSE while it is 0.0715 for segment

4. Obviously, a significant improvement has been made over

existing mid-line prediction method.

TABLE III
PERFORMANCE OF THE BUILT ANN MODELS AND THE EXISTING METHOD

MSE MAE NPE

ANN

1st segment 0.0025 0.0332 2.13%
2nd segment 0.0014 0.0285 2.05%
3rd segment 0.0079 0.0775 3.74%
4th segment 0.0502 0.1531 9.52%
5th segment 0.0033 0.0420 2.13%
Total 0.0715 0.2208 2.33%

Mid-line Total 0.1237 0.3150 3.28%

F. Discussion

Trajectory length prediction is vital for accurate and ef-

ficient traffic signalling in the Yangtze River. Even a small

improvement in trajectory length prediction could make a big

difference in traffic signaling optimization. For example, ship

A with the information listed in Table IV travelled through
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Fig. 13. Clustering results of the trajectory in each segment (x and y are the new coordination which represent the bank of the Shenbeizui Controlled
Waterway and the distances to the bank respectively). (a) 1st segment. (b) 2nd segment. (c) 3rd segment. (d) 4th segment. (e) 5th segment.

the Shenbeizui Controlled Waterway on November 2, 2015.

The trajectory length predictions based on the built ANN

models and the existing mid-line method are 11.4749 and

11.6255 km respectively, while the actual length is 11.4900

km. The time ship A spent in the lower waiting area and

the controlled waterway based on different trajectory length

prediction methods are listed in table V. Suppose another ship

B was approaching the controlled waterway at the same time, a

traffic signal needs to be generated according to the simplified

signalling model (1). Table VI shows the traffic signals from

different approaches under 4 scenarios. Although none of these

method can lead to correct signals for all different tB , the

built ANN models are least likely to generate a wrong signal

except when tB is between 92.39 and 92.51 minutes, while

in the existing mid-line prediction method, a wrong signal

would be generated when tB is between 92.51 and 93.59

minutes . In this case, the built models reduce the wrong signal

time period by 0.96 minutes which is 89% in probabilities

by compare to existing method. In practice, a wrong signal

could lead to hours of unnecessary waiting time or risky U-turn

for downstream ships. Thus, improved accuracy in trajectory

length prediction is always vital in ITSSs, especially for the

busy Yangtze River.

TABLE IV
SHIP A’S INFORMATION

Factor Value Factor Value

Loading capacity 681 tons Ship type Cargo ship
Self-weight 306 tons Length 61 meters
Maximum power 280 kilowatt Width 12 meters
Speed 2.9154 knot Water level 3.97 meters

TABLE V
TIME OF SHIP A SPEND TO PASS THROUGH SHENBEIZUI CONTROLLED

WATERWAY AREA BASED ON DIFFERENT TRAJECTORY PREDICTION

APPROACHES

Controlled waterway
(tA)

Lower waiting
area (tSA)

tSA + tA

Mid-line prediction 58 min 35.59 min 93.59 min
ANN 57.26 min 35.13 min 92.39 min

True value 57.33 min 35.18 min 92.51 min

TABLE VI
TRAFFIC SIGNALLING FOR SHIPS A AND B BASED ON DIFFERENT

TRAJECTORY LENGTH PREDICTION APPROACHES

tB(min) Mid-line prediction ANN prediction Desired signal

≤92.39 A=0;B=1 A=0;B=1 A=0;B=1
92.39-92.51 A=0;B=1 A=1;B=0 A=0;B=1
92.51-93.59 A=0;B=1 A=1;B=0 A=1;B=0
≥93.59 A=1;B=0 A=1;B=0 A=1;B=0

*Wrong signals are marked in bold.

V. CONCLUSION

In this paper, strategies to predict ships’ trajectory length

based on the known ship information ( i.e. ship speed, loading

capacity, self-weight, maximum power, ship type, ship length,

ship width and water level) has been developed to improve

the traffic signalling in the controlled waterways of Yangtze

River. This is achieved by two phases. Firstly, the whole

trajectories were partitioned into 5 segments according to

the variances and then the clustering was implemented each

segment of all trajectories. Secondly, ANN models were built

to predict ships’ probability of selecting different trajectory
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clusters in each segment. The trajectory length prediction was

obtained by summing the weighted cluster center length. The

experiment confirmed that the proposed approach could reduce

the probability of false signalling by more than 89% compared

to the existing system.

Although the research has reached its aim, there are still

some limitations. First, this research predicts the trajectory

length by summing up the weighted cluster centre length.

Thus, the exact trajectory is not predictable by the proposed

method, this may limit its further applications. Second, the

proposed method performs much better in controlled wa-

terways than in broad and smooth waterways, that may be

because ships travel more arbitrary in broad and smooth

waterways.

In the future, other approaches will be investigated to further

improve the performance of ship trajectory length prediction.

In addition, other factors which influence the traffic signalling

in the Yangtze River may also be considered.
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“Extensions of recurrent neural network language model,” in Acoustics,

Speech and Signal Processing (ICASSP), 2011 IEEE International

Conference on. IEEE, 2011, pp. 5528–5531.
[20] D. M. Kline and V. L. Berardi, “Revisiting squared-error and cross-

entropy functions for training neural network classifiers,” Neural Com-

puting & Applications, vol. 14, no. 4, pp. 310–318, 2005.


