

This is a repository copy of *Stearyl methacrylate-based polymers* as crystal habit modifiers for triacylglycerols.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/139043/

Version: Supplemental Material

Article:

Jennings, J., Butler, M.F., McLeod, M. et al. (3 more authors) (2018) Stearyl methacrylate-based polymers as crystal habit modifiers for triacylglycerols. Crystal Growth and Design, 18 (11). pp. 7094-7105. ISSN 1528-7483

https://doi.org/10.1021/acs.cgd.8b01272

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Crystal Growth and Design, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.cgd.8b01272

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting Information

Stearyl Methacrylate-based Polymers as Crystal Habit Modifiers

for Triacylglycerols

James Jennings*¹, Michael F. Butler², Madeleine McLeod¹, Evelin Csányi¹, Anthony J.

Ryan¹, and Oleksandr O. Mykhaylyk*^{1,3}

¹Department of Chemistry, The University of Sheffield, Sheffield, S3 7HF, UK

²Unilever R&D, Colworth Lab, Bedford, MK44 1LQ, UK

³Soft Matter Analytical Laboratory, Department of Chemistry, The University of Sheffield, Sheffield, S3 7HF, UK

*Corresponding authors:

Oleksandr O. Mykhaylyk (<u>o.mykhaylyk@sheffield.ac.uk</u>) and James Jennings (james.jennings@sheffield.ac.uk)

Figure S1. An example of wide-angle X-ray diffraction subtraction procedure, in which data from a sample containing SSS (5 wt% in OOO) crystallised at 0 °C (red symbols) is overlapped with OOO at 0 °C (blue symbols). After the subtraction, it was possible to identify 3 diffraction peaks (black line), even at such a low concentration of crystals.

Figure S2. Subtracted WAXD data collected for SSS (5 wt% in OOO) at 0 °C after crystallization in the presence of the (A) O_{67} , (B) S_{37} , (C) $S_{37}O_{11}$, (D) $S_{37}O_{26}$

Figure S3. A plot of crystal lattice strain values (e_{WH}) measured by Williamson-Hall analysis of SSS (5 wt% in OOO) crystallized in the presence of polymer additives with different fractions of stearyl methacrylate (m_s): $S_{37}O_{138}(\bullet)$, $S_{37}O_{26}(\blacktriangle)$, $S_{37}O_{11}(\diamond)$ and $S_{37}(\blacksquare)$. The calculated strain values were relatively constant across all samples, with no obvious trend related to the additive composition.

Figure S4. Time-resolved SAXD data for S_{37} in OOO (1 wt%) while cooling from 30 °C (bottom trace) to 0 °C (top trace) at a rate of 1 °C/min. No crystals of S_{37} were observed to form during this cooling experiment.

Figure S5. Subtracted SAXD data collected for SSS (5 wt% in OOO) at 0 °C after crystallization in the presence of S_{37} (solid line) stacked against data from pure S_{37} at 0 °C after crystallization under the same conditions (dashed line). The additional peak evident at s = 0.033 Å⁻¹ in the lower plot can be attributed to crystals of S_{37} forming in addition to SSS crystals. SAXD peaks of α -phase of SSS and polymer lamellar crystals are indicated by Miller indices.