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Computation Offloading and Resource Allocation in
Vehicular Networks Based on Dual-side Cost

Minimization
Jianbo Du1, F. Richard Yu2 Fellow, IEEE, Xiaoli Chu3, Jie Feng4, and Guangyue Lu1*

Abstract—The proliferation of smart vehicular terminals (VTs)
and their resource hungry applications imposes serious challenges
to the processing capabilities of VTs and the delivery of vehicular
services. Mobile Edge Computing (MEC) offers a promising
paradigm to solve this problem by offloading VT applications to
proximal MEC servers, while TV white space (TVWS) bands can
be used to supplement the bandwidth for computation offloading.
In this paper, we consider a cognitive vehicular network (CVN)
that uses the TVWS band, and formulate a dual-side optimization
problem, to minimize the cost of VTs and that of the MEC server
at the same time. Specifically, the dual-side cost minimization is
achieved by jointly optimizing the offloading decision and local
CPU frequency on the VT side, and the radio resource allocation
and server provisioning on the server side, while guaranteeing
network stability. Based on Lyapunov optimization, we design
an algorithm called DDORV to tackle the joint optimization
problem, where only current system states, such as channel
states and traffic arrivals, are needed. The closed-form solution
to the VT-side problem is obtained easily by derivation and
comparing two values. For MEC server side optimization, we
first obtain server provisioning independently, and then devise a
continuous relaxation and Lagrangian dual decomposition based
iterative algorithm for joint radio resource and power allocation.
Simulation results demonstrate that DDORV converges fast, can
balance the cost-delay tradeoff flexibly, and can obtain more
performance gains in cost reduction as compared with existing
schemes.

Index Terms—Computation offloading, mobile edge comput-
ing, resource allocation, stochastic optimization, vehicular net-
works.

I. INTRODUCTION

With the rapid development of Internet of Vehicles (IoV),

vehicles become smarter in supporting intelligent applications,
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such as autonomous driving, video-aided real-time navigation,

and interactive gaming [1]–[4]. Many of these applications

are computationally-intensive, power-hungry, delay-sensitive,

and bandwidth-demanding, which on the one hand, consumes

a large amount of energy and imposes great pressures on the

processing capabilities of vehicular terminals (VTs) [5], and on

the other hand, poses a great burden on radio access networks

[6].

To tackle the issues such as poor terminal processing capa-

bilities and high energy consumption, mobile edge computing

(MEC) [7]–[18] enabled vehicular networking [20], [21] has

been regarded as a promising solution, where the processing

of VT applications is pushed to the adjacent radio access net-

works. By attaching MEC servers to roadside units, i.e., MEC

enabled roadside units (MRSU) which are deployed along

the roadside offering wireless access to VTs, an MEC based

integrated communication and computation platform can be

constituted. By offloading computations to MEC servers, many

complex VT applications can be enabled, and/or the energy

consumption of VTs can be reduced, and/or the response of

applications can be accelerated [9]–[14].

Since the input data for computation offloading should

be transmitted to MEC servers via radio access network-

s through vehicular-to-roadside (V2R) communications, the

chronic problem of radio spectrum scarcity has to be first

considered, otherwise the performance and efficiency of task

offloading may be deteriorated even neutralized. Long-term

evolution-vehicle (LTE-V) [22] and dedicated short-range

communications (DSRC) [23] both have limitations when

employed for computation offloading in vehicular networks.

The cellular network based LTE-V is facing issues of the

explosive growth of mobile data traffic (in contrast to the

scarcity of licensed cellular spectrum) and the relatively ex-

pensive cost of using the licensed spectrum. More importantly,

V2R communications are usually more appealing during long

journeys along motorways where cellular 3G/4G/5G coverage

and services are typically unsatisfactory [6], [24]. For DSRC,

many studies have shown that the bandwidth is insufficient

for supporting resource-demanding V2R communications [2],

[3], [25]. The short transmission range of WiFi systems have

limited their usage in V2R scenarios, where a large number

of WiFi APs along the road would be needed for seamless

coverage, which is uneconomical, and will result in frequent

handovers of high-speed VTs [6], [24].

In the meanwhile, plenty of TV White Spaces (TVWS)

bands, which have desirable long-distance propagation char-
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acteristics [6], [24], [25], can be used as a feasible supplement

to the limited DSRC bandwidth [3], [6], [24]–[27], and related

standards have been put forwarded by relevant organizations

such as U.S. Federal Communications Commission (FCC)

[28]. Therefore, to solve the related wireless spectrum prob-

lems, in this paper we will investigate vehicular computation

offloading using TVWS band for wireless data transmission.

However, new problem arises: to exploit TVWS band, the

basic principle is the protection of primary users (PUs), and the

IEEE 802.22 PUs could transmit with a power up to 4 W [29],

while the secondary users (SUs), such as VTs performing com-

putation offloading in a cognitive vehicular network (CVN),

are only permitted to use a power no more than 100 mW [29].

Consequently, the offloading from VTs may be blocked by

802.22 PUs. Therefore, the power asymmetry problem should

be settled when VTs reuse the TVWS spectrum.
In most existing works, computation offloading optimiza-

tions are usually performed unilaterally, i.e., only concerning

the user-side or the server-side performance. On the user side

(e.g., VTs), while offloading tasks to MEC servers to save

energy consumption, VTs need to minimize costs including

the energy consumption in data transmission and the fees for

the computation and communication services [17], by opti-

mizing offloading decisions and the allocation of local CPU

frequency. On the server side (e.g., MRSU), while it makes

profit from providing VTs with computing services and the

corresponding data transmission services in data offloading, it

needs to minimize costs including the cost for renting wireless

bandwidth, and the electricity bills for running edge servers, by

optimizing the allocation of radio resources and edge servers.
Considering that MRSU and VTs have conflict objectives

while each trying to minimize its own cost, in this paper,

we formulate two intercoupled dual-side cost minimization

problems in an integrated IEEE 802.22 based vehicular frame-

work. The dual-side cost minimization involves stochastic

optimization problems, which is much more challenging than

unilateral user-side or server-side optimization because on

the one hand, the two stochastic optimization problems are

intercoupled with each other and the optimization in each

frame is also intercoupled, and on the other hand, both

stochastic optimization problems involve a large amount of

state information as well as control variables. With the help

of Lyapunov optimization theory, we devise low complexity

algorithms to solve the two intertwined problems.
The main contributions are summarized as follows:

• We develop a task offloading framework for an IEEE

802.22-CVN coexisting network, where the IEEE 802.22

channel is reused by the CVN for computational task of-

floading, with the unique features of the TVWS wireless

channels such as temporal and spatial changes in channel

availability, and FCC’s requirements for the protection of

PUs taken into consideration.

• We formulate a dual-side cost minimization in an inte-

grated framework under a competition scenario where

VTs and MRSU aim to minimize their own costs. On the

VT-side, each VT optimizes its computation offloading

decision and local CPU frequency control independently

so as to minimize its cost, while on the MRSU-side, the

server provisioning, the IEEE 802.22 burst (which will

be detailed below) assignment, and the transmit power

control are jointly optimized to minimize the cost of

MRSU.

• Leveraging Lyapunov optimization, we decouple the two

stochastic optimization problems into independent per-

frame optimizations, without requiring any knowledge

of future task arrivals or network state information. In

each frame, the VT-side offloading decision is obtained

by comparing the cost of local processing and that of task

offloading, and the VT’s local CPU frequency is obtained

by the derivative of the objective function. For MRSU-

side optimization, we first devise simple algorithm for

server provisioning, and then we develop a continuous

relaxation and Lagrange dual decomposition based low-

complexity algorithm to obtain the joint IEEE 802.22

burst allocation and transmit power control policies.

• Simulation results verified the convergence of our pro-

posed iterative radio resource allocation algorithm, the

tradeoff between the cost and queue length, and the

performance of our proposed joint optimization algorithm

compared with other existing algorithms.

The remainder of this paper is organized as follows. Related

works are presented in Section II. Section III and Section

IV introduce the system model and the dual-side problem

formulation, respectively. In Section V, we transform the

original formulated problem into per-frame optimization by

employing Lyapunov optimization. The VT-side per-frame

optimization is solved in Section VI, and the MRSU-side per-

frame problem is settled in Section VII. In Section VIII we

present the complexity analysis of our proposed algorithms.

Simulation results are provided in Section IX. Finally, the

paper is concluded in Section X.

II. RELATED WORKS

Recent years, MEC-based (or fog computing based) com-

putation offloading has attracted a great deal of attentions and

has stimulated extensive researches from distinct perspectives

in terms of different metrics. Specifically, task partitioning and

offloading policy is jointly optimized to maximize the energy

conservation [9] or to minimize the energy consumption [10].

The works in [9], [10] were then extended to multi-user

scenarios, where except offloading decision is optimized, the

joint optimization of transmit power control and computation

resource allocation [11], of radio bandwidth and computation

resource allocation [12], of transmit power control, compu-

tation and radio bandwidth allocation [13] or resource block

(RB) allocation [14] were also studied in different multi-user

scenarios.

In the above references [9]–[14], the authors only consid-

ered the performance of processing a single task, nevertheless,

for applications like multi-media and file backup, etc., the cou-

pling among the random task arrivals should not be neglected,

so long-term performance metrics and stochastic task models

are more suitable. Reference [15] studied offloading decision

optimization to minimize the average execution cost. The

authors in [16] considered the joint optimization of offloading
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policy, the local CPU speed control, and network interface

selection to minimize the time-averaged expected total average

energy consumption.

However, the formulations in [9]–[16] are unilateral op-

timizations, which could not reflect the practical situation

very well. The authors in [17] designed a practical dual-side

optimization framework, where code offloading, computation

resource allocation, and network interface selection policies

were jointly optimized for mobile users, and service pricing

were optimized for the service provider. The formulation with

joint radio and computation resource allocation optimization

for multi-user MEC systems was proposed in [18] to minimize

the long-term averaged total power consumption of the MEC

server and all its served mobile devices.

MEC-enabled vehicular networks have also attracted much

attention from many researchers in recent years. The au-

thors in [5] proposed an MEC based computation offloading

framework for CVNs to minimize the VTs’ cost in task

offloading, while guaranteeing task processing delay and con-

sidering VTs’ mobility. In [20], in order to maximize the

economical profit of service providers while guaranteeing the

delay tolerance of tasks, the authors developed a distributed

algorithm to jointly optimize offloading decision making and

computation resource allocation. The authors in [21] presented

a vehicular fog computing architecture where vehicles acted

as the infrastructure nodes to provide communication and

computation services.

Nevertheless, since successful and efficient task offloading

highly depends on the wireless channels, opening source of

more available wireless band is more urgent to mitigate the

spectrum scarcity of DSRC. The authors in [6], [24], [25]

novelly proposed to open source of TVWS for wireless data

transmission. The authors in [26], [27] ulteriorly proposed

a coexistence framework including a CVN and an 802.22

network, by appropriate radio resource allocation scheme,

spare IEEE 802.22 TVWS channels could be reused by CVNs

and the spectrum shortage issue in CVNs could be relieved.

III. SYSTEM MODEL

A. Basic Concepts and Scenario Description

IEEE 802.22 [29] was designed for broadband access em-

ploying the TVWS band in low population density regions.

In the standard, the frame length is 10 milliseconds, and

each frame is partitioned into an uplink and a downlink

subframe. The uplink scheduling information of 802.22 PUs is

incorporated in the downlink messages, which are broadcasted

by the 802.22 base station (BS) at the beginning of each

frame. PUs then access the TVWS channel according to the

received uplink scheduling information. Through listening to

the 802.22 network deployed in the same area, VTs can obtain

the uplink scheduling information of 802.22 network. By

implementing appropriate resource allocation schemes, the low

power vehicular network could coexist with the high power

802.22 network, and reuse the TVWS channels of 802.22

network. To be in line with 802.22, in this paper, time is also

partitioned into discrete frames and each is with a length of

T = 10 milliseconds [29].

MEC 

server 1

MEC 

server 2

RSU 1 RSU 2
MEC 

server K

RSU K

Fig. 1: Architecture of MEC-enabled vehicular networks.

As shown in Fig. 1, the road is partitioned into K segments,

and each is covered by an RSU. When a VT moves from a

segment to another, it needs to register with the new RSU.

Suppose a VT moves at an average speed of 20 m/s, and

the average coverage region of an RSU is 500 m, then the

vehicle needs to register with a new RSU every 50 seconds,

and can move at most 0.2 m during each frame. Consequently,

the network can be considered to be quasi-static where VTs

and wireless channels keep unchanged in each frame but

can vary in different frames. We focus on MEC enabled

V2R communication for the emerging intelligent nonsafety

applications [3]. Those applications are usually computation-

intensive and energy-demanding, however, contribute much

to the commercial success of vehicular MEC. In accordance

with the 802.22 standard and many existing works on CVN

[26], [27], we adopt a centralized periodic model for each

segment, i.e., scheduling is performed independently by each

RSU among all its covered VTs in each frame, so in the

following we will discuss the optimization within a certain

RSU as a representative.

PU 1 (burst 1)

PU 4 (burst 4)

PU 3 (burst 3)

PU 2 (burst 2)

time

frequency 802.22 uplink frame with duration T

BI1={1,2,3} BI2={1,4}

Fig. 2: Structure of 802.22 uplink subframe.

VT 3

VT 2

VT 2

VT 1

time

frequency Scheduling of VTs

Fig. 3: Scheduling of VTs.

There’s a TVWS channel consisting of several sub-channels

to be reused by all the VTs. In 802.22, the basic resource

element can be scheduled is called a “burst” [29], which is

a two-dimensional element, consisting several subchannels in

frequency domain and some orthogonal frequency division

multiplexing (OFDM) symbols in time domain. There are two
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different types of uplink bursts in 802.22 standard. Type 1

burst occupies the whole uplink subframe in time domain,

while a type 2 burst occupies part of the uplink subframe,

which is called normal burst. For instance, burst 1 is a type 1

burst, and bursts 2–4 are type 2 bursts in Fig. 2. The uplink

subframe is divided into several “burst intervals” (BIs) [29]

on the basis of normal type 2 burst. We denote the set and

the number of BIs as L = {1, 2, ..., L} and L, respectively.

In IEEE 802.22 standard, L ∈ {1, 2, 3, 4} [29], so there are

two BIs in Fig. 2, where bursts 1, 2, 3 are located in BI1, and

bursts 1, 4 belong to BI2. Let M = {1, 2, ...,M} and M be

the set and number of PUs, respectively, and Cm,l ∈ {0, 1}
be the burst–BI indicator, where Cm,l = 1 means burst m
locates in BIl, and Cm,l = 0 otherwise. Each burst has been

allocated to a PU in advance. In order to avoid unacceptable

interference to PUs, FCC requires that the total transmit power

of all the secondary users (SUs, i.e., VTs in our framework)

sharing a TVWS channel should be no more than a threshold

Pmax (which is currently defined as 100 mW [28]) in each

BI. For instance, both the total transmit power of VTs 1, 3 in

BI1 and the total transmit power of VTs 2, 3 in BI2 should be

no more than Pmax in Fig. 3.

B. Computation Tasks and Data Arrival Models

Let N = {1, 2, ..., N} and N be the set and the number

of VTs served by each MRSU, and assume that each VT

is running fine-grained tasks [18]: at the beginning of each

frame t, Dn(t) bits of computation task arrive at VT n, with

a processing density λn (in CPU cycles/bit). Without loss of

generality, we assume Dn(t) is i.i.d. over frames and may

have an arbitrary probability distribution, and is limited by

0 ≤ Dn(t) ≤ Dmax
n . Since our system works in tiny frames

and the tasks are fine-grained and arriving at each frame, so

we can suppose the tasks do not have instantaneous delay

constraints in each frame similar to many existing works

[9], [16]–[19]. Then the task of VT n on frame t can be

denoted as Λn(t) = {Dn(t), λn(t)}. In our MEC enabled

vehicular network, Λn(t) can be processed locally by VT n
or be offloaded and executed remotely by its attached MRSU

according to different offloading decisions. Our system works

in frames and scheduling is performed in each uplink sub-

frame (which is called frame for short) [26], [27].

C. Local processing Model

Let xn(t) denote the offloading decision of VT n on slot

t, where xn(t) = 1 indicates the application is offloaded to

MRSU, and xn(t) = 0 represents the application is processed

by VT n locally.

In each frame t, if task Λn(t) is executed locally, the power

consumption of VT n is plocn (t) = k(f loc
n (t))3, where k is a

constant coefficient related to the CPU chip architecture [18],

and f loc
n (t) denotes the local processing capability (in CPU

cycles/s) of VT n, which is constrained by 0 ≤ f loc
n (t) ≤

fmax. Thus, in each frame t, the local execution time and

energy consumption of VT n are given by T loc
n (t) = Dn(t)λn

f loc
n (t)

and Eloc
n (t) = kDn(t)λn(f

loc
n (t))2 (in J), respectively.

D. Remote Processing Model

If VT n offloads its task Λn(t) on slot t, then all its arrival

input data of size Dn(t) will be transmitted to MRSU through

the shared TVWS wireless links, afterwards Λn(t) will be

processed by MRSU, and finally the processing result is sent

back to the VT. Since the processing result is usually very

tiny, we neglect the downlink output return process, and only

the uplink communication is discussed [12], [13], [18].

1) Communication Model: As the TVWS channel is

shared by all PUs and reused by all VTs, before we perform

burst allocation among all the VTs, we should first determine

how PUs occupy a TVWS channel in each frame. We define

the occupancy of a TVWS channel as a random variable tPU ,

which refers to the spare time before a PU returns and occupies

the 802.22 channel [26], [27]. Suppose the MRSUs know the

information of the probability density function (PDF) f(tPU )
and cumulative distribution function (CDF) F (tPU ) of tPU

[6], [27], [28], [30], while exact behaviors of PUs are not

clear.1 Since PUs transmit with high power, consequently, the

data transmission of VTs can be interrupted by PUs’ return

with non-zero probabilities. We consider the data transmission

of a VT to be successful when the data is transmitted before

PU returns, while the remaining transmission is blocked by PU

and the transmitted data is deemed to be lost. Let tm represent

the time duration between two start times, i.e., the start time

of burst m and the start time of the current uplink subframe.

Then the valid transmission duration T̄m of a VT on burst

m can be obtained as follows. (i) If PUs return to burst m
after the VT have finished the transmission, the whole burst

is usable and we have T̄m = Tm. (ii) On the country, if PUs

disturb the VT’s transmission, then the valid transmission time

is T̄m = tPU − tm. As tPU is a random variable, the expected

valid transmission time T̄m of a VT on burst m can be given

by the following Eq. (1). Since tm, Tm and F (tPU ) are all

known at the MRSUs, and thus T̄m is a constant for each

burst m.

Next we discuss burst allocation among VTs. Define snm(t)
as burst allocation indicator, where snm(t) = 1 represents

burst m is allocated to VT n in frame t, and snm(t) = 0
otherwise. Let Tm and Bm denote the time duration and

bandwidth of burst m, pPU
m (t) and GPU

m (t) represent the

transmit power and channel gain of PU m on burst m in

frame t, and pnm(t) and Gnm(t) denote the transmit power

and channel gain of VT n on burst m, respectively. In order to

enable tractable analysis, we neglect the interference between

MRSUs. Then the maximum transmit (in bps) rate of VT n
on burst m in frame t can be given by

rnm(t) = Bm log2

(

1 +
pnm(t)Gnm(t)

pPU
m (t)GPU

m (t) + σ2

)

, (2)

where σ2 is the power of additive Gaussian white noise. Thus,

1According to FCC standards [28], SUs obtain the information of the
TVWS channels from a geotagged database [6], [27], [28], [30]. The informa-
tion stored in the database is updated according to the information provided
by PUs.
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T̄m =

∫ ∞

0

[

Tm · 1tPU≥tm+Tm
+ (tPU − tm) · 1tm≤tPU≤tm+Tm

]

f(tPU )dtPU

=

∫ ∞

tm+Tm

Tm · f(tPU )dtPU +

∫ tm+Tm

tm

(tPU − tm)f(tPU )dtPU

= Tm[1− F (tm + Tm)] +

∫ tm+Tm

tm

(tPU − tm)dF (tPU )

= Tm[1− F (tm + Tm)] + TmF (tm + Tm)−

∫ tm+Tm

tm

F (tPU )dtPU

= Tm −

∫ tm+Tm

tm

F (tPU )dtPU . (1)

the maximum transmit rate of VT n in frame t is given by

rn(t) =
∑

m∈M

sn,m(t)rn,m(t)
T̄m

T
. (3)

Denote the transmit power of VT n in task offloading as

pn(t) =
∑

m∈M

pnm(t), and thus, the energy consumption (in

J) in task offloading is given by

Eoff
n (t) = pn(t)T. (4)

2) Server Provisioning Model: Suppose there are qmax

edge servers in each MRSU, and each is with a processing

capability sc (in CPU cycles/s). When VT n offloads it task to

MRSU, MRSU should determine the number of edge servers

qn(t) allocated to the task of VT n. The process is called server

provisioning [17], and the total number of allocated servers is

constrained by
∑

n∈N qn(t) ≤ qmax.

E. Queueing Model and Related Concepts

In our system, two data queues are formulated for the

computation tasks of each VT n, i.e., the user-side queue

Qn(t) (in bits), and the MRSU-side queue Zn(t) (in bits).

The queues Qn(t) and Zn(t) stand for the unfinished tasks of

each VT n, and they evolve according to

Qn(t+ 1) = max
[

Qn(t)− Trn(t)xn(t)

− (1− xn(t))
f loc
n (t)

λn

T, 0
]

+Dn(t), (5)

Zn(t+ 1) = max
[

Zn(t)−qn(t)
sc
λn

Txn(t), 0
]

+rn(t)Txn(t).

(6)

Definition 1: A discrete time queue Q(t), t ∈ {0, 1, ..} is

strongly stable if satisfies: Q̄ = lim
t→∞

sup 1
t

t−1
∑

τ=0
E{Q(τ)} < ∞

[31], [32].

Definition 2: If all the individual queues are stable, the

network is stable [31], [32].

Remark 1: According to the Little’s Theorem [31], [32],

under given traffic arrival rate, the average delay is in direct

proportion to the average queue length. Therefore, Definitions

1 and 2 indicate that, if the system is ensured to be stable, the

average delay can be guaranteed to be finite.

F. Cost Model

Next we discuss the monetary cost of VTs and MRSU,

respectively.
1) Cost of VTs: In local processing, the monetary cost

of VT n can be given by U loc
n (t) = αnE

loc
n (t) =

αnkDn(t)λn(f
loc
n (t))2, where αn (in $/J) is a human-

determined weight coefficient, which is used to convert en-

ergy consumption into money and depends on the human-

sensitiveness on money and and energy consumption [17].

When VT n offloads its task for remote processing, it will

consume different costs and need to pay different fees: (i) The

energy consumption of VT n in data transmission (in J). (ii)

The TVWS channel service fee θrn(t) that VT n has to pay

to MRSU, where θ (in $/bit) is the price of transmitting per

bit data. (iii) Task processing fee ηλnrn(t) that VT n needs to

pay to MRSU, where η (in $/cycle) is the price for processing

each unit CPU cycle task. So the monetary cost of VT n in

task offloading is Uoff
n (t) = [αnpn(t)+θrn(t)+ηλnrn(t)]T.

Thus, the cost (in $) of each VT n in frame t is given by

Un(t) = (1− xn(t))αnkDn(t)λn(f
loc
n (t))2

+ xn(t)
[

αnpn(t) + θrn(t) + ηλnrn(t)
]

T, (7)

and the total cost of all UEs can be given by U(t) =
∑N

n=1 Un(t).
2) Cost of MRSU: MRSU possesses and operates the MEC

servers, and leases radio bandwidth (in bps) from wireless net-

work operator. By providing computation offloading services,

MRSU earns the same amount of money paid by VTs for

wireless data transmission and task processing. The price it

charge from VTs for data transmission is θ (in $/bit), and

for task processing is η (in $/cycle). On the other hand,

it has to pay electricity bills to grid operator for operating

edge servers, and pay to wireless network operator for renting

radio bandwidth. Denoting e(t) as the electricity bills (in $)

for running an edge server, and the price for renting radio

bandwidth (in bps) from wireless network operator as δ (in

$/bit), the cost of each MRSU in frame t is given by

UMRSU (t)

=
∑

n∈N

[

qn(t)e(t) + δrn(t)T − θrn(t)T − ηλnrn(t)T
]

xn(t)

=
∑

n∈N

[

qn(t)e(t)− (θ + ηλn − δ)rn(t)T
]

xn(t). (8)
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A summary of the mainly used notations are presented in

TABLE I.

IV. DUAL SIDE PROBLEM FORMULATION

In this section, we construct two optimization problems

under a competition scenario. One is the VT-side problem

(PV), while the other one is the MRSU-side problem (PM),

respectively.

A. VT-side Optimization Problem

The objective of VT-side optimization problem (PV) is to

minimize the average total cost of all the VTs subjecting to

the queue stability of both VT-side and MRSU-side, so as

to guarantee all the computation tasks be executed within

a finite time. We need to optimize the offloading decision

x(t) = {x1(t), ..., xN (t)} and the local CPU frequency

f loc(t) =
{

f loc
1 (t), ..., f loc

N (t)
}

under given MRSU’s policy.

Problem (PV) is given by

(PV) : min
x(t),f loc(t)

Ū = lim
T→∞

1

T

T−1
∑

t=0

E{U(t)}

s.t. (CV1) : Q̄n < ∞, Z̄n < ∞, ∀n ∈ N ,

(CV2) : xn(t) ∈ {0, 1}, ∀n ∈ N ,

(CV3) : 0 ≤ f loc
n (t) ≤ fmax, ∀n ∈ N , (9)

where (CV 1) ensures the network is stable; (CV 2) is the

binary constraints on computation offloading decisions; and

(CV 3) is the CPU-cycle frequency constraint for each VT.

B. MRSU-side Optimization Problem

The MRSU-side optimization (PM) aims at minimizing

the average cost of MRSU, by jointly optimizing the burst

allocation S(t) = {snm(t)}, ∀n ∈ N , ∀m ∈ M, the transmit

power control P(t) = {pnm(t)}, ∀n ∈ N , ∀m ∈ M, and the

server provisioning q(t) = {q1(t), ..., qN (t)}, and the problem

is formulated as

(PM) : min
q(t),S(t),P(t)

ŪMRSU = lim
T→∞

1

T

T−1
∑

t=0

E{UMRSU (t)}

s.t. (CM1) : Z̄n < ∞, ∀n ∈ N ,

(CM2) :
∑

n∈N

snm(t)pnm(t)Gnm(t) ≤ βm, ∀m ∈ M,

(CM3) :
∑

n∈N

∑

m∈M

Cmlsnm(t)pnm(t) ≤ Pmax, ∀l ∈ L,

(CM4) :
∑

n∈N

snm(t) ≤ 1, ∀m ∈ M,

(CM5) : snm(t) ∈ {0, 1}, ∀n ∈ N , ∀m ∈ M,

(CM6) : pnm(t) ≥ 0, ∀n ∈ N , ∀m ∈ M,

(CM7) :
∑

n∈N

qn(t) ≤ qmax, (10)

where (CM2) means that the interference caused by burst

reuse for VT’s uplink transmission should be no more than

a threshold βm to ensure the QoS of PU m; (CM3) is used

to satisfy FCC’s requirement that the total transmit power of

SUs on a TVWS channel should be no more than a threshold.

(CM4) and (CM5) represent a burst can be allocated to at

most one VT to avoid interference within the MRSU; (CM6)
indicates the transmit power should be non-negative; (CM7)
constraints the number of allocated edge servers cannot exceed

that MRSU possesses.

Remark 2: Problems (PV) and (PM) are difficult to solve,

since they are stochastic optimization problems where opti-

mization should be performed at each time slot, and a great

deal of the channel and task buffer state information need to be

handled, and large amounts of optimization variables should

be determined. Moreover, the optimal decisions are temporally

correlated due to the random arrivals of tasks [18].

V. PROBLEM TRANSFORMATION

In the following, we propose online algorithms to tackle

problems (PV) and (PM) based on Lyapunov optimization

theory, leveraging which we can resolve the formulated s-

tochastic optimization problems efficiently by solving deter-

ministic problems at each frame [18], without requiring any

future information about task arrivals, network status, etc., and

only the current state information is required [31], [33].

Let Q(t) = {Q1(t), ..., QN (t)}, Z(t) = {Z1(t), ..., ZN (t)},

and Θ(t) = {Q(t),Z(t)}, basing on which the Lyapunov

functions for (PV) and (PM) are given by

L(Θ(t)) ,
1

2

∑

n∈N

Q2
n(t) +

1

2

∑

n∈N

Z2
n(t), (11)

L(Z(t)) ,
1

2

∑

n∈N

Z2
n(t). (12)

Then the Lyapunov drift functions ∆(Θ(t)) and ∆(Q(t))
are given by

∆(Θ(t)) , E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}, (13)

∆(Z(t)) , E{L(Z(t+ 1))− L(Z(t))|Z(t)}, (14)

where L(Θ(t+ 1))− L(Θ(t)) satisfies

L(Θ(t+ 1))− L(Θ(t))

≤
∑

n∈N

{

Qn(t)

[

Dn(t)−rn(t)Txn(t)−(1−xn(t))
f loc
n (t)

λn

T

]

+Zn(t)

[

rn(t)T − qn(t)
sc
λn

T

]

xn(t)

}

+B1 +B2, (15)

and L(Z(t+ 1))− L(Z(t)) satisfies

L(Z(t+ 1))− L(Z(t))

≤
∑

n∈N

Zn(t)

[

rn(t)T − qn(t)
sc
λn

T

]

xn(t) +B2.(16)

The constants B1 and B2 in Eq. (11) are given by

B1 =
1

2

∑

n∈N

[

(Dmax
n )2 +

(

rmax
n T +

fmax

λn

T
)2
]

,

B2 =
1

2

∑

n∈N

[

(rmax
n T )2 +

(

qmax sc
λn

T
)2
]

. (17)
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TABLE I: Notation Definitions

Symbol Definition

Dn(t) The size of the arrived task of VT n at frame t (in bits)
λn Processing density of the arrived tasks of VT n (in CPU cycles/bit)

fmax Maximum local processing capability of each VT (in CPU cycles/s)
qmax The total number of edge servers each MRSU possess
Pmax The threshold of the total transmit power of all SUs on a TVWS channel
βm The threshold of interference caused by burst reuse in VTs’ uplink transmission

Qn(t), Zn(t) VT-side and MRSU-side queue backlog of the task of VT n in frame t
Tm,Bm The time duration and bandwidth of burst m

T̄m The valid transmission duration of a VT on burst m

pPU
m (t) The transmit power of PU m on burst m in frame t

GPU
m (t) The channel gain between PU m and the BS

pnm(t), Gnm(t), rnm(t) The transmit power, channel gain and transmit rate of VT n on burst m in frame t
x(t), xn(t) Offloading decision vector and offloading decision of VT n in frame t

f loc(t), f loc
n (t) Local CPU clock frequency vector of all VTs and of VT n in frame t

S(t) Matrix of all VTs’ burst allocation in frame t
snm(t) Indicator of whether burst m is allocated to VT n in frame t
P(t) Matrix of all VTs’ transmit power control in frame t
q(t) Vector of server provisioning in frame t
qn(t) The number of edge servers allocated to the task of VT n in frame t
N ,N The set and number of all VTs
N1,N1 The set and number of remote processing VTs
L, L The set and number of burst intervals (BIs)
M,M The set and number of primary users (PUs)

θ The price of transmitting per bit data via wireless channels (in $/bit)
δ The price MRSU rents radio bandwidth form operator for data transmission (in $/bit)
η The price for processing each unit CPU cycle task (in $/cycle)
sc The CPU clock frequency of an edge server (in cycles/s)
e(t) The price of electricity (in $) for running an edge server
αn Coefficient used to convert energy consumption into money(in $/J)
k Coefficient used to model local processing energy consumption depending on chip architecture

Un(t), UMRSU (t) The cost of VT n and MRSU in frame t

Ū ,ŪMRSU The time averaged expected cost of all VTs’ and of MRSU

For notation simplicity, we denote B = B1 +B2.

In the above derivation procedure, we have adopted the

following inequality

(max[Q− b, 0] +A)2 ≤ Q2 +A2 + b2 + 2Q(A− b),

∀Q ≥ 0, ∀b ≥ 0, ∀A ≥ 0. (18)

According to Lyapunov optimization theory, in order to

minimize Ū in (PV) and ŪMRSU in (PM), the drift-plus-

penalty functions ∆(Θ(t))+V E{U(t)|Θ(t)} and ∆(Z(t))+
V E{UMRSU (t)|Z(t)} should be considered, which are bound-

ed by

∆(Θ(t)) + V E{U(t)|Θ(t)}

≤
∑

n∈N

E

{

Qn(t)

[

Dn(t)− rn(t)Txn(t)− (1− xn(t))
f loc
n (t)

λn

T

]

+ Zn(t)T

[

rn(t)− qn(t)
sc
λn

]

xn(t)

+ V xn(t)
[

αnpn(t) + θrn(t) + ηλnrn(t)
]

T

+ V (1− xn(t))αnkDn(t)λn(f
loc
n (t))2

∣

∣

∣

∣

∣

Θ(t)

}

+B, (19)

and

∆(Z(t)) + V E{UMRSU (t)|Z(t)}

≤ B2 +
∑

n∈N

E

{

Zn(t)T
(

rn(t)− qn(t)
sc
λn

)

xn(t)
∣

∣

∣
Z(t)

}

+ V
∑

n∈N

E

{

(

qn(t)e(t)− (θ + ηλn − δ)rn(t)T
)

xn(t)

∣

∣

∣

∣

Z(t)

}

= B2 +
∑

n∈N1

E

{

Zn(t)T
(

rn(t)− qn(t)
sc
λn

)

+ V qn(t)e(t)− V (θ + ηλn − δ)rn(t)T

}

, (20)

where V ∈ (0,∞) (in bit2/$) is a non-negative control

parameter used to strick a balance between the cost and

delay, i.e., how much we put our emphasis on cost reduc-

tion or processing delay reduction. The notations N1 and

N1 = {1, 2, ..., N1} denote the number and the set of VTs who

offload their tasks for remote processing. Then, the original

long-term minimization problems (PV) and (PM) can be

transformed into the following optimization problems (P1
V)

and (P1
M), which minimize the upper bound of the drift-plus-

penalty functions is (19)-(20) in each frame t, respectively.
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(P1
V) : min

x(t),f loc(t)

∑

n∈N
{

(1− xn(t))

[

V αnkDn(t)λn(f
loc
n (t))2 −

Qn(t)

λn

f loc
n (t)T

]

+ xn(t)T

[

V
(

αnpn(t) + θrn(t) + ηλnrn(t)
)

+ Zn(t)
(

rn(t)− qn(t)
sc
λn

)

−Qn(t)rn(t)

]

}

s.t. (CV2), (CV3) in (PV), (21)

and

(P1
M) : min

q(t),S(t),P(t)

∑

n∈N

[

(

Zn(t)−V (θ + ηλn−δ)
)

rn(t)T

+
(

V e(t)−
scT

λn

Zn(t)
)

qn(t)

]

s.t. (CM2)− (CM7) in (PM). (22)

By Little’s law [31], the average delay is proportional to the

average queue backlogs under given average data arrival rate,

so in the following, we will use the two terms, i.e., average

delay and average queue backlog interchangeably.

VI. SOLVE THE VT-SIDE PER FRAME OPTIMIZATION

PROBLEM (P1
V)

Each VT considers the VT-side and the MRSU-side queue

backlogs, the networks status, and then it needs to determine

the offloading decision and the corresponding CPU cycle

frequency optimization in local processing model, where the

following two cases should be taken into consideration:

1) : If VT n selects local processing model (xn(t) = 0),

it needs to further obtain the optimum local CPU clock

frequency f loc
n (t) as follows

Ωloc
n (t)∗ = min

f loc
n (t)

V αnkDn(t)λn(f
loc
n (t))2 −

Qn(t)

λn

f loc
n (t)T

s.t. (CV3) : 0 ≤ f loc
n (t) ≤ fmax, (23)

the closed form solution to which can be easily obtained as

f loc
n (t)∗ = min

{

Qn(t)T

2V αnkDn(t)λ2
n

, fmax

}

, (24)

and we can obtain Ωloc
n (t)∗ = V αnkDn(t)λn(f

loc
n (t)∗)2 −

Qn(t)
λn

f loc
n (t)∗T , consequently.

2) : If xn(t) = 1, we can directly obtain

Ωoff
n (t)∗ = V

(

αnpn(t) + θrn(t) + ηλnrn(t)
)

T

+ Zn(t)
(

rn(t)− qn(t)
sc
λn

)

T −Qn(t)rn(t)T. (25)

By comparing the values of Ωloc
n (t)∗ and Ωoff

n (t)∗, the

offloading decision of each VT n can be given by

x∗
n(t) =

{

1, if Ωloc
n (t)∗ > Ωoff

n (t)∗

0, otherwise
. (26)

Remark 3: In order to obtain offloading decision in (26),

each VT n needs to compare which decision, i.e., local

processing or task offloading, is more beneficial in the aspects

of cost reduction and queue stability. It can be observed that,

when the VT-side queue Qn(t) is much longer than the MRSU-

side queue Zn(t), and the wireless networks are in good

conditions, task offloading (xn(t) = 1) is much preferred.

Remark 4: The VT-side optimization algorithm is low in

computational complexity, since each variable can be deter-

mined by comparing two values, and the two values can be

obtained in closed form.

VII. SOLVE THE MRSU-SIDE PER FRAME OPTIMIZATION

PROBLEM (P1
M)

Next we solve the MRSU-side problem (P1
M). It can be

decomposed into two sub-problems, i.e., the server provision-

ing subproblem and the radio resource allocation subproblem.

Since there’s no coupling between the two subproblems, we

can solve them independently.

A. Server Provisioning Subproblem

The server provisioning subproblem is given by

min
q(t)

∑

n∈N1

[

V e(t)−
scT

λn

Zn(t)

]

qn(t)

s.t. (CM7) :
∑

n∈N1

qn(t) ≤ qmax. (27)

Observe problem (27) we can know that for a certain VT

n, if V e(t) ≥ scT
λn

Zn(t), it will be allocated with no edge

server. Denote the set of the VTs who may be allocated with

edge servers as J , and we have J =
{

n ∈ N1

∣

∣

∣
V e(t) <

scT
λn

Zn(t)
}

. From the objective of problem (27) we can further

know that among the VTs in J , MRSU prefers to assign edge

servers to the VT whose MRSU-side queue backlog Zn(t)
is large. The larger Zn(t) is, the more unfinished tasks are

queued, and MRSU will allocate the more edge servers to

VT n for delay reduction. The proposed server provisioning

algorithm is summarized in Algorithm 1.

B. Radio Resource Allocation Subproblem

In this section, we will tackle the radio resource allocation

subproblem embedded in (P4), where transmit power control

P(t) and burst assignment S(t) among all the offloading VTs

in N1 should be determined as follows

max
S(t),P(t)

∑

n∈N1

[

V (θ + ηλn − δ)− Zn(t)
]

rn(t)T

s.t. (CM2)− (CM6), (28)

where rn(t) =
∑

m∈M

snm(t) T̄m

T
Bm log2

(

1 +

pnm(t)Gnm(t)
pPU
m (t)GPU

m (t)+σ2

)

. However, (28) is still an MINLP

problem and can be generally NP-hard [19]. Observing

(28), the difficulty comes from two aspects, i.e., the integer

constraints and the non-convex objective function. Under

this observation, the proposed continuous relaxation and

Lagrangian dual decomposition based method works as

follows.
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Algorithm 1 Server Provisioning Algorithm

Initialization:

1: Initialize J = ∅.

Iteration:

2: for n = 1 : N1 do

3: Calculate the value of V e(t)− scT
λn

Zn(t).

4: if V e(t)− scT
λn

Zn(t) < 0 then

5: J = J
∪

n.

6: end if

7: end for

8: Sort all the VTs in J in ascending order according to the

value of |V e(t)− scT
λn

Zn(t)|.
9: for j = 1 : |J | do

10: qj(t) = min
{⌈

Zj(t)λj

scT

⌉

, qmax
}

.

11: qmax = qmax −
⌈

Zj(t)λj

scT

⌉

.

12: if qmax ≤ 0 then

13: break.

14: end if

15: end for

16: Output: q(t) = {qn(t)}, n ∈ N1.

1) Convert Problem (28) to a Convex Programming

Problem: First, by relaxing the integer constraint into

snm(t) ∈ [0, 1], and replacing pnm(t) with ynm(t) =
snm(t)pnm(t), ∀n ∈ N1, ∀m ∈ M, we can obtain

max
S(t),Y(t)

∑

n∈N1

∑

m∈M

[

V (θ + ηλn − δ)− Zn(t)
]

BmT̄msnm(t)

log2

(

1 +
ynm(t)Gnm(t)

snm(t)
(

pPU
m (t)GPU

m (t) + σ2
)

)

s.t. (CM2′) :
∑

n∈N1

ynm(t)Gnm(t) ≤ βm, ∀m ∈ M,

(CM3′) :
∑

n∈N1

∑

m∈M

ynm(t)Cml ≤ Pmax, ∀l ∈ L,

(CM4′) :
∑

n∈N1

snm(t) ≤ 1, ∀m ∈ M,

(CM5′) : snm(t) ∈ [0, 1], ∀n ∈ N1, ∀m ∈ M,

(CM6′) : ynm(t) ≥ 0, ∀n ∈ N1, ∀m ∈ M. (29)

Proposition 1: Problem (29) is jointly convex in S(t) and

Y(t).

Proof: See Appendix A.

Although the convex problem (29) could be settled by

general algorithms such as Interior Point Method, which

however suffers from high time complexity. Next we use

Lagrangian dual decomposition technique to design a low-

complexity algorithm. The partial Lagrangian function of (29)
is given in (30), where µ(t) = {µm(t)} ≽ 0,m ∈ M and

ω(t) = {ωl(t)} ≽ 0, l ∈ L are dual variables corresponding

to constraints (CM2′) and (CM3′) in (29), respectively.

As problem (29) is convex, zero duality gap can be guaran-

teed. Thus, we can solve the following dual problem to obtain

the optimal radio resource allocation.

min
µ(t),ω(t)

max
S(t),Y(t)

L(S(t),Y(t),µ(t),ω(t))

= min
µ(t),ω(t)

max
S(t)

max
Y(t)

L(S(t),Y(t),µ(t),ω(t)). (31)

2) Obtain Power Allocation: According to (31), assuming

dual variables µ(t) and ω(t) and burst allocation S(t) are

given, we can first obtain the optimal transmit power through

solving Y(t). Using KKT conditions [34] and by letting
∂L(S(t),Y(t),µ(t),ω(t))

∂ynm(t) = 0, the optimal y∗nm(t) can be given

by

y∗nm(t) =

[

T̄mBm

[

V (θ + ηλn − δ)− Zn(t)
]

ln 2
(

µm(t)Gnm(t) +
∑

l∈L

ωlCml

)

−
pPU
m (t)GPU

m (t) + σ2

Gnm(t)

]

snm(t). (32)

Since y∗nm(t) = snm(t)p∗nm(t), we can obtain the optimal

transmit power control policy as

p∗nm(t) =

[

T̄mBm

[

V (θ + ηλn − δ)− Zn(t)
]

ln 2
(

µm(t)Gnm(t) +
∑

l∈L

ωl(t)Cml

)

−
pPU
m (t)GPU

m (t) + σ2

Gnm(t)

]+

, (33)

where x+ = max{x, 0}.
3) Obtain Burst Assignment: In this step, by plugging the

obtained optimal transmit power allocation back to Lagrangian

function, we solve the optimal burst assignment. For notation

simplicity, we define dnm(t) and E(t) as follows

dnm(t) =
[

V (θ + ηλn − δ)− Zn(t)
]

T̄mBm log2

(

1 +
p∗nm(t)Gnm(t)

pPU
m (t)GPU

m (t) + σ2

)

−

(

µm(t)Gnm(t) +
∑

l∈L

ωl(t)Cml

)

p∗nm(t),

E(t) =
∑

m∈M

µm(t)βm +
∑

l∈L

ωlP
max, (34)

where dnm(t) is the weight coefficient and E(t) is a constant.

Then the optimal burst assignment can be obtained by solving

max
S(t)

∑

n∈N1

∑

m∈M

dnm(t)snm(t)− E(t)

s.t. (CM4′′) :
∑

n∈N1

snm(t) ≤ 1, ∀m ∈ M,

(CM5′′) : snm(t) ∈ [0, 1], ∀n ∈ N1, ∀m ∈ M. (35)

It is not difficult to know, problem (35) is the sum of a set

of linear functions w.r.t snm(t). Consequently, burst allocation

snm(t) must be binary, since the optimal value of a linear

function is obtained at the endpoints. Therefore, the optimal

burst assignment snm(t) can be given by

s∗nm(t) =

{

1, if n = argmax
n̂

dnm(t) & dnm(t) > 0,

0, otherwise.

(36)
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L(S(t),Y(t),µ(t),ω(t)) =
∑

n∈N1

∑

m∈M

[

V (θ + ηλn − δ)− Zn(t)
]

BmT̄msnm(t) log2

(

1 +
ynm(t)Gnm(t)

snm(t)
(

pPU
m (t)GPU

m (t) + σ2
)

)

−
∑

m∈M

µm(t)
(

∑

n∈N1

ynm(t)Gnm(t)− βm

)

−
∑

l∈L

ωl(t)
(

∑

n∈N1

∑

m∈M

ynm(t)Cml − Pmax
)

. (30)

Remark 5: Equation (36) manifests that a burst should be

allocated to the VT with the maximum positive weight upon it.

If all VTs are in deep fading and with negative weights, this

burst should not be allocated to any VT, since using it will

lead to more waste but less profit.

4) Dual Variables Update: To solve the outer minimization

problem in (31) (also called master dual problem), a subgra-

dient method [35] can be used to update the dual variables.

More specifically, the update can be performed as

µi+1
m (t) =

[

µi
m(t)− hi

m(t)

(

βm−
∑

n∈N1

ynm(t)Gnm(t)

)]+

,

∀m ∈ M, (37)

ωi+1
l (t) =

[

ωi
l (t)− kil(t)

(

Pmax−
∑

n∈N1

∑

m∈M

ynm(t)Cml

)]+

,

∀l ∈ L, (38)

where i is the iteration index; hi
m(t) and kil(t) are the

sequences of scalar step sizes of the ith iteration. In this

paper we adopt square summable but not absolute summable

step sizes [35]. The Lagrangian dual variables are updated

iteratively until the required precision is satisfied.

The procedure for joint transmit power control and burst

assignment is summarized in Algorithm 1 as follows.

Algorithm 2 Lagrangian Dual Decomposition Based Burst

Assignment and Power Allocation Algorithm

Initialization:

1: Initialize µ
0(t),ω0(t), imax and the precision ϵ. Set i = 0.

Iteration:

2: while i ≤ imax do

3: Perform transmit power allocation pinm(t), ∀n,m ac-

cording to (33).

4: Perform burst assignment sinm(t), ∀n,m based on (36).

5: Update Lagrangian dual variables µ(t),ω(t) according

to (37) and (38), respectively.

6: if |µi+1(t)−µ
i(t)| < ϵ & |ωi+1(t)−ω

i(t)| < ϵ then

7: s∗nm(t) = sinm(t), p∗nm(t) = pinm(t).
8: break.

9: else

10: i = i+ 1.

11: end if

12: end while

13: Output: S∗(t) = {s∗nm(t)}, P∗(t) = {p∗nm(t)}.

Till now, our dual-side optimization in a competition s-

cenario is solved, and the joint optimization of offloading

decision making and local CPU frequency control is obtained

for VT-side, and the joint optimization of transmit power

allocation, burst assignment and server provisioning is ob-

tained for MURS-side. Detailed procedure is summarized in

Algorithm 2, which is referred to as dual-side dynamic joint

task offloading and resource allocation algorithm in vehicular

networks (DDORV).

Algorithm 3 Dual-side Dynamic Joint Task Offloading and

Resource Allocation Algorithm in Vehicular Networks (D-

DORV)

1: At each frame t:
2: MRSU-side optimization

3: Observe the current MRSU-side queues Zn(t) and channel

states in each frame t.
4: Obtain server provisioning q(t) according to Algorithm 1.

5: Perform transmit power control P(t) and burst assignment

S(t) according to Algorithm 2.

6: VT-side optimization

7: Observe the current queues Qn(t) and Zn(t) and channel

states in each frame t.
8: for n ∈ N do

9: Obtain the values of Ωloc
n (t)∗ and Ωoff

n (t)∗.

10: if Ωloc
n (t)∗ > Ωoff

n (t)∗ then

11: Set xn(t) = 0;

12: Obtain f loc
n (t) based on (24);

13: else

14: Set xn(t) = 1;

15: end if

16: end for

17: Base on the above obtained VT-side optimization results

{x(t), f loc(t)} and MRSU-side results {S(t),P(t),q(t)},

update queues Qn(t) and Zn(t) according to Eqs. (5) and

(6).

VIII. COMPLEXITY ANALYSIS

The computational complexity of our joint dual-side opti-

mization algorithm DDORV in Algorithm 3 comes from two

aspects, i.e., the MRSU-side and the VT-side optimization.

The complexity of the MRSU-side complexity mainly de-

termined by Steps 4 and 5. In Step 4, the complexity comes

form server provisioning, i.e., Algorithm 1. In Algorithm 1,

the complexity of Steps 2-7 is O(N), the complexity of

sorting in Step 8 is O(N2), and the complexity of Steps 9-

15 is O(N). Therefore, the total complexity of Algorithm

1 is O(N) + O(N2) + O(N) = O(N2). The complexity

of Step 5 comes from Algorithm 2. In Algorithm 2, the

complexity of power allocation and burst allocation in Steps

3 and 4 are O(NM), the complexity of dual-variable-update



THE PAPER HAS BEEN ACCEPTED BY IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 11

in Step 5 is O(M) + O(L). The subgradients need O( 1
ϵ2
)

iterations to converge. So the complexity of Algorithm 2 is
1
ϵ2

(

O(NM) + O(NM) + O(M) + O(L)
)

= O
(

NM
ϵ2

)

. The

complexity of VT-side optimization is O(N). Therefore, the

complexity of DDORV in Algorithm 3 is O(N2)+O
(

NM
ϵ2

)

+

O(N) = O
(

NM
ϵ2

)

.

IX. SIMULATION RESULTS

In this section, we provide simulations to verify the per-

formance of our proposed algorithms. Our simulations are

conducted on a Matlab-based simulator. We simulate an MEC

enabled mixed CVN and 802.22 network in a 5km × 5km
square area, where an MRSU locates at the center of the

region, PUs are scattered uniformly through the region, and

VTs are distributed in an 1km × 10m road [27]. A TVWS

channel with 6 MHz is reused by all the VTs, which is equally

divided into 20 subchannels in frequency domain. The channel

occupance tPU of PUs follows Gamma distribution, and the

CDF of tPU is F (tPU ) = 1−e−5tPU

−5tPUe−5tPU

[27]. For

simplicity, the wireless channel gain including the channel gain

Gnm(t) of VT n on burst m takes values randomly in [1, 5],

and the channel gain GPU
m (t) between PU m and the BS is

supposed to take values randomly in [5, 10], and be i.i.d. over

frames [36]. Time is divided into frames, suppose the length

of each uplink frame is T = 9 ms, and each frame contains

L = 4 BIs. There are M = 44 bursts, each of which occupies

one subchannel in frequency domain. Bursts 1 to 12 are type 1

burst, which covers the whole uplink subframe in time domain,

while the rest 32 bursts are type 2 bursts with a length T/4 in

time domain [27]. The PU interference limit at the BS for PU

m (i.e., βm) is chosen based on the criterion that SINR at the

BS is no less than 10 dB, i.e., SINRm =
pPU
m (t)GPU

m (t)
βm+σ2 ≥ 10.

Detailed parameters are summarized in Table II.

In the following, we will first evaluate the convergence of

the proposed iterative radio resource allocation algorithm, i.e.,

Algorithm 2. Then we verify how parameter V affects the

tradeoff between the cost of VTs and the length of queues.

Finally, we assess the performance of DDORV form the VT-

side and MRSU-side, respectively.

A. Convergence of Algorithm 2

In Fig. 4, we show the convergence of Algorithm 2 by

plotting the two sets of dual variables ω = [ωl], l ∈ L and

µ = [µm], m ∈ M versus the number of iterations in

the lhs and rhs subfigure, and there are |L| = 4 curves of

ω = [ωl], l ∈ L and 44 curves of µ = [µm], m ∈ M,

respectively. Fig. 3 demonstrates that both the two sets of

dual variables converge at the 5th iteration, demonstrating our

Lagrangian dual decomposition based Algorithm 2 converges

considerably fast.

B. Performance of DDORV Versus Control Parameter V

Fig. 5 depicts how the control factor V make a trade off

between the cost Ū and the average delay. When V gets larger,

the cost Ū decrease, however, the length of queue Q+ Z will

TABLE II: Simulation Parameters

Parameter Value
Number of VTs N 20

Length T of uplink frame 9 (ms) [27]
Number of bursts M 44 [27]

Number of BIs L in each frame 4 [27]
Interference limit βm for PU m 10 dB [27]

Power of Gaussian white noise σ2
−100 dBm [27]

Transmit power pPU
m (t) of PU m 0 ∼ 4 W [28]

VT transmit power threshold Pmax 100mW [29]

Bandwidth Bm of burst m 6

20
(MHz) [27]

Number of Types 1 and 2 bursts 12, 32 [27]
Arrived input data size Dn(t) 0.1 ∼ 1 Mbit

Processing density λn (cycles/bit) 10 ∼ 1000
Max. local processing capability fmax 1.4 (G cycles/s) [17]

Coefficient k for modeling local 10−27 [18]
processing energy consumption
Number of edge servers qmax N + 10

Processing capability of each edge server sc 3 (G cycles/s) [17]

Electricity price per edge server e(t) 1 ∗ 10−8

Energy-money weight parameter αn 2.44 ∗ 10−4($/J) [17]

Price δ for MRSU renting 0.5 ∗ 10−10 ($/bit)
radio bandwidth from operator

Price θ that MRSU charges from 1.16 ∗ 10−10 ($/bit)
VTs for wireless data trans.

Price η MRSU charges from 3 ∗ 10−10 (in $/cycle)
VTs for task processing
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Fig. 4: Convergence of Algorithm 2.
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grow, which will lead to more delay in task processing. Thus,

it can be known that the control parameter V can make a good

balance between the cost and the length of data queues.

C. Performance Comparison for VT-side

Next, we show the performance for VT-side optimization

of DDORV, by comparing it with local processing (denoted

as Local-pro) and MRSU processing (denoted as MRSU-pro).

In Local-pro, all VTs process their tasks locally using the

maximum local CPU frequency. In MRSU-pro, all VTs offload

their tasks to MRSU, and MRSU-side resource allocation

optimization is performed among them.

1) Impact of the number of VTs N : In Fig. 6, we show

the comparison on the cost and the queue backlog of all VTs’

versus the number of VTs, respectively. As can be seen form

Fig. 6 (a), with the number of VTs N increases, the user cost

keeps increasing, which is the same for all algorithms. On the

other hand, with the number of VTs increase, the available

bursts and edge servers allocated to each VT decrease, as a

result, the length of data queue increase, which is shown in

Fig. 6 (b). Therefore, the two sub-figures indicate a tradeoff

between the cost and the length of data queue. However, thanks

to a multi-dimensional optimization, DDORV can always

outperforms other algorithms, which perform only a certain

dimensional optimization and consequently, more cost will be

spend.

2) Impact of task parameter: In Figs. 7 and 8, we show how

the task parameters affect the cost of VTs, including the input

data arrival Dn(t) and the processing density λn, respectively.

Observing the two figures, it can be known that the cost of

VTs grows linearly with respect to the two parameters, which

is in accordance with the VT-side cost model in Eq. (7), where

the cost of each VT n is proportional to both Dn(t) and λn.

From the two figures it can also be known that the perfor-

mance of MRSU-pro is a little worst than DDORV in per-

formance, which indicates that the MRSU-side optimization

plays a bigger role in the dual-side optimization framework.

D. Performance Comparison for MRSU-side

Then we show the performance for MRSU-side optimization

of DDORV, by comparing it with Ser-pro-only and Radio-

only algorithms. In Ser-pro-only, only server provisioning is

optimized, and in Radio-only, only radio resource alloca-

tion (including IEEE 802.22 burst and power allocation) is

optimized [26], [27], among all the VTs who choose task

offloading. According to (8), it can be known that the profit of

MRSU equals to the minus cost of MRSU, and the problem in

(10) to minimize the cost of MRSU equals to maximizing the

profit of MRSU. Therefore, we consider the profit of MRSU

instead of discussing the cost for easy observation.

Since the pricing policy (i.e., θ, δ, η, and e(t)) plays an

important role on the economical profit of MRSU, we show

the performance comparison between the algorithms under

different pricing policies in Figures 9, 10, 11, and 12.

As can be seen from Figs 8 and 10, the profit of MRSU

grows with the increase of the price that it rents radio and

computation resources to VTs, i.e., θ and η. Figs. 9 and 11

show that the profit of MRSU decrease with the price δ it

rents radio resource from wireless network operators, and the

electricity bill e(t) to active per edge server.

X. CONCLUSIONS

In this paper, we have studied a dual-side stochastic opti-

mization framework in an MEC enabled IEEE 802.22-CVN

coexistence system. Then two problems, i.e., the VT-side and

the MRSU-side optimization problems, were formulated, in

order to minimize the averaged cost of VTs and the MRSU,

respectively. Employing Lyapunov optimization theory, we

have proposed a low-complexity online algorithm DDORV,

where the two problems are solved in a integrated framework

in each frame. Simulation results have verified the convergence

of the iterative radio resource allocation algorithm, the tradeoff

between the average cost of VTs and the average queue length,

and have shown DDORV can performs well compared with

other schemes.

APPENDIX

Appendix A. Proof of Proposition 1

Proof: For notation simplicity, denote constant

[V (θ + ηλn − δ) − Zn(t)]BmT̄m as A. According to

convex optimization [34], when f(x) is concave, then

the perspective function g(x, t) = tf(x/t) is concave,

too. Since Asnm(t) log2

(

1 + ynm(t)Gnm(t)

snm(t)
(

pPU
m (t)GPU

m (t)+σ2

)

)

is the perspective function of concave function

A log2

(

1 + ynm(t)Gnm(t)
pPU
m (t)GPU

m (t)+σ2

)

, it preserves concavity,

too. As the sum of several concave functions is still concave,
∑

n∈N1

∑

m∈M

Asnm(t) log2

(

1 + ynm(t)Gnm(t)

snm(t)
(

pPU
m (t)GPU

m (t)+σ2

)

)

is

also concave. On the other hand, (C2)− (C6) are all linear

constraints. Thus, (28) is a convex optimization programming

that maximize a concave function over a convex set.
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