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abstract: A major challenge in ecology is to explain why so many

species show oscillatory population dynamics and why the oscilla-

tions commonly occur with particular periods. The background en-

vironment, through noise or seasonality, is one possible driver of

these oscillations, as are the components of the trophic web with

which the species interacts. However, the oscillation may also be

intrinsic, generated by density-dependent effects on the life history.

Models of structured single-species systems indicate that a much

broader range of oscillatory behavior than that seen in nature is

theoretically possible. We test the hypothesis that it is selection that

acts to constrain the range of periods. We analyze a nonlinear single-

species matrix model with density dependence affecting reproduction

and with trade-offs between reproduction and survival. We show that

the evolutionarily stable state is oscillatory and has a period roughly

twice the time to maturation, in line with observed patterns of pe-

riodicity. The robustness of this result to variations in trade-off func-

tion and density dependence is tested.
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One of the key findings of classical ecological theory is

that even simple population models can show a rich range

of dynamical behavior, from asymptotically stable equilib-

ria right through to chaos (May 1974). Whether this the-

oretical richness in behavior reflects what we see in nature

is, however, an open question. For example, despite an

understandable and considerable interest in the phenom-

enon of chaos, very few population dynamical time series

are convincingly chaotic (as opposed to noisily periodic;

Grover et al. 2000; Turchin and Ellner 2000; Bjørnstad and

Grenfell 2001). Rather, most field populations exhibit ap-

parently stable or cyclic population dynamics (e.g., Clut-

ton-Brock et al. 1997; Sæther 1997; Wickens and York

1997; Kendall et al. 1998; Siriwardena et al. 1998; Bjørnstad

et al. 1999; Fewster et al. 2000; Freckleton and Watkinson

2002). In fact, approximately 30% of ecological systems

for which reliable and sufficiently long time series are avail-

able are periodic or near periodic (Kendall et al. 1998).

There has been considerable divergence of opinion

about the cause (or causes) of this periodicity. Interaction

with the environment provides one possible explanation,

either through periodicity in the environment (e.g., sea-

sonality) or by noise in the environment exciting and am-

plifying natural modes of oscillation (Nisbet and Gurney

1976; Greenman and Benton 2003, 2005). However, more

attention has been given to interaction between trophic

layers as a possible source of periodicity. Familiar examples

include the 10-year cycle in the time series for the snow-

shoe hare in northern Canada, with lynx as the predator

(Elton and Nicholson 1942; Stenseth et al. 1997; King and

Schaffer 2001), the 3–5-year cycle of small rodents in

northern Fennoscandia (Hansen et al. 1999; Stenseth 1999;

Schaffer et al. 2001), subject to specialist predation, and

the larch budmoth 9-year cycle identified in the forests of

the Swiss Alps, with parasitoid predation and resource

quality the key factors (Turchin et al. 2003). Predation

through parasites and parasitoids defines a special class of

trophic interaction and hence a possible explanation of

periodicity. A well-known example where this mechanism

has been demonstrated (Hudson et al. 1998) is the erad-
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ication of cycles in red grouse (on one site in the north

of England) by vaccination against the parasite Tricho-

strongylus tenuis.

Even though in practice a population is necessarily part

of a trophic web, the primary source of its periodicity may

still be intrinsic rather than through its interactions with

other components in the web. This is the argument of

Inchausti and Ginzburg (1998) in their discussion of the

3-year vole cycle of northern Fennoscandia. They focus

on the “quality” of the offspring (i.e., the maternal effect)

as the driving force behind the observed oscillations. Fur-

ther, in a recent article (Murdoch et al. 2002), it has been

argued that a generalist consumer in a food web can be

modeled by a single-species model (when abundant re-

sources are available), whereas specialist consumers re-

quire multilevel analysis. The generalist can switch to other

resources and maintain consumption if there is a shortfall

in particular resources, thus averaging out the variations

in the environment. Their review of the literature showed

that when oscillations occur, the periods for the generalist

consumers are typically less than four times the time to

maturation (MT), while specialist consumers have a period

lying above this range.

To explain the patterns of periodicity that have been

observed in actual populations is a major challenge. Mod-

els show that for structured single species, a large range

of periodic modes of oscillation can be accessed (Green-

man and Benton 2004), whereas in the field the periods

appear to be narrowly limited. One explanation is that

evolution constrains the population dynamics that can oc-

cur (Metz et al. 1996; Geritz et al. 1998). We examine this

hypothesis by analyzing a family of age-structured single-

species matrix models with reproduction diminished by

adult-driven density dependence and with embedded life-

history trade-offs between reproduction and survival. We

show that under certain conditions, species described by

such models evolve to a fluctuating evolutionarily stable

state (ESS; Maynard Smith 1982) at which the population

oscillates with a period that conforms to the patterns seen

in nature (Murdoch et al. 2002).

The dynamics of the evolutionarily stable state (ESS)

have also been studied by others, using age-structured ma-

trix models (Leslie 1945; Caswell 2001). Ferriere and Gatto

(1993), for example, showed that a chaotic ESS is possible,

while Ebenman et al. (1996), using different density-

dependent and trade-off structures, showed that selection

will often lead to more stable populations.

The Fundamentals

The basis of our analysis is the discrete time age-structured

population model:

x p fz exp (�N ),t�1 t rt

y p gx ,t�1 t

z p gy � jz , (1)t�1 t t

N p c x � c y � z ,rt 1 t 2 t t

where populations xt, yt, and zt denote the number of

“juveniles,” “subadults,” and “adults,” respectively, at time

t, f represents the per capita reproduction rate of adults,

and g and j represent the per capita survival rates of their

respective populations. The parameters c1 and c2 measure

the contribution of preadult stages to density dependence.

All but the reproduction parameter f lie in the interval

.0 ≤ c , c , g, j ! 11 2

There are various ways in which density dependence

can be included in a Leslie-style structured population

model (Leslie 1945). Neubert and Caswell (2000), for ex-

ample, consider four variations of a structured2 # 2

model with density dependence affecting the component

populations through fecundity, growth, and subadult and

adult survival (Caswell 2001). In practice, it has proved

difficult to clearly identify through which vital rates density

dependence works. However, there has been some evi-

dence that adult survival is not the primary mechanism

and that, for a range of species, fecundity and juvenile

survival in the first year are the rates most sensitive to

density effects (Gaillard et al. 1998; Tripet and Richner

1999). In our model, we will follow this empirical evidence

and apply density dependence only to reproduction (in-

cluding first-year survival) in the first equation of model

(1). With parameters c1 and c2, the contribution of the

preadult stages to this nonlinearity can be examined.

The key question is, which parts of the parameter space

of the model are biologically relevant? Not all points of

this space are likely to be feasible, because of implicit

relationships that may exist between parameters arising,

for example, from mass-energy balances (DeLeo and Dob-

son 1996; West et al. 1997; Koojiman 2000), and the choice

will be furthered restricted by evolutionary selection. In

order to model evolution, we take the standard approach

of assuming that populations evolve through time as a

result of invasion by fitter rare mutants. At each invasion

the mutational change is taken to be small. This is the

adaptive-dynamics approach (Metz et al. 1996; Geritz et

al. 1998), and it can be studied by invasion analysis. Typ-

ically, the trait is described by one of the model parameters,

but it is reasonable to assume that other parameters in

the model are likely to be affected by mutational changes

in this trait because of the existence of trade-offs between

parameters. Higher levels of per capita reproduction (f),

for example, might imply a lower level of adult survival

(j). Such trade-offs are well studied both empirically and
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theoretically (Stearns 1992; Roff 2002) and underpin evo-

lutionary theory.

For situations where the resident species is in stable

equilibrium when alone, the invasion criteria can often be

established algebraically. However, in those situations

where the resident is in an oscillatory state (Ferriere and

Gatto 1993), one has to proceed either by exhaustive sim-

ulation to determine which species survives asymptotically

or, more efficiently, by applying the leading Lyapunov ex-

ponent criterion for invasion. This exponent provides us

with a generalization for the concept of eigenvalue when

a system is unstable (Ferriere and Gatto 1993). The ex-

ponent is calculated from the Jacobian of the equations

for the mutant species, linearized about a zero-mutant

population because the number of invading mutants is

assumed to be small. The effect of fluctuations in the res-

ident component populations is to render certain of the

mutant parameters, and hence the mutant Jacobian, time

dependent. Precisely, the leading Lyapunov exponent (y)

is calculated from the formula

y p lim ln k M M M M k k /t , (2)[( ) ]t r� t�1 t�2 1 0

where Mt is the mutant Jacobian at time t, k is a randomly

chosen vector, and the vector length (k…k) in formula

(2) can be taken to be Euclidean. Leading exponent y can

be interpreted as a measure of mutant fitness (relative to

that of the resident). If it is positive, the mutant can invade

the environment set by the resident; if it is negative, in-

vasion is not possible.

When parameters fluctuate, one might be tempted to

think that standard invasion criteria would apply after a

simple averaging of parameters. However, there are many

ways of “averaging” and different functions that can be

averaged. Formula (2) tells us exactly how to carry out

the averaging. It reduces to the standard formula when

the resident is stable or oscillates with integer period.

A sequence of successful invasions (with exclusion of

the resident species) can lead to an evolutionarily stable

state (ESS; Maynard Smith 1982) where the resident is

uninvadable by other strains. This is what happens for

model (1). To locate the position of its ESS in parameter

space, we assume that the competition between resident

and mutant populations acts only through the density-

dependent terms:

′u p f w exp [�(N � N )],t�1 t mt rt

′
v p g u ,tt�1

′ ′w p g v � j w , (3)t�1 tt

N p c x � c y � z ,rt 1 t 2 t t

′ ′N p c u � c v � w .mt 1 t 2 tt

Here ut, , and wt denote the mutant component popu-vt

lations and f′, c′, g′, and j′ the perturbed parameters for

the mutant. We also assume that there are trade-offs op-

erating between reproduction and adult survival. For def-

initeness, we take them to be of the form

2j p j [1 � (f/f ) ], (4a)0 0

′ ′ 2j p j [1 � (f /f ) ], (4b)0 0

for the resident and mutant, respectively, with j0 and f0

constant in both cases. With this choice of function, higher

reproduction becomes increasingly costly in terms of adult

survival. The other parameters in the model are kept fixed,

with resident and mutant values taken as equal. In par-

ticular, we initially suppose that density dependence is a

function only of the adult populations (i.e., c p c p1 2

). When linearized about the zero-mutant′ ′c p c p 01 2

population state, equations (3) take the form

′u p f w exp (�N ),t�1 t rt

′
v p g u , (5)tt�1

′ ′w p g v � j w .t�1 tt

The mutant Jacobian, Mt, can be read off from equation

(5) once the dynamics (xt, yt, zt) of the resident alone have

been determined. The leading Lyapunov exponent is then

calculated from formula (2).

Typical results are shown in the pairwise invadability

plot (PIP; Geritz et al. 1998) of figure 1. This plot shows

the positioning of the zero-fitness curve (i.e., where the

exponent y is 0) in (f, f′) space. There are two branches

of this curve: the radial line (because then the mutant is

identical to the resident) and a nonlinear curve that is

roughly hyperbolic in shape. The region between these

branches is the region where the mutant can invade. The

point of intersection of these branches identifies the po-

sition of the ESS. That it is an ESS, implying invulnerability

to further attack, follows from the positioning of the in-

vasion regions with respect to the (singular) intersection

point. A full classification of PIP intersection points is

given in Metz et al. (1996) and Geritz et al. (1998).

Tracking Evolution in Parameter Space

At each stage in the adaptive dynamical process, the cur-

rent resident species can be identified by its location in

parameter space, and hence the process itself can be rep-

resented by a sequence of points, that is, a trajectory in

this space. Of interest is the shape of this trajectory and

its positioning in relation to the stability region of model

(1). Above all we are interested in the position of the end
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Figure 1: Pairwise invadability plot for model (1), with a single trade-off relating adult survival to per capita reproduction (see eqq. [4]). Parameters:

, , , and (i.e., density dependence is a function only of adult population).f p 100.0 j p 0.5 g p 0.5 c p c p 00 0 1 2

(limit) point of this trajectory where the species has finally

reached evolutionary equilibrium, whether it lies inside or

outside the stability region. We will refer to this equilib-

rium point as the ESS point.

To locate the stability region, it is convenient to take

the coordinates of parameter space to be not the param-

eters of the model but the coefficients of the equation for

its eigenvalues when linearized about the equilibrium

point (Greenman and Benton 2003). For the model3 # 3

(1), the eigenvalue equation is

3 2l � ul � v p 0, (6)

where u is the trace and the determinant of the Jacobianv

of model (1), linearized about its point equilibrium. Co-

efficients u and are functions of the model parametersv

f, g, and j. In fact, with and z0 the adultc p c p 01 2

equilibrium level,

u p j,

2
v p g f(1 � z ) exp (�z ),0 0

2z p ln [fg /(1 � j)].0

The stability region is bounded by three curves corre-

sponding to the three ways in which the model can become

unstable. The curves are defined by the condition that the

modulus of the dominant eigenvalue(s) (i.e., the eigen-

value[s] with largest modulus) is equal to 1. (The modulus

of a complex number is given by .) The2 2 1/2a � ib [a � b ]

“period-doubling” boundary consists of those points

where the dominant eigenvalue equals �1, while the “ex-

tinction” boundary corresponds to dominant eigenvalue

�1. The third boundary, the “quasi-periodic” boundary,

is defined by those points where the model has a pair of

complex conjugate eigenvalues with modulus 1. In figure

2A, we show the stability region in ( ) space boundedu, v

by these three curves. The period-doubling and extinction

boundaries are the straight lines, , and thev � u p �1

quasi-periodic boundary is a hyperbola with equation

. There are four corners to this stability21 � uv � v p 0

region (P, Q, R, and S) where the boundary sections in-

tersect. At two of these corners, there is a jump in the

period of the dominant eigenvalue as the corner is tra-

versed on the boundary. (Note that the period of an ei-

genvalue is given by , where ,�1a � ib 2p/v v p tan [b/a]

so eigenvalue �1 has period 2 and eigenvalue �1 has

infinite period.) At corner P, the jump is from period 2

to period 6, and at R it is from period 3 to period infinity.

There is also a gap in the periods of the dominant eigen-

values that are achievable on the boundary of the stability

region. For model (1), there is no boundary point where

this period lies between 3 and 6 (fig. 2A). However, there

are points on extensions of the quasi-periodic boundary
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Figure 2: Stability regions, evolutionary trajectories (evol. traj.), and evolutionarily stable states (ESS) in ( ) eigenvalue coefficient space for (B)u, v

, (C) , (E) , and (F) age-structured models. All trajectories are for double trade-offs except in B, where ESS1 is for a single3 # 3 5 # 5 4 # 4 20 # 20

and ESS2 for a double trade-off. A, Stability region in more detail for the case (typical of odd-dimensional models). D, Details for the3 # 3

case (typical of even-dimensional models). Boundary section end point periods shown in carets. Parameters: and ;4 # 4 f p 100.0 j p 0.50 0

for double and for single trade-off. In all cases, density dependence is a function only of adult population (i.e., ).g p 1.0 g p 0.5 c p c p 00 1 2

Boundaries: ; ; .qp p quasi-periodic pd p period doubling ext p extinction

beyond the stability region where these periods do occur,

but they are then periods of subdominant eigenvalues.

As the names suggest, crossing the extinction boundary

leads, in general, to extinction of one or more of the age

classes and thus to extinction of the population as a whole,

while crossing the period-doubling boundary leads to in-

stability, initially through period 2 cycles and thence

through a succession of period doublings to chaos as the

distance from the boundary increases. Crossing the quasi-

periodic boundary initially leads to nonchaotic oscilla-

tions, either periodic (with integer period) or quasi-

periodic. (A precise definition of quasi periodicity can be
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Table 1: Sensitivity analysis of evolutionarily stable state (ESS)

position and period with respect to density dependence (dd) and

trade-off structure for model (1)

Single trade-off (frj) Double trade-off (frj, g)

g f at ESSa ESS period j0 f at ESSb ESS period

Density dependence with adults only (c1 p c2 p 0)

.7 49 6.9 .7 28 7.9

.5 58 6.6 .5 32 6.8

.3 91 6.3 .3 38 6.3

Density dependence with all three stagesc

.7 49 6.2 .7 32 6.8

.5 59 eqm .5 35 6.0

.3 59 eqm .3 41 5.6

Density dependence with adults and subadults onlyd

.7 43 5.8 .7 31 6.2

.5 51 4.9 .5 32 5.8

.3 57 4.1 .3 33 5.1

Note: ESS location and period for model (1).
a for rows 1–3 and 0.75 for all other rows.j p 0.50

b for all rows.g p 1.00

c For dd with all three stages, . Equilibrium (eqm) is possiblec p c p 0.11 2

with low g or low j0. For higher c1, c2, ESS is no longer possible for any

parameter values.
d For dd with adults and subadults only, and . ESS is alwaysc p 0 c p 0.51 2

quasi-periodic unless g or j0 is exceptionally low.

found in Katok and Hasselblatt 1998.) Quasi-periodic os-

cillations can be associated with a noninteger period by

locating the position of the sharp power spike dominating

the frequency spectrum (Jenkins and Watts 1969; Green-

man and Benton 2005). The areas adjacent to the quasi-

periodic boundary where the system executes strictly pe-

riodic oscillations are called Arnol’d tongues and have

“exotic” shapes. For details, see Arnold (1983) and Green-

man and Benton (2004).

Shown in figure 2B is the trajectory followed by the

species as trait f is progressively increased (with trade-

offs in eq. [4] operating and density dependence a function

only of adult population). The trajectory starts (when

) at point A with populations extinct, reproduc-f p 1.0

tion being too low to sustain the populations. With in-

crease in f the trajectory crosses the stability region to

exit through the quasi-periodic boundary near corner P.

It reaches its ESS point (denoted by ESS1 for a single trade-

off) when (read off from fig. 1). At this ESSf p 58.0

point, the asymptotic behavior of the system is quasi-

periodic, with period close to the eigenvalue period at

corner P, namely, period 6. This is twice the time to mat-

uration for the model (1).3 # 3

How Robust Are These Properties?

So far we have assumed a single “reproductive effort”

trade-off relationship, between fecundity f and adult sur-

vival j. However, there are also likely to be trade-offs

between the fecundity and quality of offspring (Fox and

Czesak 2000), leading to maternal effects on offspring sur-

vival and growth. Such maternal effects are known to be

prevalent for a wide range of organisms (Mousseau and

Fox 1998). Therefore, changing fecundity can lead to

correlated changes in the subadult traits (through the

number-quality trade-off) as well as changes in the adult

traits (through the reproductive effort trade-off). Such pat-

terns of interconnected trade-off relationships are expected

to be common (Roff 2002). The number-quality trade-off

can be modeled with a function in the form of equation

(4a), with j replaced by g:

2g p g [1 � (f/f ) ], (7)0 0

with g0 and f0 constant. Modeling multiple trade-offs

needs to be undertaken with care. In some situations com-

plex and potentially biologically unrealistic relationships

between two traits can be created if both are traded off

against a third trait. Under our assumptions (eqq. [4] and

[7]), this does not happen. Adult and subadult survival,

j and g, respectively, are always positively correlated.

With both trade-offs acting, the species follows a tra-

jectory that only deviates from that for a single trade-off

as the ESS point (denoted by ESS2 for a double trade-off)

is finally approached (fig. 2B). The two ESS points, for

single and double trade-offs, are seen to lie close together.

Sensitivity of these results to variation in the (otherwise

fixed) parameters g (single trade-off) and j0 (double trade-

off) is given in table 1. We note in particular that the

position of the ESS point in ( ) space is reasonablyu, v

robust to the number of trade-offs but the value of the

trait f at the ESS point is not. With a double trade-off,

the model predicts a much lower level of fecundity in the

fully evolved species. Numerical testing also shows that

the ESS position is insensitive to variation in the trade-

off benchmark parameter f0 (in eqq. [4] and [7]), with

f approximately scaling with f0.

Higher Dimensional Models

The result that the period is roughly twice the time to

maturation, established in the case, generalizes to3 # 3

higher dimensions. Consider, for example, the following

five-stage model based on model (1) with two extra sub-

adult stages, pt and qt, added,
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x p fz exp (�z ),t�1 t t

y p gx ,t�1 t

p p gy , (8)t�1 t

q p gp ,t�1 t

z p gq � jz ,t�1 t t

and density dependence a function only of adult popu-

lation. We suppose that there are two trade-offs, between

reproduction and adult and subadult survival. The eigen-

value equation for model (8) is given by

5 4l � ul � v p 0,

where, again, u is the trace and the determinant of thev

model Jacobian. In ( ) space the stability region is asu, v

shown in figure 2C with the “evolutionary” trajectory su-

perimposed. Again, there is a quasi-periodic ESS point

outside the stability region near the corner (P) of the quasi-

periodic stability boundary where the eigenvalue period is

10, twice the time to maturation. At this corner there is

a jump in dominant eigenvalue period from 2 to 10. (There

is also a gap from 5 to 10 in the period achievable on the

stability boundary.)

In general, for a model with an odd number ( )2n � 1

of stages, the eigenvalue equation is 2n�1 2nl � ul � v p

, and its stability region in ( ) space has a corner, P,0 u, v

with a period jump from 2 to ( ) and a boundary4n � 2

period gap from ( ) to ( ), generalizing the2n � 1 4n � 2

properties shown in figure 2A–2C. Lyapunov exponent

calculations confirm that, certainly up to , theren p 9

exists a quasi-periodic ESS point that lies close to this

corner, P, and with period close to 2MT, where MT p

to maturation.2n � 1 p time

If there are an even number (2n) of stages, then the

stability region has a similar structure, but the corners are

formed by the intersection of different boundary sections

(see fig. 2D, 2E for and fig. 2F for ). How-n p 2 n p 10

ever, the ESS point still lies close to a corner of the stability

region boundary where the period is twice the time to

maturation, and this property certainly holds up to n p

.10

We have carried out sensitivity analysis at these higher

dimensions with respect to variations in parameter values

and the number of trade-offs, and as in the case,3 # 3

the twice-maturation time rule has proved reasonably ro-

bust to these changes.

Density-Dependent Structure

So far we have considered per capita reproduction reduced

only by competition between adults ( ).c p c p 01 2

Whether our results hold in the more general case, where

preadult stages also contribute to the density dependence,

is a question we have studied in some detail, but restricting

attention to the case. If preadult stages contribute3 # 3

only to a small degree ( ), then table 1 showsc p c p 0.11 2

that, with a single trade-off, the ESS point can lie within

the stability region but, for both trade-offs acting, the ESS

point remains quasi-periodic, with period varying about

6.0 over the range of parameters listed. However, if c1 and

c2 are increased to 0.3, then for both single and double

trade-offs the ESS point always lies in the stability region

for the same parameter ranges. With further increase, to

0.5 in c1 and c2, the situation differs in just two respects.

First, the ESS point is so positioned in the stability region

that it can access the “exotic” large-amplitude periodic

states that arise from the distortion of Arnol’d tongues

(Greenman and Benton 2004). Second, for a single trade-

off and low values of the trade-off constant j0 in equations

(4) (but not too low for extinction to occur), the ESS

attractor becomes a repeller, and the system evolves to the

maximum limit f0 of f in trade-offs of equations (4) and

(7). In this case the species becomes semelparous, with

. If it is only adult and subadult populations thatj p 0

affect per capita reproduction (i.e., , ), thenc p 0 c ( 01 2

the system response is different from the previous (c p1

) case in that, except for low values of f or j0, thec ( 02

ESS remains quasi-periodic, with declining period as c2

increases (table 1).

Discussion

We have shown that the ESS to which a single species

evolves is oscillatory when described by a nonlinear matrix

model with trade-offs between reproduction and survival

and with density dependence, driven primarily by the adult

stage, affecting only reproduction. The period of the os-

cillations lies in the range two to three times the time to

maturation (MT), a result that appears to hold whatever

the number of life-history stages included in the model.

How does this result compare with the empirical data

on species periodicity? We have already referred to the

data analyzed by Kendall et al. (1998). They present in-

formation on the dynamics of nearly 700 species. Of these,

29% were judged to exhibit cyclic patterns. Digitization

of their data on the cycle periods (see fig. 1b of Kendall

et al. 1998) indicates that the mean period is 7.8 years

( , ,median p 7.9 interquartile range p 5.1–9.6 range p

, ). All periods (in years) are represented up2–20 n p 174

to 20, but with modes at 2, 4, and 6–10 years (table 2).
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Table 2: Patterns of periodicity in cyclic populations

Data source, period N

Kendall et al. 1998, fig. 1b:

2 12

3 3

4 24

5 7

6 14

7 14

8 24

9 24

≥10 52

Murdoch et al. 2002:

0 ! p ≤ 2 10

2 ! p ≤ 4 19

4 ! p ≤ 6 24

6 ! p ≤ 8 10

8 ! p ≤ 10 32

110 1

Note: Period rounded to nearest integer. ofN p number

observations.

The bulk of Kendall’s cycling species are mammals (109

populations), fish (56), birds (18), and insects (13). The

mammals are mainly North American fur-bearing mam-

mals, and the fish are typically harvested species. It is likely

that the median age at maturation will be 1–3 years, mak-

ing the median periodicity likely to be in the range (2–

4)MT. A similar review by Murdoch et al. (2002) of 108

populations, from 40 species showing cyclic dynamics,

finds a median cycle period of 6–8 years. To compare the

empirical patterns with our model results, the cycle period

in years must be scaled by the maturation time, which

Murdoch et al. (2002) do. They find that 40 populations

exhibit “single-generation cycles” ( ), 27 ex-period � MT

hibit “delayed-feedback cycles” (periods in the range

), and 41 show “consumer resource2MT ≤ period ≤ 4MT

cycles” ( ; table 2).period 1 4MT

By studying the properties of a range of models, Gurney

et al. (1983) and Gurney and Nisbet (1985) were able to

relate the occurrence of these different types of behavior

to differences in internal (density-dependent) structure.

Cycling with period less than 2MT (typically “one-and-a-

bit” MT) suggests the presence of density dependence of

a form that directly changes the numbers in the affected

stage (e.g., via changes in survival). Such cycles are referred

to as “single-generation cycles” (SGCs). On the other

hand, fluctuations with periods in the range 2MT ≤

relate to density dependence with a delayedperiod ≤ 4MT

effect, for example, when current adult density affects ju-

venile numbers later (via changing fecundity). These cycles

are called “delayed-feedback cycles” (DFCs). The period

of the DFC is linked to the ratio of maturation time to

adult life span: 4MT when adult survival is high, 2MT

when it is low. Additionally, Nisbet and Onyiah (1994)

showed that SGCs can arise when there are strong inter-

cohort interactions (because these lead, via the “compet-

itive exclusion” principle, to a single surviving cohort).

Periods greater than 4MT are typically put down to con-

sumer-resource interactions (e.g., see Murdoch et al.

2002). The stored product pest Plodia is an example of an

immediate-effect system, with between-cohort interac-

tions, leading to an SGC (Wearing et al. 2004). Nicholson’s

blowflies are an example of a delayed-effect system (com-

petition affects size at maturity and fecundity). Forest Lep-

idoptera typically show outbreaks with a long cycle period

( years, ; Dwyer et al. 2004), whichmean p 10.4 n p 11

are often ascribed to consumer-resource dynamics, in this

case predator-pathogen-host dynamics.

Analysis of ecological models has shown that whatever

the density dependence structure, there is always a wide

range of dynamical states from which the system can

“choose.” Why, then, do actual systems typically choose

states that conform to the period structure rules that we

have just discussed? The evolutionary answer is that actual

systems are the ESSs of adaptive processes and that the

rules are properties of the ESSs. This hypothesis is sup-

ported by our analysis of model (1) and its higher di-

mensional generalizations. This model is effectively a de-

layed-feedback model, in that density dependence affects

fecundity and therefore the numbers in a later stage. This

structure indicates an ESS with the characteristics of a

DFC, that is, cycles with a period in the range (2–4)MT,

the period being closer to 2MT when adult survival is low

and increasing when adult survival is higher. This is what

we found in our calculations (table 1, rows 1–3). The only

situations when the ESS is either not cyclic or, if cyclic,

has a period less than 2MT is when density dependence

is a function not just of adults but also of subadults as

well or, indeed, of all three stages. The cross-stage density

dependence presumably creates a “blurring” of the cohort

structure such that, on average, total population density,

and hence fecundity, varies little from time step to time

step. In the case where density dependence is a function

of the two oldest age classes (table 1, rows 7–9), the cycle

period decreases to below 2MT (the minimum in table 1

is 1.4MT). Such situations can be thought of as an example

of asymmetric intercohort competition, with the density

of large animals suppressing the density of the smallest

animals, leading to cycles that approach SGCs (Nisbet and

Onyiah 1994; Knell 1998).

Our calculations are therefore in line with observed pat-

terns of periodicity, but they do not provide us with much

understanding of why these particular states should be

chosen by the evolutionary process out of the multiplicity

of states that are available. Why, for example, should a
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single-species system with delayed density dependence lead

to an ESS with period in the range (2–4)MT? However,

we can gain some insight by refocusing on the properties

of the ESS itself. By definition, at an ESS alternative strat-

egies cannot invade the resident; in our case, an alternative

strategy is one with a different value on the trade-off

curve(s). Changing the position of the trade-off creates a

change in survival and fecundity and hence in the dynam-

ics. At the ESS, typically there will be alternation of low-

and high-density cohorts: adults at high density lay few

eggs, which mature into a low-density cohort, laying many

eggs. In a high-density cohort, increasing fecundity may

have little advantage because fecundity is minimal as a

result of density, and decreasing fecundity (to increase

survival) may result in reproductive output too low to

allow surviving offspring. In a low-density cohort, increas-

ing fecundity may lead to little advantage, as it will lead

to greater numbers of juveniles, which, when they mature,

suffer decreased fecundity.

Taking a different approach, we can gain additional in-

sight into the periodicity structure of ESSs by looking at

the geometry of the stability region for the system (fig. 2).

First we note that there is a gap in the (eigenvalue) periods

associated with the points on the boundary of this region.

On the quasi-periodic boundary, the periods range from

2MT to sMT (where when MT is even and 1 whens p 2/3

MT is odd) and 2MT to infinity. On the other boundaries,

the periods are constant at 2 and infinity. There is therefore

a gap in the range of boundary periods, from sMT to 2MT,

starting and ending at corners of the stability region. A

system with delayed density dependence evolving through

a sequence of oscillatory states with diminishing period

close to the quasi-periodic boundary will therefore even-

tually experience a barrier in period at 2MT. The ESS point

lies close to the corner where this barrier is reached. (It

should be noted that the period jump and gap properties

are properties of systems with at least three life-history

stages and therefore have no effect in two-dimensional

juvenile-adult models.)

With the ESS point near the boundary of the stability

region, the system is highly sensitive to noise (Greenman

and Benton 2003). Being near the quasi-periodic bound-

ary, the period of the population oscillations is highly sen-

sitive to parameter values. Small changes in values lead to

significant changes in period. This is also the region in

which there can be multiple periodic attractors. Near a

corner of the quasi-periodic boundary, there is more than

one real eigenvalue or complex conjugate pair of eigen-

values that are simultaneously close to dominance and

hence to more attractors that are accessible. For the

LPA model (Cushing et al. 1998), for example, os-3 # 3

cillations of both periods 6 and 2 can be excited from the

ESS by noise or appropriate choice of initial conditions.

The sensitivity of periodicity to parameter values has

important consequences: slightly different life histories

might have similar “fitness,” especially in a stochastic en-

vironment (Orzack 1993), but could cycle with appreciably

different periods, and the strength of selection may mean

that the approach to the ESS is slow. Habitat change may

also result in small changes in biological parameters, lead-

ing to a marked change in cycle period. Variation in cycle

period with variation in environmental conditions is

known for several species, such as red grouse (Haydon et

al. 2002) and rodents (Stenseth 1999).

There is a body of opinion that ecological systems evolve

toward the “edge of chaos,” either deterministic chaos or

stochastic chaos (Ellner and Turchin 1995; Bourgine and

Snyers 1996; Ellner et al. 1998; Turchin and Ellner 2000;

de Oliveira 2001; Sole et al. 2002; Greenman and Benton

2003). Stochastic chaos describes behavior at a system

threshold where the system is highly responsive to sto-

chastic forces and highly sensitive to initial conditions; that

is, it is “chaotic,” at least in the short term (Greenman

and Benton 2003). Model (1) is consistent with the edge-

of-chaos hypothesis, although the ESS is not arrived at

through group selection, which is often an implicit as-

sumption of the edge-of-chaos arguments.

There has been recent discussion about the causes of

population fluctuations and whether from single-species

time series one could infer the causation of particular pe-

riodicities (Murdoch et al. 2002; Wearing et al. 2004). As

Wearing et al. (2004) have noted, different mechanisms

(e.g., consumer resource dynamics or cohort competition)

can give rise to the same periods, and the same mecha-

nisms can give rise to different periods (as we show here).

Inferring causation from the periodicity of the time series

alone may be problematic. This is perhaps emphasized by

recent studies of red grouse dynamics. Haydon et al. (2002)

show 63.3% of 289 time series for red grouse to be either

strongly or weakly cyclic (with periodicity of 3.5–13 years,

, and a mean of 8.3 years for strongly cyclicmin � max

series and 7.1 years for weakly cyclic series). With

year, the lower end of the range would fall intoMT p 1

the expected dynamics created by delayed-feedback mod-

els, and the upper end would fall into periodicities ex-

pected by consumer resource dynamics (Murdoch et al.

2002). However, Shaw et al. (2004) suggest that there is

little evidence from the time series for different biological

causation for changes in cycle period.

Finally, we note that investigation of the evolutionary

dynamics of populations is of applied as well as theoretical

importance, given the number of instances in which life-

history evolution is being recorded over “ecological” time

scales (Fussmann et al. 2003; Stockwell et al. 2003; Turchin

2003; Yoshida et al. 2003; Olsen et al. 2004). Population

dynamics should not treat the underlying parameters as



Evolution of Population Dynamics 77

constants, given the potential for them to evolve, and this

is perhaps especially true where population management

is concerned (Ashley et al. 2003; Stockwell et al. 2003).

Our analysis illustrates the adaptive dynamics trade-off

approach to parameter evolution in the special but im-

portant situation where a species exhibits intrinsically gen-

erated periodic oscillations.
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APPENDIX

Sample Mathematica code to construct the stability region,

to simulate the system, and to calculate the leading Lya-

punov exponent can be found in the online edition of the

American Naturalist.1
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