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Submitted to the Annals of Statistics

TWO-STEP SEMIPARAMETRIC EMPIRICAL

LIKELIHOOD INFERENCE

By Francesco Bravo ‡ , Juan Carlos Escanciano ∗,§ and Ingrid

Van Keilegom †,¶

University of York ‡, Universidad Carlos III de Madrid § and KU Leuven ¶

In both parametric and certain nonparametric statistical mod-
els, the empirical likelihood ratio satisfies a nonparametric version of
Wilks’ theorem. For many semiparametric models, however, the com-
monly used two-step (plug-in) empirical likelihood ratio is not asymp-
totically distribution-free, that is, its asymptotic distribution contains
unknown quantities and hence Wilks’ theorem breaks down. This ar-
ticle suggests a general approach to restore Wilks’ phenomenon in
two-step semiparametric empirical likelihood inferences. The main
insight consists in using as the moment function in the estimating
equation the influence function of the plug-in sample moment. The
proposed method is general; it leads to a chi-squared limiting distribu-
tion with known degrees of freedom; it is efficient; it does not require
undersmoothing; and it is less sensitive to the first-step than alter-
native methods, which is particularly appealing for high-dimensional
settings. Several examples and simulation studies illustrate the gen-
eral applicability of the procedure and its excellent finite sample per-
formance relative to competing methods.

1. Introduction. Since its introduction as a nonparametric likelihood
alternative to likelihood-type bootstrap methods for constructing confidence
regions, Owen’s ([55, 56, 57]) empirical likelihood (EL henceforth) has been
used extensively in both statistics and econometrics. Such popularity is jus-
tified by the appealing theoretical properties of EL confidence regions: they
tend to be more concentrated in places where the density of the parameter
estimator is greatest; they can be Bartlett corrected ([22] for the so-called
smooth function model, [10] for exactly identified estimating equations mod-
els, [16] for exactly identified estimating equations models with nuisance pa-
rameters and [17] for over-identified estimating equations models); they do
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2 F. BRAVO ET AL.

not require estimation of scale (internal studentization) and skewness; and
finally, they are range preserving and transformation respecting. Further-
more, [21] show that in linear exponential families empirical and parametric
likelihood surfaces are quite close in terms of their asymptotic distribution.
Specifically, the chi-squared approximations to the distributions of the em-
pirical and likelihood ratios, as well as the asymptotic normality of their
signed squared root differ in terms of order O(n−1), where n is the sample
size. See [57] for a comprehensive review of these properties and a number
of applications geared mainly towards finite-dimensional statistical models.

More recently the EL method has been used in nonparametric and semi-
parametric models. For nonparametric models [25] considered sieve empir-
ical likelihood for testing nonparametric hypotheses about nonparametric
functions, and showed that an appropriately rescaled sieve EL ratio test has
an asymptotic chi-squared calibration, with the scaling constant and de-
grees of freedom being independent of nuisance parameters, in other words
the so-called Wilks’ phenomenon ([80]) (i.e. the likelihood ratio statistic is
asymptotically distribution-free and converges to a chi-squared distribution)
holds for the EL. In semiparametric models [7] has shown that Wilks’ The-
orem also holds in certain “highly smooth” cases, see Remark 2.3 in [32] for
discussion.

For semiparametric models the most popular method uses a two-step
(plug-in) procedure in which the first-step estimator replaces the infinite-
dimensional nuisance parameter, while in the second step the plug-in EL
ratio is used to obtain inferences for the finite-dimensional parameter of
interest. This two-step semiparametric EL approach has been considered
by a number of authors, including [75] for partially linear models, [86] for
single-index models, [89, 81, 30] for various censored regression problems,
[77, 78, 79, 76, 74, 70] for various missing data problems, and [7, 48, 49, 12,
11] for other semiparametric problems. [18, 88] provide recent surveys on
EL inference in the context of semiparametric regression models.

In general, the two-step semiparametric plug-in method does not yield
asymptotically pivotal test statistics. Indeed, as shown in a general setting
by [32], the asymptotic distribution of the resulting plug-in EL ratio is gen-
erally a weighted sum of chi-squared random variables with the weights de-
pending (often in a complicated way) on the distribution of the data. Thus,
in most situations the Wilks’ phenomenon does not hold for the two-step EL
ratio, so to obtain asymptotically valid EL inferences three main proposals
have been put forward in the literature. The first and most common pro-
posal is the bootstrap, as suggested for example by [74, 32]. The proposed
bootstrap methods are general in nature, but they require re-estimating the
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semiparametric model in each bootstrap iteration, and thus are computa-
tionally very expensive. The second proposal consists in adjusting the EL by
a scale factor such that the adjusted (or rescaled) EL ratio is asymptotically
pivotal. [76] proposed a specific scale factor; more general adjustments have
been proposed by [86, 84, 12]. Although sometimes effective, these adjust-
ments typically involve explicit estimation of various covariance matrices,
which can be very complicated to be carried out in practice. Furthermore
the internal studentization property of EL is not exploited and this can neg-
atively affect the finite sample performance of the resulting EL statistic. The
third proposal exploits that in some specific cases it is possible to modify the
original estimating equation in such a way that the effect of the first-step
estimation is removed. This approach has been called in the EL literature
“bias-reduced or bias-corrected EL”. A review of papers using this approach
is provided in Section 2.3. As shown first by [91] in the context of a partially
linear single-index model, this approach has the additional advantage of not
requiring undersmoothing (the bias of the first-step going to zero faster than
its standard deviation), much in contrast to bootstrap and adjusted based
methods, but it is not clear how the method works, that is, how the modified
estimating equations were obtained in the first place for the specific models
considered, and how similar estimating equations could be built for other
semiparametric models.

This leads us to the main contribution of this article, which is to propose a
theoretical justification of “bias-corrected EL” methods in general semipara-
metric models. This theoretical justification includes a general construction
of the method, proving Wilks’ Theorem and establishing the efficiency of the
procedure. The main insight consists in using as the moment function in the
estimating equation the influence function of the plug-in sample moment.
This entails correcting the original estimating equations based on the path-
wise derivative with respect to the infinite-dimensional parameter. Pathwise
differentiation arises naturally in the context of semiparametric models, and
has been used extensively both in the statistical and econometric literatures;
see, e.g., [40, 59, 8, 71, 51]. Our method does not require bootstrap and pre-
serves the internal studentization property of the EL ratio. Thus, confidence
regions can be computed with critical values from a standard chi-squared
distribution.

There are a number of additional benefits that result from our method.
The proposed modified tests are efficient (Asymptotically Maximin and
Asymptotically Uniformly Most Powerful and Invariant, see Section 3.3). To
our knowledge, this is the first article establishing efficiency in a two-step
semiparametric testing setting for EL. We also find that, in general, with
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the modified test there is no need for undersmoothing, which means that, in
contrast to alternative methods, the proposed inference method is asymptot-
ically valid with a cross-validated bandwidth for the first-step. Confidence
intervals based on the new method tend to have a more accurate coverage
than alternative procedures, that is also less sensitive to bandwidths. These
advantages of efficiency and robustness to high-dimensional first steps do not
generally hold for alternative procedures without the correction (e.g. boot-
strap methods). The theoretical results above are confirmed by two Monte
Carlo simulations; one in the context of average treatment effects in obser-
vational studies, and one in the context of nonlinear estimating equations
with missing data.

The rest of the article is organized as follows: the next section introduces
the statistical model, the method and provides some heuristic explanation
as to why the proposed method works, while Section 3 presents the main
results. The main results include establishing Wilks’ Theorem and the ef-
ficiency for our modified estimating equation approach. Sections 4 and 5
contain, respectively, all the examples and the results of the simulations
that are used to illustrate the theory and the finite sample performance of
the proposed method. Section 6 is a discussion section. Section 7 contains
the proofs of the main results. The Supplementary Material [13] consists of
four appendices that are organized as follows. Appendix A gathers all the
proofs for the examples. Appendix B proves the validity of a general numer-
ical algorithm for estimating the pathwise derivative, Appendix C extends
the main result of the paper to the case of over-identified models, and Ap-
pendix D shows an auxiliary result regarding Donsker and Glivenko-Cantelli
classes. All these results are of independent interest.

2. The Statistical Model and Method.

2.1. Two-step semiparametric inference. Let Z be a random vector de-
fined on a probability space (Ω,B,P) and with values on SZ ⊆ R

dz , and
let {Zi}ni=1 be independent copies of Z. Assume Z satisfies the estimating
equations

(2.1) E [g (Z, θ0, η0)] = 0,

where g (·) : SZ × Θ × E → R
p is a vector-valued measurable known func-

tion, θ0 ∈ Θ ⊂ R
p denotes the finite-dimensional parameter of interest, and

η0 ∈ E denotes the possibly infinite-dimensional nuisance parameter, taking
values in a semi-metric space E . The statistical model (2.1) is rather gen-
eral, as it does not require the full specification of the distribution of Z,
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albeit it does also include models that can be estimated with semiparamet-
ric maximum and quasi maximum likelihood methods, for which (2.1) may
represent, respectively, the score and quasi score vector. We consider just-
identified models for simplicity of notation, but our theory can be equally
applied to over-identified models (i.e. number of equations larger than p,
thereby extending [61] to the semiparametric case, where possibly infinite-
dimensional nuisance parameters η0 ∈ E are present in (2.1). Details can be
found in Appendix C in the Supplementary Material, Theorem C.1.)

Under this setting, we aim to construct EL based tests or confidence
regions for θ0 using the sample {Zi}ni=1. If η0 ∈ E is known, the standard
EL (1− α)-confidence region is

{
θ ∈ Θ : −2 logELn(θ, η0) < χ2

p,1−α

}
,

where ELn(θ, η0) is the likelihood ratio function

ELn(θ, η0) := max

{
n∏

i=1

npi : pi > 0,

n∑

i=1

pi = 1,

n∑

i=1

pig (Zi, θ, η0) = 0

}
,

and χ2
p,α is the α-quantile of the chi-squared distribution with p degrees

of freedom, α ∈ (0, 1). In practice, η0 is unknown and the standard two-
step (plug-in) approach defines confidence regions of the form {θ ∈ Θ :
−2 logELn(θ, η̂) < c}, for a suitable constant c to be determined and a
first-step consistent estimator η̂ for η0. [32] have investigated this two-step
method in a general setting, and have shown that if

1√
n

n∑

i=1

g (Zi, θ0, η̂)
d→ U(2.2)

1

n

n∑

i=1

g (Zi, θ0, η̂) g
′ (Zi, θ0, η̂)

P→ V,(2.3)

for a non-singular matrix V (for any matrix A, A′ denotes the transpose of
A), then

(2.4) − 2 logELn(θ0, η̂)
d→ U ′V −1U,

provided some further regularity conditions hold. This convergence result is a
generalization of the classical result by [55, 56]. The asymptotic distribution
of the quadratic form U ′V −1U is typically not chi-squared, but rather a
weighted sum of chi-square random variables. To explain the discrepancy
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between one-step and two-step settings, notice that a “functional” Taylor
argument leads to the expansion

(2.5)
1√
n

n∑

i=1

g (Zi, θ0, η̂) =
1√
n

n∑

i=1

{g (Zi, θ0, η0) + φ (Zi, θ0, h0)}+ oP(1),

where φ (Zi, θ0, h0) is the so–called pathwise derivative of η → E [g (Zi, θ0, η)] ,
well explained in [71, 51], which accounts for the asymptotic impact of the
first-step estimate η̂ on the sample analog of the moment E [g (Zi, θ0, η)] ,
and where h0 may include η0 and other nonparametric objects that may
appear in the influence function as a result of “functional differentiation”.
Hence, if (2.5) and certain finite moment conditions hold, an application of

the standard Central Limit Theorem (CLT) yields U
d
= N(0,Σ) in (2.2),

where
d
= stands for equality in distribution, and

(2.6) Σ := E
[
(g (Z, θ0, η0) + φ (Z, θ0, h0)) (g (Z, θ0, η0) + φ (Z, θ0, h0))

′] ;

whereas a Uniform Law of Large Numbers (ULLN) yields (2.3) with V =
E [g (Z, θ0, η0) g

′ (Z, θ0, η0)] . These results imply that the limiting distribu-
tion in (2.4) is in general a weighted chi-squared distribution when φ 6= 0;
see [62], p.171.

2.2. A new method: heuristics. Letm denote the modified moment func-
tion (cf. (2.5))

m (Z, θ0, h0) := g (Z, θ0, η0) + φ (Z, θ0, h0) ,

and define the bias-corrected or modified EL ratio function as

MELn(θ, h) := max

{
n∏

i=1

npi : pi > 0,
n∑

i=1

pi = 1,
n∑

i=1

pim (Zi, θ, h) = 0

}
.

Let ĥ be a consistent estimate of h0 satisfying some conditions below. One of
the main results of this article shows that under certain regularity conditions

R1−α :=
{
θ ∈ Θ : −2 logMELn(θ, ĥ) < χ2

p,1−α

}
,

forms an asymptotically valid (1−α)−confidence region for θ0. This follows
from the fact that the test that rejects H0 : θ = θ0 against H1 : θ 6= θ0 when
−2 logMELn(θ0, ĥ) > χ2

p,1−α has an asymptotic level α ∈ (0, 1).



TWO-STEP SEMIPARAMETRIC EMPIRICAL LIKELIHOOD INFERENCE 7

To show these results, we prove in Theorem 3.1 below

1√
n

n∑

i=1

m
(
Zi, θ0, ĥ

)
d→ N(0,Σ)(2.7)

1

n

n∑

i=1

m
(
Zi, θ0, ĥ

)
m′
(
Zi, θ0, ĥ

)
P→ Σ,(2.8)

where Σ is defined in (2.6). The key asymptotic results (2.7) and (2.8) es-
tablished in this article, and the general convergence theorem in [32], imply
that Wilks’ phenomenon is restored, i.e.

−2 logMELn(θ0, ĥ)
d→ χ2

p.

We provide now some heuristics on the validity of (2.7), and refer to Sec-
tion 3 below for a formal discussion. Under certain regularity conditions, the
influence function m (Zi, θ, h0) belongs to the orthocomplement of the tan-
gent space of nuisance parameters, see [8]. This implies that, modulo some
regularity conditions, the following invariance property holds

(2.9)
1√
n

n∑

i=1

m(Zi, θ0, ĥ) =
1√
n

n∑

i=1

m (Zi, θ0, h0) + oP(1).

Intuitively, m is a projection of g, say m = Πg, and projection operators
are idempotent, i.e. they satisfy Π2 = Π. In particular, Πm = m, which
explains (2.9) and hence (2.7). The projection operator Π projects onto the
orthocomplement of the tangent space of nuisance parameters, but its actual
form depends on the limit of the estimator ĥ and the model.

2.3. Identifying pathwise derivatives. The pathwise derivative φ (·) in
(2.5) plays a fundamental role in our method, as it is used to construct
m. This section discusses the identification of φ (·) in a general setting. Let
F0 denote the distribution of Z. Let L0

2 be the subspace of measurable real-
valued functions d(Z) such that E(d(Z)) = 0 and E(d2(Z)) < ∞, where all
expectations, unless otherwise stated, are with respect to F0. Following [51],
we denote by η(F ) the probabilistic limit of the first-step estimator η̂ when
the distribution of Z is F ∈ F , where F is a class of distributions that is
unrestricted, except for regularity conditions. The precise generality of F
is defined as follows. Let {Ft} be a regular parametric (one-dimensional)
submodel, t ∈ (0, ε) → Ft ∈ F , satisfying the classical mean-squared differ-
entiability assumption with score s, i.e. as t ↓ 0,

∫ [dFt
1/2 − dF

1/2
0

t
− 1

2
dF

1/2
0 s

]2
= o(1).
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The generality of F is that the set of scores {s} of regular paths in F is
linear and dense in L0

2. Define the functional µ : F −→ R
p

(2.10) µ(F ):= E [g (Z, θ0, η(F ))] F ∈F .

If µ is differentiable at F0 in the sense of [71], then for any regular path {Ft}
with score s(·) there exists a function φ (·, θ0, η(F0)) ∈ L0

2 such that

(2.11)
∂µ(Ft)

∂t

∣∣∣∣
t=0

= E [φ (Z, θ0, η(F0)) s(Z)] .

Moreover, since the set of scores {s} is linear and dense in L0
2, then

φ(·, θ0, η(F0)) is uniquely determined from (2.11) and φ(·, θ0, η(F0)) ∈ L0
2.

That is, φ (·, θ0, η(F0)) is the influence function of the functional µ (·) , an
observation that was first made by [51], p. 1357.

Equation (2.11) is a functional equation in φ. [51] used this equation to
provide expressions for φ when η0 ≡ η(F0) is a regression function or a den-
sity. The literature contains numerous examples where φ has been explicitly
computed; see [8] for a comprehensive review of many of these examples. [37]
have recently suggested a smoothed version of Hampel’s ([28, 29]) character-
ization of influence functions as Gateaux derivatives, which can be applied
to µ(F ) to characterize φ. For cases where computing φ explicitly is difficult,
either from [51] or from [37], we propose a fully automatic numerical method
to estimate φ and prove the validity of our bias-corrected EL with the nu-
merically estimated influence function. See Theorem A.1 in Appendix B in
the Supplementary Material, which is a new result of independent interest.

2.4. Bias-corrected EL: A review. The bias-corrected EL ratio was first
introduced in [91] for a semiparametric partially linear single-index model.
Since then, this approach has been used in other semiparametric settings,
including in [87] for semiparametric regressions with longitudinal data, in
[83, 85, 70] for models with missing data, and in [90, 44, 69, 82] for other
semiparametric problems. Explicit recognition of the benefits of using influ-
ence functions as estimating equations to obtain chi-squared limiting distri-
butions for EL ratio tests is given in [89, 30]. [89] considered finite dimen-
sional nuisance parameters, and although they discussed two applications in
semiparametric models, no theoretical results were given for infinite dimen-
sional nuisance parameters. [30] proposed using a special influence function
for a scalar parameter defined through an estimating equation with right cen-
sored data. Relative to this literature, the main contribution of this article is
to provide a general theory of bias-corrected EL in semiparametric models.
This theory involves giving a new general construction of a bias-corrected
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EL, including a result with a numerically estimated influence function (Ap-
pendix B in the Supplementary Material), proving Wilks’ Theorem in a
general setting (Section 3.2) and establishing the efficiency of the method
(Section 3.3). Some examples in Section 4 illustrate the application of the
general theory. Further applications of the general theory of this article are
provided in [48, 49].

3. Main Results.

3.1. Notation. We first elaborate further on the model introduced in
(2.1). Notice that, though we do not make it explicit in (2.1), the nuisance
function h0 (·) may contain θ0 as an additional argument. In what follows,
we suppress θ0 in the nuisance function h0 to save space, but it should
be understood conformably, i.e. (θ, h) := (θ, h (·, θ)) . We assume that a
first-step nonparametric estimator ĥ (·) for h0 (·) is available with certain
convergence properties as specified in Assumption A below. Let |·| denote
the Euclidean norm, i.e. |A| := (tr (A′A))1/2 , where tr (A) is the trace of the
matrix A. For a measurable function g of Z, define ‖g‖∞ := supz∈SZ

|g (z)|
and ‖g‖r := (E [|g (Z)|r])1/r, where SZ is the support of Z. The function
space H, where h0 belongs to, is endowed with a semi-metric ‖·‖H . For
example, ‖·‖H = ‖·‖∞ or ‖·‖H = ‖·‖r . Since we assume consistency of ĥ with
respect to ‖·‖H , we can redefineH asHδ := {h ∈ H : ‖h− h0‖H ≤ δ} , for an
arbitrarily small δ > 0. For a measurable function f we denote Pf :=

∫
fdP,

Pnf :=
1

n

n∑

i=1

f (Zi) and Gnf :=
√
n (Pnf − Pf) .

Henceforth, we will use the concepts of P-Glivenko-Cantelli and P-Donsker
classes; see, e.g., [73] for definitions. For a generic random vector Z with
absolute continuous distribution we denote by fZ its (Lebesgue) density.

3.2. Regularity conditions and Wilk’s Theorem. This section presents
the main results in a formal way under a set of “high-level”assumptions.
The motivation for these high-level assumptions is to widen the applica-
bility of the approach, while avoiding repetition. The moment function g
satisfies (2.1). Having discussed methods to identify the pathwise derivative
φ of g, we now provide regularity conditions for the validity of our results as-
suming knowledge of φ. Appendix B in the Supplementary Material relaxes
this assumption and proves Wilks’ Theorem with a numerically estimated
influence function.

We introduce the following regularity conditions.
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Assumption A: The measurable function m (·, θ0, h) is such that:

(i) Stochastic equicontinuity in h: for all sequences of numbers δn ↓ 0,

sup
‖h−h0‖H≤δn

|Gnm (·, θ0, h)−Gnm (·, θ0, h0)| = oP (1) .

(ii) Asymptotic “no bias” condition:

P[m(·, θ0, ĥ)−m(·, θ0, h0)] = oP(n
−1/2).

(iii) P(ĥ ∈ Hδ) → 1, for δ > 0, and ‖ĥ− h0‖H = oP(1).
(iv) Uniform consistency: for all δn ↓ 0 and for ν = gg′, ν = gφ′ and

ν = φφ′,

sup
‖h−h0‖H≤δn

|Pnν (·, θ0, h)− Pnν (·, θ0, h0)| = oP (1) .

Moreover, the matrix Σ = E [m (Z, θ0, h0)m
′ (Z, θ0, h0)] is positive def-

inite and finite.
(v) P(MELn(θ0, ĥ) = 0) → 0 and max1≤i≤n |m(Zi, θ0, ĥ)| = oP(

√
n).

Assumption A is a high-level condition that suffices for the validity of our
method. The conditions in A(i-ii) are standard in the literature; see, e.g.,
[15]. Assumption A(i) is implied by the P−Donsker property of the function
class F := {m (·, θ0, h) : h ∈ Hδ}; see Appendix D in the Supplementary
Material for primitive conditions for this. Related high-level assumptions to
the asymptotic “no bias” condition have been considered extensively in the
literature; see, for example, [8] p. 396, Theorem 6.1(i) in [34], p. 557, Section
25.8 in [72], Assumption H2 in [7], or Condition M2 in [9]. Assumptions
A(iii) and A(iv) are standard in the literature on semiparametric inference.
Assumption A(v) is required in [32], who discussed sufficient conditions for it
to hold. Next result shows that with our method Wilk’s Theorem is restored.

Theorem 3.1. If Assumption A holds, then

−2 logMELn(θ0, ĥ)
d→ χ2

p.

The verification of the asymptotic “no bias” condition A(ii) may be easy
due to the special properties of the model (for example in certain convex
models with the efficient score as moment function), but more generally it
may also require considerable effort. The following assumption suffices for
A(ii) to hold.

Assumption B: For some δ > 0 :
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(i) The map h → M (h) = E [m (Z, θ0, h)] from Hδ to R
p satisfies, for

all h ∈ Hδ, |M (h)−M (h0)| ≤ c ‖h− h0‖τH for constants c > 0 and
τ > 1.

(ii) P(ĥ ∈ Hδ) → 1 and ‖ĥ− h0‖H = oP
(
n−1/2τ

)
.

Assumption B(i) requires sufficient smoothness in the model. This condition
holds if M (h) is Frechet differentiable with a zero derivative and a Hölder
continuous second derivative. Frechet differentiability is often satisfied in
this context, see [26]. The proof of the following Lemma is trivial, and hence
omitted.

Lemma 3.2. Assumption B implies A(ii).

Remark 3.1. Undersmoothing is not required in the conditions on the
first-step ĥ. This is shown in our Examples below using kernel estimators
for ĥ. This is important, as cross-validation and related methods that choose
the optimal bandwidth for estimation of the first-step are commonly used in
practice. These bandwidths are ruled out by alternative methods that do not
use our correction (e.g. bootstrap methods).

Remark 3.2. An extension of Theorem 3.1 to the case of a numerically
estimated influence function φ is given in Theorem B.1 of Appendix B in
the Supplementary Material. This result is convenient for situations where
computing φ directly is too involved.

3.3. Efficiency. In this section we prove the efficiency, in the sense intro-
duced below, of the modified EL procedure. Let us denote by ψn the test that
rejects H0 : θ = θ0 against H1 : θ 6= θ0 when −2 logMELn(θ0, ĥ) > χ2

p,1−α.
Consider the local alternatives H1n : θn = θ0 + τ/

√
n, where τ 6= 0. To

investigate the asymptotic behavior of ψn under the local alternatives H1n

we need the following assumption.

Assumption C: The measurable function m (·, θ, h) satisfies:
(i) Stochastic equicontinuity in θ: for all sequences of numbers δn ↓ 0,

sup
|θ−θ0|≤δn

|Gnm (·, θ, h0)−Gnm (·, θ0, h0)| = oP (1) .

(ii) θ0 ∈ Θ, with Θ ⊂R
p open, and E [m (Z, θ, h0)] is continuously differ-

entiable at θ0, with non-singular derivative.
(iii) E [m (Z, θ, h0)m

′ (Z, θ, h0)] is continuous at θ0 and, for some δ > 0,

E

[
sup
θ∈N0

|m (Z, θ, h0)|2+δ

]
<∞,



12 F. BRAVO ET AL.

where N0 is a neighborhood of θ0.

Assumption C is standard. Note this condition allows for non-smooth mo-
ment functions m as a function of θ and h. Under Assumption C(ii), we can
define G0 = (∂/∂θ′)E [m (Z, θ0, h0)]. The following matrix will play a funda-
mental role in efficiency considerations, B∗ = G′

0Σ
−1G0. The first concept

of efficiency used here is that of an asymptotic maximin test. We give a basic
introduction to this concept as follows. Let X follow a p dimensional normal
distribution with mean µ and identity variance, and let a denote a posi-
tive fixed number. A maximin test for testing µ = 0 against the alternative
µ′µ ≥ a is one that maximizes the minimum power infµ∈Rp:µ′µ≥a Eµ [ϕ(X)]
over the set of all level α tests ϕ (·) . It is well known (see e.g. [42] , pg.
55) that the maximin test has critical region X ′X ≥ χ2

p,1−α. For further
details on maximin tests see [42, 67]. A test for H0 : θ = θ0 against
H1n : θn = θ0 + τ/

√
n is asymptotic maximin when its asymptotic local

power function is that of the maximin test in the limiting experiment. Our
first efficiency result shows that ψn is asymptotic maximin.

Theorem 3.3. Let Assumptions A and C hold under H1n. Then, the test
ψn is asymptotic maximin for testing H0 : τ = 0 against H1 : τ ′B∗τ ≥ a,
for any a > 0.

We establish now an efficiency result for the modified test in a semiparamet-
ric setting. Efficient tests for restrictions on a finite-dimensional parameter
in regular semiparametric models have been formally defined in [20]. For
multivariate null hypotheses, these authors introduce the efficiency concept
of Asymptotically Uniformly Most Powerful and Invariant test of level α, in
short AUMPI(α), see [20], Section 5. Of course, when p = 1, alternative
definitions of efficiency, which do not require invariance, are typically used.
We refer to [20] for a comprehensive discussion of these efficiency concepts.
See also [38] for an illuminating application in a regression context.

Recall the moment function g (Z, θ0, η0) satisfies (2.1) with first-steps
given by η0. To establish the optimality of the bias-corrected procedure
we need to be specific about the nature of the first-steps. We follow [2] and
assume the first-steps η0 = (η′01, ..., η

′
0J)

′ are identified by the conditional
moments E [ρj(Z, η0j(Xj))|Xj ] = 0, for some functions ρj , j = 1, ..., J.
This setting includes many example applications as special cases. Here,
Z = (Y ′, X ′)′ and X is the union of distinct elements of Xj , 1 ≤ j ≤ J.
Suppose that there is γ0j(Xj) in the mean square closure of the set of
derivatives ∂E[ρj(Z, η0j(Ft))|Xj ]/∂t|t=0 as Ft varies over regular parametric
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models such that
(3.1)
∂E[g(Z, θ0, η0j(Ft), η0,−j)]

∂t

∣∣∣∣
t=0

= −E[γ0j(Xj) ∂E[ρj(Z, η0j(Ft))|Xj ]/∂t|t=0],

where η0,−j includes all elements of η0 but η0j . Then, from [2] the adjustment

term is given by φ(z, θ, h0) = −∑J
j=1 γ0j(Xj)ρj(Z, η0j(Xj)). The efficiency

for the modified EL procedure with pathwise derivative φ is shown next.

Theorem 3.4. Let the conditions of Theorem 3.3 in this paper and Con-
dition 1 in [2] hold. Then, the modified EL test ψn is AUMPI(α).

4. Examples. This section illustrates the general theory above with
several examples. In all the examples below we assume that the correspond-
ing variance-covariance matrix Σ in (2.6) is finite and positive definite. For
any random vectors U , V and W , the notation U ⊥ V |W will be used
to indicate that U is independent of V given W . Also, fU |V denotes the
conditional Lebesgue density of U given V.

The following notation on smooth classes of functions is used throughout
the examples. Let Cq (X ) be a set of smooth continuous functions on X
endowed with the sup-norm ‖·‖∞ , as defined in [73], p.154. That is, if X
is a convex, bounded subset of Rd, with non-empty interior, then for any
smooth function h : X ⊂ R

d → R and some q > 0, let q be the largest
integer smaller than q, and

‖h‖∞,q := max
|a|

1
≤q

sup
x∈X

|∂axh(x)|+ max
|a|

1
=η

sup
x 6=y

|∂axh(x)− ∂axh(y)|
|x− y|q−q ,

where |a|1 =
∑

i ai and ∂ax = ∂
|a|1
x

∂x
a1
1

...∂x
ad
d

. Further, let Cq
M (X ) be the set of

all continuous functions h : X ⊂ R
d → R with ‖h‖∞,q ≤ M . Let Cq

M,ε (X )

be the set of functions f ∈ Cq
M (X ) such that f > ε, for some ε > 0.

4.1. Mean of interval censored data. Suppose we observe Z = (Y,X ′)′,
X = (X1, X

′
2)

′, X1 is a positive random variable, X2 is a d2−dimensional
vector of covariates and Y = 1 (W > X1). The variable W is unobserved.
We are interested in inference on θ0 = E [W ] . The random variables W
and X1 are conditionally independent given X2, in short W ⊥ X1|X2, and
the support of W is SW = [0,M ], M ≤ ∞. This is the so-called current
status model; see [27, 35, 39, 68, 5] for surveys on this model. For applica-
tions in economics see [43]. Let η0(w, x2) := P (W > w|X2 = x2) denote the
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conditional survival function and note that

θ0 = −E

[∫ M

0
wdη0 (w,X2)

]
= E

[∫ M

0
η0 (w,X2) dw

]
.

Thus, we can write the previous equality as our estimating equation with
g (X2, θ0, η0) = θ0 −

∫M
0 η0 (w,X2) dw. By the conditional independence as-

sumption, η0(x) = E [Y |X = x], provided the support of W is contained in
the support of X1. Therefore, any consistent nonparametric estimator for a
conditional mean can be used as a first-step estimator for η0, for example,
a Nadaraya-Watson (NW) kernel estimator.

Applying the pathwise derivative computation suggested in [52], pg. 1361,
we obtain φ (z, θ0, η(F0)) = −(y− η0(x))fX2

(x2)/fX(x). Hence, our method
leads to the estimating equation

E

[
θ0 −

∫ M

0
η0 (w,X2) dw − (Y − η0(X))

fX2
(X2)

fX (X)

]
= 0.

That is, in this example, m (Z, θ0, h0) = θ0 −
∫M
0 η0 (w,X2) dw − (Y −

η0(X))fX2
(X2)/fX(X), where h0 = (η0, fX) ∈ H := Cq

1 (SX) × Cq
M (SX),

q > dx/2, dx = d2 + 1, and ‖h0‖H = ‖η0‖∞ + ‖fX‖∞ . The nuisance param-
eter h0 is estimated by a NW estimator:

η̂ (x) :=
n−1

∑n
i=1YiKb (Xi − x)

f̂X (x)
, f̂X (x) := n−1

n∑

i=1

Kb (Xi − x) ,

where x ∈ SX := SX1
× SX2

⊂ R
dx , Kb (x) := b−dx

∏dx
l=1k(xl/b), for some

univariate bounded kernel k (·) with compact support, and a bandwidth
parameter b ↓ 0. We verify our conditions under the following assumption:

Assumption E1:

(i) We observe Z = (1 (W > X1) , X1, X
′
2)

′, where W ⊥ X1|X2 and SW =
[0,M ] ⊂ SX1

.
(ii) fX (x) , fX2

(x2)/fX(x) and η0 (x) are r times continuously differen-
tiable in x = (x1, x2), with uniformly bounded derivatives (including
zero derivatives), where r is as in (iii) below. Moreover, infx∈SX

fX (x) >

0, E[|fX2
(X2)/fX(X)|2+δ] <∞, h0 ∈ Hδ and P(ĥ ∈ Hδ) → 1, for some

δ > 0.
(iii) The kernel function k : R → R is bounded, symmetric, and satisfies the

following conditions:
∫
k (t) dt = 1,

∫
tlk (t) dt = 0 for l = 1, . . . , r − 1,

and
∫
|trk (t)| dt < ∞ for some r ≥ 2; and for some v > 1, |k(t)| ≤

C |t|−v for |t| > L, 0 < L <∞.
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(iv) The deterministic sequence of positive numbers b ≡ bn satisfies: (a)
bn → 0 and b2dxn n/ log n→ ∞; and (b) nb4rn → 0.

Primitive conditions for P(ĥ ∈ Hδ) → 1 have been given in [50, 24]. Note
that undersmoothing is not required, that is, we require nb4rn → 0 rather
than the typical nb2rn → 0. Assumption E1 is sufficient for Assumptions A,B
and C, as the following Proposition shows.

Proposition E1. Under Assumption E1, the conclusions of Theorem 3.1,
Theorem 3.3 and Theorem 3.4 hold for this example.

4.2. Average treatment effect. There is an extensive literature on the
measurement and evaluation of treatment effects in observational studies.
We use the potential outcome notation of [64]. Let D be the treatment in-
dicator, Y1 be the outcome under treatment and Y0 be the outcome without
treatment. We only observe Z = (Y,D,X ′)′, where Y = Y1 ·D+Y0 · (1−D)
and X is a dx−dimensional vector of covariates. We assume the treatment is
unconfounded, i.e. (Y1, Y0) is independent of D, conditional on X. One pa-
rameter of interest is the average treatment effect (ATE) θ0 = E [Y1 − Y0] .
Define the propensity score η0 (X) := E [D|X] , which is assumed to be
bounded away from zero and one. Then, it is known that under unconfound-
edness the ATE is given by θ0 = E [Y D/η0(X)− Y (1−D)/{1− η0(X)}].
See [63]. This representation suggests the two-step estimator

θ̂ =
1

n

n∑

i=1

[
YiDi

η̂(Xi)
− Yi(1−Di)

1− η̂(Xi)

]
,

where η̂ is a consistent estimator of the propensity score. [31] derived the
influence function for θ̂ and provided sufficient conditions for the asymptotic
normality of

√
n(θ̂−θ0) when η̂ is a series Logit estimator. In particular, they

showed that, with µj(X) = E [Y (j)|X] (j = 0, 1) denoting the conditional
mean for potential outcomes, the pathwise derivative due to the estimation
of the propensity score η0 is given by

(4.1) φ (Z, θ0, h0) = (D − η0(X))

(
µ1(X)

η0(X)
+

µ0(X)

1− η0(X)

)
,

where h0 = (η0, µ0, µ1) ∈ H := C̄q
1,ε (SX)×Cq

M (SX)×Cq
M (SX) , and C̄q

1,ε(SX)
is the subspace of functions f ∈ Cq

1 (SX) such that ε < f < 1 − ε, for some
ε, 0 < ε < 1, and ‖h0‖H = ‖η0‖∞ + ‖µ0‖∞ + ‖µ1‖∞ . The extra nuisance
parameters µ0 and µ1 can also be estimated by suitable kernel estimators,
after noticing that by unconfoundedness, µ1(X) = E [Y D|X] /η0(X) and
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similarly µ0(X) = E [Y (1−D)|X] /(1 − η0(X)). Therefore, our method
suggests inference based on the modified estimating equation

E

[
θ0 −

Y D

η0(X)
+
Y (1−D)

1− η0(X)
+ (D − η0(X)) ι (X)

]
= 0,

where ι(x) := µ1(x)/η0(x)+µ0(x)/[1−η0(x)]. We verify here our conditions
for this example when ĥ = (η̂, µ̂0, µ̂1), where

η̂ (x) :=
n−1

∑n
i=1DiKb (Xi − x)

n−1
∑n

i=1Kb (Xi − x)
,

µ̂1 (x) :=
n−1

∑n
i=1YiDiKb (Xi − x)

n−1
∑n

i=1DiKb (Xi − x)
,

µ̂0 (x) :=
n−1

∑n
i=1Yi(1−Di)Kb (Xi − x)

n−1
∑n

i=1(1−Di)Kb (Xi − x)
.

We require the following assumption.

Assumption E2:

(i) We observe Z = (Y,D,X ′)′, where Y = Y1 · D + Y0 · (1−D) and
(Y1, Y0)⊥ D|X.

(ii) fX (x) , ι (x) and η0 (x) are r times continuously differentiable in x,
with uniformly bounded derivatives (including zero derivatives), where

r is as in E1(iii). Moreover, infx∈SX
fX (x) > 0, E

[
|Y |2+δ

]
< ∞,

E

[
|ι (X)|2+δ

]
<∞, h0 ∈ Hδ and P(ĥ ∈ Hδ) → 1, for some δ > 0.

Proposition E2. Under Assumptions E1(iii-iv) and E2, the conclusions of
Theorem 3.1, Theorem 3.3 and Theorem 3.4 hold for this example.

4.3. Estimating equations with missing data. Consider inference based
on the p estimating equations E [s (X,W, θ0)] = 0, whereX is a dx-dimensional
random vector that is always observed and W is a dw-dimensional random
vector that is only observed when D = 1 and not observed otherwise (D =
0). That is, the data we observe is a random sample of Z = (X ′,W ′D,D)′.
We assume missingness at random, i.e., W is independent of D, conditional
on X. [74] proposed EL inference based on nonparametric imputation in this
general setting. See also [14] for semiparametric efficiency calculations. The
nonparametric imputation has an impact on the asymptotic distribution of
the EL ratio test, and its limiting distribution is a weighted chi-squared, cf.
[74]. Here, we apply our method to obtain a version of Wilks’ Theorem in
this general setting for missing data.
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We modify the approach of [74] and consider the estimating equation

(4.2) g (Z, θ, η0) = Ds (X,W, θ) + (1−D)
q0 (X, θ)

p0 (X)
,

where η0 = (q′0, p0)
′, q0 (X, θ) := E [Ds(X,W, θ)|X] and p0 (X) := E [D|X]

are the nuisance parameters. This approach is slightly different from the one
in [74, 70], who proposed a nonparametric imputation method by sampling
from a smoothed nonparametric estimator of the distribution of W given X
and D = 0. Inference with this nonparametric imputation may be sensitive
to the number of draws performed. Our approach overcomes this problem
by imputing directly s and treating the imputation as a nuisance parameter
in our semiparametric model. As shown in [74], our method is strictly more
efficient than that based on imputing W with a finite number of draws,
with the efficiency gap between these two procedures going to zero as the
number of draws goes to infinity. Nevertheless, our main contribution in
this example is not the nonparametric imputation of s, but rather obtaining
distribution-free semiparametric EL inference without undersmoothing.
[74], Lemma 1, provided sufficient conditions under which (2.5) holds with

φ (Z, θ0, h0) = D

(
s (X,W, θ0)−

q0 (X, θ0)

p0 (X)

)
1− p0(X)

p0(X)
.

Therefore, our method suggests doing inference with the estimating moment

m (Z, θ0, h0) =
D

p0 (X)
s (X,W, θ0) +

(
1− D

p0 (X)

)
q0 (X, θ0)

p0 (X)
.

We propose to estimate h0 = η0 = (q′0, p0)
′ ∈ H := Cq

M (SX)×· · ·×Cq
M (SX)×

Cq
1,ε (SX) , by the NW kernel estimators

q̂ (x, θ) :=
1

n

n∑

i=1

Dis(Xi,Wi, θ)Kb (Xi − x)

n−1
∑n

j=1Kb (Xj − x)

p̂ (x) :=
1

n

n∑

i=1

DiKb (Xi − x)

n−1
∑n

j=1Kb (Xj − x)
.(4.3)

The following assumption is sufficient for Theorem 3.1 in this example. Suf-
ficient conditions for Theorem 3.3 and Theorem 3.4 to hold for this example
can be straightforwardly established, but we do not consider them for the
sake of space.
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Assumption E3:

(i) We observe Z := (X ′,W ′D,D)′ with W⊥ D|X.
(ii) fX (x) , q0 (x, θ) and p0 (x) are r times continuously differentiable in

x, with uniformly bounded derivatives (including zero derivatives),
where r is as in E1(iii). Moreover, infx∈SX

fX (x) > 0, h0 ∈ Hδ and

P(ĥ ∈ Hδ) → 1, for some δ > 0.

Proposition E3. Under Assumptions E1(iii-iv) and E3, the conclusion of
Theorem 3.1 holds for this example.

4.4. Censored quantile regression. Consider a censored quantile regres-
sion model QT |X(τ |X) = inf{t : P(T ≤ t|X) ≥ τ} = X ′θ0, where T is (a
possible monotone transformation of) the survival time, X is a vector of
covariates, and X ′θ0 contains an intercept.

The data consist of Zi = (Yi, X
′
i,∆i)

′, which are i.i.d. copies of the vector
Z = (Y,X ′,∆)′, where Y = T ∧ C is the observed survival time, ∆ =
I(T ≤ C) is the censoring indicator, and C is the censoring time, which is
assumed to be conditionally independent of T given X. As in [41] we take
X one-dimensional, and we consider the estimating equation

g(Z, θ0, η0) = X

[
I(Y −X ′θ0 ≥ 0)

η0(X ′θ0|X)
− (1− τ)

]
,

where η0(·|X) = P(C > ·|X) is the unknown conditional survival function of
the censoring variable C given X. The nuisance parameter η0 is estimated
by the conditional (local) Kaplan-Meier estimator ([6])

η̂(t|x) =
∏

Yi≤t,∆i=0

(
1− Wi(x, bn)∑n

j=1 I(Yj ≥ Yi)Wj(x, bn)

)
,

where Wi(x, bn) = kb(Xi − x)/
∑n

j=1 kb(Xj − x) is the standard Nadaraya
Watson kernel, k is a one-dimensional density function, kb(·) = k(·/b)/b and
b ≡ bn is a bandwidth. It follows from Theorem 3.2 in [23] that

η̂(t|x)− η0(t|x) = −η0(t|x)
fX(x)

1

n

n∑

i=1

kb(Xi − x)ξ(Yi,∆i, t|x) +Rn(t|x),(4.4)

where supx supt≤τx |Rn(t|x)| = OP((nbn)
−3/4(log n)3/4) = oP(n

−1/2) pro-
vided nb3n(log n)

−3 → ∞, τx < inf{t : H(t|x) = 1} and

ξ(y, δ, t|x) = −
∫ y∧t

−∞

dHc(s|x)
(1−H(s|x))2 +

I(y ≤ t, δ = 0)

1−H(y|x) ,
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with H(t|x) = P(Y ≤ t|X = x) and Hc(t|x) = P(Y ≤ t,∆ = 0|X = x). We
will assume that infx(1−H(x′θ0|x)) > 0, and hence we can choose τx = x′θ0.

Using the Hajek-projection for U -statistics with kernel depending on n
(see e.g. Lemma 3.1 in [60]) it can be easily shown that

n−1
n∑

i=1

{g(Zi, θ0, η̂)− g(Zi, θ0, η0)}

= (1− τ)n−1
n∑

i=1

Xiξ(Yi,∆i, X
′
iθ0|Xi) + oP(n

−1/2).

This suggests that the pathwise derivative is given by φ(Z, θ0, h0) = (1 −
τ)Xξ(Y,∆, X ′θ0|X), where h0(t|x) = (H(t|x), Hc(t|x), η0(t|x))′, or for gen-
eral θ and h = (h1, h2, h3)

′,

φ(Z, θ, h) = (1− τ)X

[
−
∫ Y ∧X′θ

−∞

dh2(s|X)

(1− h1(s|X))2
+
I(Y ≤ X ′θ,∆ = 0)

1− h1(Y |X)

]
,

and hence

m(Z, θ, h) = X
[I(Y −X ′θ ≥ 0)

h3(X ′θ|X)
− (1− τ)

+ (1− τ)
{
−
∫ Y ∧X′θ

−∞

dh2(s|X)

(1− h1(s|X))2
+
I(Y ≤ X ′θ,∆ = 0)

1− h1(Y |X)

}]
.

The functions h1, h2, h3 are supposed to belong to the space G, defined by

G = {g : SX × R → [0, 1] : g(x, ·) ∈ BM for all x ∈ SX ,

and g(·, t) ∈ Cq
M (SX,t), for all t ∈ R

}
,

where q ≥ 1 + δ for some small δ > 0, BM = {f : R → [0, 1] : f has
variation bounded by M}, and SX,t = {x ∈ SX : t ≤ x′θ0}. Define H =
{(h1, h2, h3)′ : hj ∈ G, j = 1, . . . , 3}. We equipH with the semi-norm ‖h‖H =∑3

j=1 supx∈SX
supt≤x′θ0 |hj(t|x)| for h = (h1, h2, h3)

′. Finally, let

Ĥ(t|x) =
n∑

i=1

Wi(x, bn)I(Yi ≤ t), Ĥc(t|x) =
n∑

i=1

Wi(x, bn)I(Yi ≤ t,∆i = 0).

The following assumption is sufficient for Theorem 3.1 in this example.

Assumption E4:

(i) We observe Z = (Y,X ′,∆)′, where Y = T ∧ C, ∆ = I(T ≤ C), and
C ⊥ T |X.
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(ii) The distribution function FX of X is three times continuously differ-
entiable on the interior of SX , and infx∈SX

fX(x) > 0.
(iii) The distribution functions H(t|x) and Hc(t|x) are continuous in (x, t),

their first and second partial derivatives with respect to x exist, and
they are continuous and uniformly bounded in (x, t). Moreover, infx∈SX

(1−
H(x′θ0|x)) > 0, and there exist continuous and non-decreasing func-
tions L1, L2 and L3 with Lj(−∞) = 0 and Lj(∞) < ∞ (j = 1, 2, 3),
such that for all x ∈ SX and for all t1, t2 ∈ (−∞,∞),

∣∣∣H(t1|x)−H(t2|x)
∣∣∣ ≤

∣∣∣L1(t1)− L1(t2)
∣∣∣

∣∣∣ ∂
∂x
H(t1|x)−

∂

∂x
H(t2|x)

∣∣∣ ≤
∣∣∣L2(t1)− L2(t2)

∣∣∣
∣∣∣ ∂
∂x
Hc(t1|x)−

∂

∂x
Hc(t2|x)

∣∣∣ ≤
∣∣∣L3(t1)− L3(t2)

∣∣∣.

(iv) The kernel function k is a symmetric probability density function with
compact support, satisfying

∫
tlk(t)dt = 0 for l = 1, . . . , r − 1 and∫

|trk(t)|dt < ∞ for some r ≥ 2. Moreover, k is twice continuously
differentiable.

(v) The deterministic sequence of positive numbers b ≡ bn satisfies nb3+2δ
n

(log n)−1 → ∞ and nb5n(log n)
−1 = O(1), where δ > 0 is as in the

definition of the class G.

Proposition E4. Under Assumption E4, the conclusion of Theorem 3.1
holds for this example.

5. Monte Carlo Results. In this section we illustrate the finite sample
properties of the proposed method using the average treatment effect (ATE)
and the missing data examples.

5.1. Average treatment effect. We consider testing and constructing con-
fidence intervals for the ATE parameter θ0 = E[Y1−Y0], using the same de-
sign as that used by [36], where Y0 = 2X + η, Y1=Y0+θ0, and D = I(Xβ0+
ε > 0) with both η and ε independent N(0, 1), and X is a U [−1/2, 1/2]
random variable. Notice that β0 controls the range of the propensity score
and it affects considerably the asymptotic variance of the ATE estimator.
In the simulations we specify θ0 ∈ {−2, 0} , β0 ∈ {1, 2, 3}, the sample sizes
are n = 100 and n = 300, and η0 (·), µ0 (·) and µ1 (·) are estimated with a
leave-one-out kernel estimator with bandwidths b chosen as the design’s the-
oretical optimal ones, see [36] for details1. The tables and figures below are

1We have also considered bandwidths chosen with least squares cross-validation. The
results of the simulations are qualitatively very similar to those reported below, hence are
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based on 1000 replications. The tables report the finite sample size (at the
5% and 10% significance level) of the test for the null hypothesis H0 : θ = θ0
using a Wald statistic based on the estimator of [31] (Wald), its bootstrapped
version (Boot), the adjusted EL ratio (AEL), the modified EL ratio based on
the pathwise derivative (4.1) (MEL) and modified EL ratio (MELN) based
on the numerical approximation of φ (·) using (B.8) in Appendix B in the
Supplementary Material, which is given by φ̂i = δ̂i − n−1

∑n
j=1 δ̂j , where

δ̂i :=
−1

nt

n∑

j=1

[
YjDj

η̂bti(Xj)
− Yj(1−Dj)

1− η̂bti(Xj)
− YjDj

η̂(Xj)
+
Yj(1−Dj)

1− η̂(Xj)

]
,(5.1)

η̂bti(x) = η̂b2ti(x)/η̂
b
1ti(x), η̂

b
1ti(x) = f̂X(x) + tKb (x−Xi) ,

η̂b2ti(x) = η̂(x)f̂X(x) + tDiKb (x−Xi) .

The value of t used in these simulations for the numerical approximation is
0.08. Unreported results with other values of t show that inferences are not
sensitive to t (we have experimented with several values of t between 0.01
and 0.3 and the obtained results are qualitatively the same). The bootstrap
estimator is computed as in [45] using 500 replications and using the design’s
optimal bandwidths, whereas the adjusted EL ratio is based on the statistic

−2ρ̂ logELn(θ0, ĥ)
d→ χ2

1, with the estimated adjustment

ρ̂ =

∑n
i=1

(
YiDi

η̂(Xi)
− Yi(1−Di)

1−η̂(Xi)

)2

∑n
i=1

(
YiDi

η̂(Xi)
− Yi(1−Di)

1−η̂(Xi)
− (Di − η̂(Xi))

(
µ̂1(Xi)
η̂(Xi)

+ µ̂0(Xi)
1−η̂(Xi)

))2 .

θ0 β0 Wald Boot AEL MEL MELN

-2 1 0.091 0.134 0.060 0.112 0.088 0.124 0.059 0.115 0.061 0.117
-2 2 0.089 0.132 0.059 0.110 0.090 0.123 0.058 0.112 0.062 0.117
-2 3 0.093 0.132 0.061 0.110 0.090 0.120 0.058 0.113 0.060 0.115

0 1 0.083 0.121 0.058 0.108 0.085 0.121 0.057 0.110 0.058 0.112
0 2 0.081 0.119 0.057 0.108 0.086 0.122 0.058 0.109 0.058 0.110
0 3 0.082 0.120 0.057 0.109 0.087 0.122 0.057 0.109 0.058 0.111

Table 1

Finite sample size (5% left column, 10% right column) of the test for θ0 in the ATE
example for n = 100.

Tables 1-2 illustrate that the modified EL ratio based on the pathwise
derivative results in a test statistic characterized by good finite sample

not reported.
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θ0 β0 Wald Boot AEL MEL MELN

-2 1 0.078 0.120 0.057 0.108 0.075 0.117 0.055 0.108 0.057 0.109
-2 2 0.077 0.119 0.055 0.107 0.074 0.115 0.054 0.107 0.055 0.110
-2 3 0.075 0.115 0.055 0.106 0.073 0.112 0.073 0.112 0.055 0.106

0 1 0.077 0.116 0.054 0.105 0.076 0.114 0.056 0.105 0.056 0.105
0 2 0.075 0.114 0.055 0.106 0.077 0.110 0.056 0.105 0.055 0.109
0 3 0.076 0.118 0.053 0.103 0.074 0.108 0.055 0.106 0.056 0.110

Table 2

Finite sample size (5% left column, 10% right column) of the test for θ0 in the ATE
example for n = 300.

properties, typically better than those based on the other competing test
statistics. The tables also illustrate that the approximation to the path-
wise derivative given in (5.1) yields also a test statistic with good finite
sample properties. To further investigate this result we conduct some sensi-
tivity analysis and compute the finite sample size for the five statistics using
as bandwidths the values kb/4, k = 1, 2, . . . , 10 for n = 100. Figure 1 is
based on θ0 ∈ {−2, 0} , β0 ∈ {1, 3} and shows how both modified EL ratio
based on the pathwise derivative (MEL) and on its numerical approximation
(MELN) are clearly less sensitive to the choice of the bandwidth than the
other competing statistics. To further support this result, Figure 2 reports
the sensitivity to different bandwidths of the finite sample coverage and av-
erage length of the confidence intervals (at the 95% nominal level) for θ0 and
based on the Wald statistic (Wald), its bootstrapped version (Boot) and the
same AEL, MEL and MELN statistics described above. The coverage of the
confidence interval based on modified test is both more accurate and less
sensitive to the bandwidth parameter, while having a shorter length than
those based on alternative tests.

We also report power results. Figure 3 shows the size adjusted finite sam-
ple power of the tests based on the alternative hypotheses Hδ = θ0 + δ with
δ ∈ {−1.5,−1.4, ...,−0.1, 0, 0.1, ..., 1.5} for θ0 = −2 and β0 = 1 and n = 100;
those for the other values of θ0, β0 and n = 300 are similar and hence are
not shown. The figure shows that both MEL and MELN have superior fi-
nite sample power compared to all the other competing statistics, which is
consistent with our theoretical results in Theorems 3.3 and 3.4.

5.2. Estimating equations with missing data. We consider a logit model
with missing covariates, similar to the model considered by [74]. The esti-
mating equation is s(X,W, θ) = X(Y − Λ(X ′θ)), where X = (1, X1, X2)

′,
θ0 = (−1, 1, 2)′, Λ (·) is the cumulative logistic distribution, X1 and X2 are,
respectively, independent N (0, 0.25) and U (0, 3). In this case the variables
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Fig 1. Finite sample size for MEL (solid curve), MELN (two dashed curve),AEL (long
dashed curve), Wald (dashed curve) and Boot (dot dashed curve) in the ATE example for
n = 100.
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Fig 2. Finite sample coverage at 95% (left) and average length (right) for MEL (solid
curve), MELN (two dashed curve), AEL (long dashed curve), Wald (dashed curve), and
Boot (dot dashed curve) in the ATE example for n = 100.
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Fig 3. Finite sample power for MEL (solid curve), MELN (two dashed curve), AEL (long
dashed curve), Wald (dashed curve), and Boot (dot dashed curve) in the ATE example for
n = 100.

that are always observed are X = (Y,X1)
′, while the missing variable is

W = X2 with probability of missingness (the propensity score) given by
logit(P(X2 is missing)) = 0.5 − X1 − 2Y (corresponding to approximately
30% of missing covariates). In the simulations the sample sizes are n = 100
and n = 300, and q0 (·) and p0 (·) are estimated with a leave-one-out kernel
estimator with bandwidths chosen using least squares cross-validation. The
statistics we consider are the adjusted EL ratio (AEL), a bootstrap version
of it (AELboot), the modified EL ratio based on the pathwise derivative
(MEL), a Wald statistic based on (4.2) (Wald), and the modified EL ra-
tio based the analytical approximation (B.7) in Appendix B in the Sup-
plementary Material (MELN) with V (Z, θ0) = (Ds (X,W, θ0) , D), and the
analytical derivative

(5.2) δ̂i =
1

n

n∑

j=1

[
1−Dj

p̂(Xj)

(
Si −

q̂(Xj)

p̂(Xj)

)
DiKb (Xj −Xi)

]
,

where Si = s (Xi,Wi, θ0) .
The adjusted EL ratio is based on the feasible version of (4.2), namely

s̃ (Z, θ) = Ds (X,W, θ) + (1−D) q̂ (X, θ) /p̂(X). In this case the estimated
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adjustment is ρ̂ = tr(Σ̂−1Q̂)/tr(V̂ −1Q̂), where

Σ̂ =
1

n

n∑

i=1

(
σ̂2 (Xi)

p̂ (Xi)
+ q̂

(
Xi, θ̂

)
q̂
(
Xi, θ̂

)′)
,

σ̂2 (x) =
1

n

∑n
i=1Dis(Xi,Wi, θ̂)s(Xi,Wi, θ̂)

′Kb (Xi − x)

n−1
∑n

i=1DiKb (Xi − x)
− q̂(x, θ̂)q̂(x, θ̂)′

V̂ =
1

n

n∑

i=1

s̃(Zi, θ̂)s̃(Zi, θ̂)
′, Q̂ =

1

n

(
n∑

i=1

s̃(Zi, θ̂)

)(
n∑

i=1

s̃(Zi, θ̂)

)′

,

and q̂ (x, θ) and p̂ (x) are defined in (4.3). Then, it can be shown that

−2ρ̂ logELn(θ0, ĥ)
d→ χ2

3. The bootstrap version of the EL ratio follows the
procedure suggested by [65] for imputed (survey) data: (1) for Di = 1 a re-
sample {Z∗

i }ni=1 from {Zi}ni=1 and forDi = 0 a resample {q̂∗(X∗
i , θ)/p̂

∗(X∗
i )}ni=1

from the imputed values {q̂ (Xi, θ) /p̂(Xi)}ni=1 are drawn to form the boot-
strap analogue s̃∗ (Z∗

i , θ) of s̃ (Zi, θ) ; (2) the bootstrap EL ratio statistic

EL∗
n(θ0, ĥ

∗) is computed using the centered version of s̃∗ (Z∗
i , θ0) ; (3) steps

(1)-(2) are repeated B times. The consistency of this bootstrap procedure
follows by standard arguments (see for example those used by [74]). Finally,
the Wald statistic is

W = n
(
θ̂ − θ0

)′
(
1

n

n∑

i=1

∂s̃(Zi, θ̂)

∂θ′

)
Σ̂−1

(
1

n

n∑

i=1

∂s̃(Zi, θ̂)

∂θ′

)′ (
θ̂ − θ0

)
,

where θ̂ is the maximum empirical likelihood estimator as defined in [74]
(for exactly identified estimating equations).

The tables and figures below are based on 1000 replications. Tables 3 and
4 report, respectively, the finite sample size (at the 5% and 10% significance
level) of the tests H0 : θ1 = θ10 and H0 : θ2 = θ20 and of the test for the
joint hypothesis H0 : θ1 = θ10, θ2 = θ20.

n = 100 n = 300

θ1 θ2 θ1 θ2

AEL 0.090 0.123 0.085 0.118 0.075 0.112 0.071 0.111
AELboot 0.059 0.109 0.058 0.107 0.055 0.103 0.056 0.102
MEL 0.057 0.108 0.057 0.106 0.054 0.103 0.054 0.102
MELN 0.058 0.109 0.059 0.108 0.055 0.105 0.055 0.104
Wald 0.104 0.148 0.105 0.135 0.087 0.129 0.080 0.115

Table 3

Finite sample size (5% left column, 10% right column) for marginal tests for θ1 and θ2
in the missing data example.
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n = 100 n = 300

AEL 0.085 0.122 0.079 0.115
AELboot 0.060 0.115 0.057 0.106
MEL 0.056 0.108 0.052 0.103
MELN 0.059 0.110 0.055 0.107
Wald 0.106 0.140 0.092 0.119

Table 4

Finite sample size (5% left column, 10% right column) for joint test for (θ1, θ2) in the
missing data example.

Figure 4 shows the sensitivity of the finite sample size of the tests H0 :
θ1 = θ10, H0 : θ2 = θ20 and H0 : θ1 = θ10, θ2 = θ20 to the bandwidth choice,
using the following values: b/4, b/2, 3b/4, 5b/4, 2b where b is the cross-
validated bandwidth. Figure 5 shows the sensitivity of the finite sample
coverage and average length of the confidence intervals (at the 95% nominal
level) for the unknown slopes θ10 and θ20 to the bandwidth choice using the
same values as those used for the finite sample size.
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Fig 4. Finite sample size for MEL (solid curve), MELN (two dashed curve), AEL (long
dashed curve), Wald (dashed curve) and AELboot (dot dashed curve) in the missing data
example for n = 100.

Figure 6 shows the size adjusted finite sample power of the test based on
the alternative hypothesesHδ = θ10+δ for δ ∈ {−1,−0.9, ...,−0.1, 0, 0.1, ..., 1}
for θ10 = 1 and n = 100 - those for the other values of θ10, θ20 and n = 300 are
similar and hence are not shown- and the contour plots of the size adjusted
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Fig 5. Finite sample coverage at 95% (left) and average length (right) for MEL (solid
curve), MELN (two dashed curve), AEL (long dashed curve), Wald (dashed curve) and
AELboot (dot dashed curve) in the missing data example for n = 100.

finite sample power curves for the test ofHδ = θ1 = θ10+δ1, θ2 = θ20+δ2 over
the grid (δ1, δ2) ∈ {−1,−0.75, ..., 0, ..., 0.75, 1}×{−1,−0.75, ..., 0, ..., 0.75, 1}
at the contour level of 0.4. Smaller contour plots indicate higher finite sample
power.

Tables 3-4 and Figures 4-6 confirm and strengthen the results of the ATE
example, as they indicate that the modified EL proposed in this paper yields
test statistics characterized by finite sample properties typically better than
those based on other asymptotically equivalent test statistics. As with the
ATE example, both modified EL ratios are clearly less sensitive to the band-
width choice than the other competing statistics and more powerful, con-
firming the theoretical results of Theorems 3.3 and 3.4.

6. Conclusions. In this article we have presented a new way to con-
duct empirical likelihood two-step inference in semiparametric models. The
new method is presented in a general setting, and its major advantage is
that, although the estimation procedure is in two steps, Wilks’ phenomenon
is preserved. This is achieved by using as moment function in the estimating
equation the (uniquely defined) influence function of the plug-in sample mo-
ment. It is also shown that the limit of this “modified” empirical likelihood
is the same as in the case where the nuisance functions would be known.



28 F. BRAVO ET AL.

−1.0 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

δ

P
o
w

e
r

MEL

MELN

AEL

Wald

AELBoot

θ1=1+δ

δ

δ  0
.4

 

0.0 0.2 0.4 0.6 0.8 1.0
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

MEL

MELN

AEL

S

AELBoot

θ1=1+δ,θ2=1+δ

 0
.4

 

 0
.4

 

 0
.4

 
 0

.4
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AELboot (dot dashed curve) in the missing data example for n = 100.

Therefore, it is expected that the way the nuisance parameters are estimated
(through e.g. the way a bandwidth parameter is chosen) does not have a ma-
jor impact on the behavior of the modified empirical likelihood statistic. This
might be particularly appealing in situations where first-steps are hard to
estimate precisely (such as in high-dimensional settings). Additionally, the
proposed modified EL test is efficient (in a Maximin and semiparametric
sense). These theoretical results are confirmed by finite sample simulations,
which further show that the new method performs favorably compared to
competitors.

The ideas of this article can be extended to the problem of estimation of
θ0. An EL estimator based on the modified moments is expected to posses
good bias properties, see [53] for linear functionals of densities. [19] have
recently investigated the properties of related estimators in a generalized
method of moments framework, allowing for machine learning methods as
first-steps by virtue of the modified moment functions.

7. Proofs of the Main Results.

Proof of Theorem 3.1. We check the conditions of Theorem 2.1 in [32]
(taking in their notation an = 1 and mn = m/

√
n). (A0) and (A3) cor-
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respond to our Assumption A(v). We check their condition (A1), which
corresponds to (2.7). By Assumption A, and the standard Central Limit
Theorem,

1√
n

n∑

i=1

m
(
Zi, θ0, ĥ

)
=

1√
n

n∑

i=1

m (Zi, θ0, h0) + oP(1)
d→ N(0,Σ).

This verifies their assumption (A1) with U
d
= N(0,Σ), where

d
= stands for

equality in distribution. Finally, their assumption (A2) (which corresponds
to (2.8)) holds by our Assumption A(iv) and the consistency of ĥ. �

Proof of Theorem 3.3. We follow a similar proof strategy as in Theorem
3.1. By Assumption A, under the local alternatives H1n,

1√
n

n∑

i=1

m
(
Zi, θ0, ĥ

)
=

1√
n

n∑

i=1

m (Zi, θ0, h0) + oP(1).

By Assumption C, and with θn = θ0 + τ/
√
n,

1√
n

n∑

i=1

m (Zi, θ0, h0)

=
1√
n

n∑

i=1

m (Zi, θn, h0) +
1√
n

n∑

i=1

[m (Zi, θ0, h0)−m (Zi, θn, h0)]

=
1√
n

n∑

i=1

m (Zi, θn, h0) +
√
nP [m (Zi, θ0, h0)−m (Zi, θn, h0)] + oP(1)

=
1√
n

n∑

i=1

m (Zi, θn, h0)−G0τ + oP(1).

DefineXin = m (Zi, θn, h0) .We check the conditions of Lyapounov’s Central
Limit Theorem. Note {Xin}ni=1 are iid, with zero mean,

lim
n→∞

E
[
XinX

′
in

]
= E

[
m (Z, θ0, h0)m

′ (Z, θ0, h0)
]
<∞,

and

lim
n→∞

E

[
|Xin|2+δ

]

nδ/2
= 0,

by Assumption C(iii). This verifies A1 in [32] with U
d
= N(−G0τ,Σ). Thus,

by Assumption A and Theorem 2.1 in [32], under the local alternatives H1n,

−2 logMELn(θ0, ĥ)
d→ U ′Σ−1U

d
= Z ′Z,
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where Z
d
= N(−Σ−1/2G0τ, I). This allows us to apply existing Maximin

theory, see [67]. �

Proof of Theorem 3.4. From the proof of Theorem 3.3, we obtain

−2 logMELn(θ0, ĥ) = T ′
nTn + oP (1),

where

Tn =
1√
n

n∑

i=1

−Σ−1/2m (Zi, θ0, h0) .

By Corollary 3 in [20] the optimality will follow if we prove Tn = ξn(h0) +

oP (1), where ξn(h0) := (nB∗)−1/2∑n
i=1 S

∗
θ (Zi, h0), S

∗
θ (Zi, h0) is the so-called

efficient score and B∗ := V ar(S∗
θ ) the efficient information, see [20] for

details. By Lemma 1 in [2], see page 940 (A.33),

S∗
θ = −G′

0Σ
−1m.

Hence, B∗ = G′
0Σ

−1G0 and B∗−1/2S∗
θ = −

(
G′

0Σ
−1/2

)−1
G′

0Σ
−1m

= −Σ−1/2m. Thus, Tn = ξn(h0) + oP (1) and the optimality follows. �
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SUPPLEMENT

Supplement to the paper: “Two-step semiparametric empiri-

cal likelihood inference”. The supplement contains four appendices: Ap-
pendix A gathers all the proofs for the examples, Appendix B proves the
validity of a general numerical algorithm for estimating the pathwise deriva-
tive, Appendix C extends the main result of the paper to the case of over-
identified models, and Appendix D shows an auxiliary result regarding Donsker
and Glivenko-Cantelli classes.



TWO-STEP SEMIPARAMETRIC EMPIRICAL LIKELIHOOD INFERENCE 31

REFERENCES

[1] Ackerberg, D., X. Chen, and J. Hahn, (2012). A Practical Asymptotic Variance Es-
timator for Two-step Semiparametric Estimators. Rev. Econ. and Stat. 94, 481-498.

[2] Ackerberg, D., X. Chen, J. Hahn and Z. Liao (2014). Asymptotic Efficiency of Semi-
parametric Two-step GMM. Rev. of Econ. Stud. 81, 919-943.

[3] Akritas, M.G. and Van Keilegom, I. (2001). Nonparametric estimation of the residual
distribution. Scand. J. Statist., 28, 549-568.

[4] Andrews, D.W.K. (1995). Nonparametric kernel estimation for semiparametric mod-
els. Econometric. Theory, 11, 560-596.

[5] Banerjee, M. (2012). Current Status Data in the 21st Century: Some Interesting
Developments. Interval-Censored Time-to-Event Data: Methods and Applications, 1-
31, Chapman and Hall/CRC Biostatistics Series.

[6] Beran, R. (1981). Nonparametric regression with randomly censored survival data.
Technical Report, Univ. California, Berkeley.

[7] Bertail P. (2006). Empirical likelihood in some semi-parametric models. Bernoulli,
12, 299-331.

[8] Bickel, P.J., Klaassen, C.A., Ritov, Y. and Wellner, J.A. (1993). Efficient and Adap-
tive Estimation for Semiparametric Models. Johns Hopkins Univ. Press, Baltimore.

[9] Bickel,P.J., Y. Ritov, and T. M. Stoker (2006). Tailor-made tests for goodness of fit
to semiparametric hypotheses. Ann. Stat., 34, 721-741.

[10] Bravo, F. (2004). Empirical likelihood based inference with applications to some
econometric models. Econometric. Theory, 20, 231-264.

[11] Bravo, F. (2018). Second order asymptotics for nonparametric conditional moment
restrictions. Working paper.

[12] Bravo, F., Chu, B. and Jacho-Chavez, D.T. (2017). Semiparametric estimation of
moment conditions models with weakly dependent data. J. Nonpar. Statist., 29, 108-
136.

[13] Bravo, F., Escanciano, J.C. and Van Keilegom, I. (2018). Supplement to “Two-step
semiparametric empirical likelihood inference”.

[14] Chen, X.H., Hong, H. and Tarozzi, A. (2008). Semiparametric efficiency in GMM
models with auxiliary data. Ann. Statist., 36, 808-843.

[15] Chen, X., Linton, O. and Van Keilegom, I. (2003). Estimation of semiparametric
models when the criterion function is not smooth. Econometrica, 71, 1591-1608.

[16] Chen, S.X. and Cui, H. (2006). On the Bartlett correctability of empirical likelihood
in the presence of nuisance parameters. Biometrika, 93, 215-220.

[17] Chen, S.X. and Cui, H. (2007). On the second order properties of empirical likelihood
with moment restrictions. J. Econometrics, 141, 492-516.

[18] Chen, S.X. and Van Keilegom, I. (2009). A review on empirical likelihood methods
for regression. TEST, 18, 415-447.

[19] Chernozhukov, V., Escanciano, J.C., Newey, W.K., Ichimura, H., J. Robins (2017).
Locally Robust Semiparametric Estimation. Working paper.

[20] Choi, S., Hall, W.J. and Schick, A. (1996). Asymptotically uniformly most powerful
tests in parametric and semiparametric models. Ann. Statist., 24, 841-861.

[21] DiCiccio, T. and Romano, (1989). On adjustments based on the signed root of the
empirical likelihood ratio statistics. Biometrika, 76, 447-456.

[22] DiCiccio, T., Hall, P. and Romano, J. (1991). Empirical likelihood is Bartlett-
correctable. Ann. Statist., 19, 1053-1061.

[23] Du, Y. and Akritas, M.G. (2002). I.i.d representations of the conditional Kaplan-
Meier process for arbitrary distributions. Math. Methods Statist., 11, 152-182.



32 F. BRAVO ET AL.

[24] Escanciano, J.C., D. T. Jacho-Chavez and A. Lewbel (2014). Uniform convergence
of weighted sums of non- and semi-parametric residuals for estimation and testing.
J. Econometrics, 178, 426-443.

[25] Fan, J. and Zhang, J. (2004). Sieve empirical likelihood tests for nonparametric func-
tions. Ann. Statist., 32, 1858-1907.

[26] Goldstein, L. and Messer, K. (1992). Optimal plug-in estimators for nonparametric
functional estimation. Ann. Statist., 20, 1306-1328.

[27] Groeneboom, P. and Wellner, J.A. (1992). Information Bounds and Nonparametric
Maximum Likelihood Estimation. Birkhauser, Basel.

[28] Hampel, F. (1968). Contributions to the Theory of Robust Estimation, PhD thesis,
University of California, Berkeley.

[29] Hampel, F. (1974). The influence curve and its role in robust estimation. J. Amer.
Statist. Assoc., 69, 383-393.

[30] He, S., Liang, W., Shen, J. and Yang G. (2016). Empirical likelihood for right censored
lifetime data. J. Amer. Stat. Assoc., 111, 646-655.

[31] Hirano, K., Imbens, G.W. and Ridder, G. (2003). Efficient estimation of average
treatment effects using the estimated propensity score. Econometrica, 71, 1161-1189.

[32] Hjort, N.L., McKeague, I.W. and Van Keilegom, I. (2009). Extending the scope of
empirical likelihood. Ann. Statist., 37, 1079-1111.

[33] Hong, H. Mahajan, A. and D. Nekipelov (2015): “Extremum estimation and numer-
ical derivatives,” J. Econometrics 188, 250-263.

[34] Huang, J. (1996). Efficient estimation for the proportional hazards model with inter-
val censoring. Ann. Statist., 24, 540-568.

[35] Huang, J. and J. A. Wellner (1997). Interval Censored Survival Data: A Review of
Recent Progress. Eds. D. Lin and T. Fleming. Springer-Verlag, New York.

[36] Ichimura, H. and Linton, O. (2005). Asymptotic expansions for some semiparametric
program evaluation estimators. Identification and Inference for Econometric Models,
edited by D. Andrews and J. Stock, Cambridge University Press, NY.

[37] Ichimura, H. and W. Newey (2017). The Influence Function of Semiparametric Esti-
mators. CEMMAP working paper.

[38] Inglot, T. and Ledwina, T. (2006). Data-driven score tests for homoscedastic linear
regression model : asymptotic results. Probab. Math. Statist., 26, 41-61.

[39] Jewell, N. P. and Van der Laan, M. (2003). Current status data: Review, recent
developments and open problems. Handbook of Statistics, 5, 291-306.

[40] Koshevnik, Y. A., and Levit, B. Y. (1976). On a non-parametric analogue of the
information matrix. Theory Probab. Applic., 21, 738-753.

[41] Leng, C. and Tong, X. (2013). A quantile regression estimator for censored data.
Bernoulli, 19, 344-361.

[42] Lepage, Y. (1973). A maximin test for means. Stat. Neerlandica, 27, 1.
[43] Lewbel, A., O.B. Linton and D. McFadden (2011). Estimating features of a distribu-

tion from binomial data. J. Econometrics., 162, 170-188.
[44] Li. G., Lin, L. and Zhu, L. (2012). Empirical likelihood for a varying coefficient

partially linear model with diverging number of parameters. J. Mult. Anal., 105,
85-111.

[45] Li, Q., Racine, J. and Wooldridge, J. (2008). Estimating average treatment effects
with continuous and discrete covariates: the case of Swan-Ganz catherization. Amer.
Econ. Review: Papers Proc., 98, 357-362.

[46] Lopez, O. (2011). Nonparametric estimation of the multivariate distribution function
in a censored regression model with applications. Comm. Statist.: Theory Meth., 40,
2639-2660.



TWO-STEP SEMIPARAMETRIC EMPIRICAL LIKELIHOOD INFERENCE 33

[47] Masry, E. (1996). Multivariate local polynomial regression for time series: uniform
strong consistency and rates. J. Time Ser. Anal., 17, 571-599.

[48] Matsushita, Y. and Otsu, T. (2016). Likelihood inference on semiparametric models
with generated regressors. LSE working paper.

[49] Matsushita, Y. and Otsu, T. (2018). Likelihood inference on semiparametric models:
average derivative and treatment effect. Jap. Econ. Rev., 69, 2.

[50] Neumeyer, N. and Van Keilegom, I. (2010). Estimating the error distribution in
nonparametric multiple regression with applications to model testing. J. Mult.. Anal.,
101, 1067-1078.

[51] Newey, W.K. (1994a). Kernel estimation of partial means and a general variance
estimator. Econometric Theory, 10, 233-253.

[52] Newey, W.K. (1994b). The asymptotic variance of semiparametric estimators. Econo-
metrica, 62, 1349-1382.

[53] Newey, W.K., F. Hsieh, and J. Robins (2004). Twicing kernels and a small bias
property of semiparametric estimators. Econometrica, 72, 947-962.

[54] Newey, W.K. and Smith R.J. (2004). Higher order properties of GMM and generalized
empirical likelihood estimators. Econometrica, 72, 219-255.

[55] Owen, A.B. (1988). Empirical likelihood ratio confidence intervals for a single func-
tional. Biometrika, 75, 237-249.

[56] Owen, A.B. (1990). Empirical likelihood ratio confidence Regions. Ann. Statist., 18,
90-120.

[57] Owen, A.B. (2001). Empirical Likelihood. Chapman and Hall, London.
[58] Pakes, A. and Pollard D. (1989). Simulation and the asymptotics of optimization

estimators. Econometrica, 57, 1027-1057.
[59] Pfanzagl, J. (1982). Contributions to a general statistical theory. Lecture Notes in

Statistics. 13. New York: Springer-Verlag.
[60] Powell, J.L., Stock, J.H. and Stoker, T.M. (1989). Semiparametric estimation of index

coefficients. Econometrica, 57, 1403-1430.
[61] Qin, J. and Lawless, J. (1994). Empirical Likelihood and General Estimating Equa-

tions. Ann. Statist, 22, 300-325.
[62] Rao, C.R. and S. K. Mitra (1971). textitGeneralized inverse of matrices and its ap-

plications. John Wiley and Sons, New York.
[63] Rosembaum, P. and Rubin, D. (1983). The central role of the propensity score in

observational studies for causal effects. Biometrika, 70, 41-55.
[64] Rubin, D. (1974). Estimating causal effects of treatments in randomized and nonran-

domized studies. J. Educ. Psych., 66, 688-701.
[65] Shao, J. and Sitter, R.R. (1996). Bootstrap for imputed survey data. J. Amer. Statist.

Assoc., 91, 1278-1288.
[66] Stone, C.J. (1982). Optimal global rate of convergence for nonparametric regression.

Ann. Statist., 10, 1040-1053.
[67] Strasser, H. (1985). Mathematical Theory of Statistics. De Gruyter, Berlin.
[68] Sun, J. (2006): The Statistical Analysis of Interval-censored Failure Time Data.

Springer-Verlag, New York.
[69] Tang, X., Li, J. and Lian,H. (2013). Empirical likelihood for partially linear propor-

tional hazards models with growing dimensions. J. Mult. Anal., 121, 22-32.
[70] Tang, C.Y. and Qin Y. (2012). An efficient empirical likelihood approach for estimat-

ing equations with missing data. Biometrika, 99, 1001-1007.
[71] Van der Vaart, A.W. (1991). On differentiable functionals. Ann. Stat., 19, 178-204.
[72] Van der Vaart, A.W. (1998). Asymptotics Statistics. Cambridge University Press,

Cambridge.



34 F. BRAVO ET AL.

[73] Van der Vaart, A.W. and Wellner, J.A (1996). Weak Convergence and Empirical
Processes. Springer-Verlag, New-York.

[74] Wang, D. and Chen, S.X. (2009). Empirical likelihood for estimating equation with
missing values. Ann. Statist., 37, 490-517.

[75] Wang, Q.-H. and Jing, B.-Y. (2003). Empirical likelihood for partial linear models.
Ann. Inst. Statist. Math., 55, 585-595.
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