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Abstract

We discuss some classes of local estimators for regression when the predictor lies

on thed-dimensional sphere and a binary response. In particular, we adapt the theory of

local polynomial regression and local likelihood estimation to deal with the problem at

hand. We provide asymptoticL2 properties for some estimators in these classes along

with some simulations and a real-data application.

Keywords: Directional data, Local likelihood, Local polynomials, Spherical kernels,

Tangent-normal decomposition

MSC:

1. Introduction

Data lying on the unit hypersphere embedded inRd, d ≥ 2, arise in many scientific

fields. They are typically referred asdirectionalor sphericaldata. Classical examples,

whend = 2, are directions of winds and marine currents, and directions of flight of

birds from a point of release. Also, locations on the surfaceof the ordinary sphere

(d = 3) are ubiquitous in Earth and planetary sciences. Fields ofrecent interest for

directional data include genome sequence representations, text analysis and clustering,

morphometrics, and computer vision, see, for example, Hamsici and Martinez (2007).
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The non-linear nature of the hypersphere sets apart directional statistics from stan-

dard methods, which are typically designed forlinear data. However, in the last few

decadesdirectional statisticshas greatly evolved, and now directional counterparts of

many classical statistical methods exist. Classical comprehensive accounts of direc-

tional statistics are provided by Batschelet (1981), Fisher et al. (1987), and Mardia and

Jupp (2008), and more recently by Ley and Verdebout (2017, 2018).

Kernel-based methods for regression estimation when the response is a linear vari-

able and the predictor has a directional nature have been recently studied. Indeed,

the absence of aboundaryon a spherical domain makes smoothing methods – which

typically suffer from boundary bias – well-suited for analysing directional data. In

particular, the local polynomial regression for linear response has been studied by Di

Marzio et al. (2009) in the case of circular predictors, and by Di Marzio et al. (2014)

in the case of a generald-dimensional spherical predictor, as an intermediate stepin

the spherical-spherical regression estimation. Then, this topic has been also studied by

Garcı́a-Portugués et al. (2016) in the context of goodness-of-fit tests.

Conversely, the special case of a binary response and a directional predictor by

means of nonparametric regression methods seems to be unexplored, while for a para-

metric approach see Fernandes and Cardoso (2016) and references therein. The binary

regression problem, apart from being of interestper se, is also useful for classification

purposes. Nonparametric methods for classification of directional data, based on kernel

estimation of spherical densities, have been studied by Di Marzio et al. (2018b).

In the Euclidean setting, kernel-based estimators of the binary regression with a

linear predictor have been studied by Fan et al. (1995) and Signorini and Jones (2004),

who provided asymptotic properties of various versions of the estimators. The dis-

cussed methods essentially rely on local polynomial regression and a local likelihood

approach. In this paper we discuss both local polynomial andlocal likelihood tech-

niques to binary regression estimation with directional predictors. A local-likelihood-
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based approach has been also investigated in Di Marzio et al.(2017) in the different

context of estimation of densities defined on thed-dimensional torus.

The paper is organized as follows. In Section 2 we recall a Taylor-like polynomial

to approximate functions having the unit hypersphere as their domain. In Section 3 we

discuss the adaptation of the theory of local polynomial regression with a directional

predictor to the binary response case, while, in Section 4 wepropose the nonparametric

estimation using a locally weighted likelihood objective function. Finally, Section 5

collects some simulation examples and a real-data application.

2. Series expansion for functions on the sphere

LetSd−1 = {xxx∈Rd : ||xxx||= 1} denote the unit hypersphere embedded inRd, d≥ 2.

The tangent-normaldecomposition provides a possible parametrization of a point onSd−1. Specifically, for fixedxxx∈ Sd−1, according to the tangent-normal decomposition,

any vectoruuu∈ Sd−1 can be expressed as

uuu(ξξξ ,θ) = xxxcos(θ)+ ξξξ sin(θ),

whereθ is the angle betweenuuu andxxx, andξξξ is a unit vector orthogonal toxxx. Now,

letting µd denote the Lebesgue measure ofSd, with

ωd = µd

(Sd
)

=
2π(d+1)/2

Γ((d+1)/2)
,

and settingTxxx = {ξξξ ∈ Sd−1 : ξξξ ⊥ xxx}, for a real-valued functiong defined onSd−1, the

integration formula corresponding to the above parametrization is

∫Sd−1
g(uuu)dµd−1(uuu) =

∫ π

0
sind−2(θ)dθ

∫Txxx

g(uuu(ξξξ ,θ))dµd−2(ξξξ ). (1)

Moreover, letting ¯g(xxx) := g(xxx/||xxx||) be the homogeneous extension ofg to Rd \
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{000d}, with 000d being thed-dimensional zero vector, we have that

∂ ℓ

∂θℓ
g(uuu(ξξξ ,θ))

∣

∣

∣

∣

θ=0
= D

(ℓ)

ξξξ ḡ(xxx),

whereD
(ℓ)

ξξξ ḡ(xxx) is thedirectional derivativeof orderℓ of ḡ at xxx in the direction ofξξξ .

ClearlyD
(0)

ξξξ ḡ(xxx) = g(xxx), while, letting∇ ℓ
ḡ(xxx) be the matrix of the derivatives of total

orderℓ of ḡ at xxx, one has

D
(ℓ)

ξξξ ḡ(xxx) = ξξξ ′∇ ℓ
ḡ(xxx)ξξξ

⊗(ℓ−1)
,

whereaaa⊗ℓ stands for the Kroneckerian power of orderℓ of a vectoraaa. Then, for

example, we haveD (1)

ξξξ ḡ(xxx) = ξξξ ′∇ ḡ(xxx) and D
(2)

ξξξ ḡ(xxx) = ξξξ ′∇ 2
ḡ(xxx)ξξξ , with ∇ 1

ḡ(xxx) and

∇ 2
ḡ(xxx) respectively being the gradient vector and the Hessian matrix of ḡ at xxx, while

D
(3)

ξξξ ḡ(xxx) = ξξξ ′∇ 3
ḡ(xxx)ξξξ ⊗ ξξξ , with aaa⊗aaa being the Kroneckerian product of the vectoraaa

by itself.

Now, under suitable continuity assumptions, a Taylor-likeexpansion of a real val-

ued functiong defined onSd−1 can be provided. Specifically, by assuming the conti-

nuity of ∇ ℓ
ḡ(xxx), xxx∈ Sd−1, for ℓ ∈ (1, . . . , p), a pth-order series expansion ofg aroundxxx

yields

g(uuu) ≈ g(xxx)+
p

∑
ℓ=1

θℓ

ℓ!
D

(ℓ)

ξξξ ḡ(xxx)

= g(xxx)+
p

∑
ℓ=1

θℓ

ℓ!
ξξξ ′∇ ℓ

ḡ(xxx)ξξξ
⊗(ℓ−1)

. (2)

The above expansion has been employed for deriving the asymptotic properties of ker-

nel estimators for spherical densities by Hall et al. (1987)and Klemela (2000), to obtain

a component-wise local approximation of spherical-spherical regression by Di Marzio

et al. (2014), and to approximate the entries of skew-symmetric matrices and define

rotations for spherical regression by Di Marzio et al. (2018a).
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3. Local polynomial binary regression

Let (XXX,Y) be aSd−1×{0,1}-valued random variable, and setλ (xxx) = P(Y = 1 |

XXX = xxx). If independent copies(XXX1,Y1), . . . ,(XXXn,Yn) of (XXX,Y) are observed, by ignor-

ing the binary nature ofYYY, a naive nonparametric estimation ofλ (xxx) can be performed

by using the local polynomial estimators with real-valued response and spherical pre-

dictor, which have been studied by Di Marzio et al. (2014).

In particular, following this approach, the regression function atXXXi is approximated

by a suitablepth degree polynomial aroundxxx∈ Sd−1, and a local estimator ofλ (xxx) is

defined as the solution (for the zero order coefficient) of theminimization of a weighted

L2 distance between theYis and the approximating polynomial. Different values ofp

give different estimators. Formally, by using expansion (2), a pth degree local poly-

nomial estimator ofλ at xxx ∈ Sd−1, sayλ̂ (xxx; p), can be defined as the solution forβ0

of

argmin
{β0,βββ1,...,βββ p}

n

∑
i=1

{

Yi −β0−
p

∑
ℓ=1

θℓ
i

ℓ
ξξξ ′

iβββℓξξξ
⊗(ℓ−1)
i

}2

Kκ (xxx′XXXi), (3)

whereθi is the angle betweenXXXi andxxx, and the weightKκ is a spherical kernel. A

spherical kernel can be essentially defined as a unimodal density havingSd−1 as its

support, with rotational symmetry about its mean directionµµµ = (0, . . . ,0,1), and con-

centration parameterκ > 0 such that asκ increasesKκ concentrates aroundµµµ. In

equation (3) the weight function emphasizes the contribution of the observationsXXXis

which arecloserto the estimation pointxxx. Kernels of this form have been used by Hall

et al. (1987) for density estimation on the sphere and by Di Marzio et al. (2014) and Di

Marzio et al. (2018a) for spherical-spherical regression estimation.

Now, whenp = 0, the solution forβ0 leads to thelocal constantestimator

λ̂ (xxx;0) =
∑n

i=1YiKκ (xxx′XXXi)

∑n
i=1Kκ (xxx′XXXi)

, (4)

while, whenp= 1, the unique solution forβ0 of the above least squares problem under
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a suitable constraint (see Di Marzio et al. (2014) for details) can be expressed as

λ̂ (xxx;1) =
n

∑
i=1

Wκ (xxx′XXXi)Yi ,

where

Wκ (xxx′XXXi) = xxx′
{

n

∑
j=1

Kκ (xxx′XXX j)(xxx+θ jξξξ j)(xxx+θ jξξξ j)
′

}−1

(xxx+θiξξξ i)Kκ (xxx′XXXi).

Now, in order to discuss the asymptotic properties of the estimators, we need to

recall thespherical counterpartsof the jth moment, j ∈ N, and the roughness of a

Euclidean kernel, which, for a kernelKκ , respectively are

b j(κ ) = ωd−2

∫ π

0
Kκ (cos(θ))θ j sind−2(θ)dθ,

and

ν0(κ ) = ωd−2

∫ π

0
K2

κ (cos(θ))sind−2(θ)dθ.

Let Tr(AAA) denote the trace of the matrixAAA, and usef to denote the common density

of theXXXis. Then, for the casesp= 0 andp= 1, by respectively using results in Theorem

1 and Theorem 2 in Di Marzio et al. (2014), we obtain the following

Result 1. Given theSd−1×{0,1}-valued random sample(XXX1,Y1), . . . ,(XXXn,Yn), con-
sider estimator̂λ (xxx; p), xxx∈ Sd−1. If

i) Kκ is a spherical kernel such that as n increases b2(κ ) andν0(κ )/n both go to
0, and for j> 2, bj(Kκ ) = o(b2(κ ));

ii) f (xxx) > 0 and all the entries of∇ f̄ (xxx), ∇ λ̄ (xxx), and∇ 2
λ̄ (xxx) are continuous,

then

E[λ̂ (xxx;0)]−λ (xxx) =
b2(κ )

2(d−1)

(

Tr

{

∇ 2
λ̄ (xxx)

}

+
2∇ ′

λ̄ (xxx)∇ f̄ (xxx)

f (xxx)

)

+o(b2(κ )) ,

E[λ̂ (xxx;1)]−λ (xxx) =
b2(κ )

2(d−1)
Tr

{

∇ 2
λ̄ (xxx)

}

+o(b2(κ )) ,
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and, for both p= 0 and p= 1,

Var[λ̂ (xxx; p)] =
ν0(κ )

n
λ (xxx)(1−λ (xxx))

f (xxx)
+o

(

ν0(κ )

n

)

.

Remark 1. Recently, Garćıa-Portugúes et al. (2016) proposed a different series ex-
pansion of the regression function withlinearresponse and directional predictor, which
generalizes the proposal of Di Marzio et al. (2009) in the circular case when p= 1.
The optimization of the corresponding L2 loss leads to a projected local linear estima-
tor which shares the asymptotic properties of the local linear estimator of Di Marzio et
al. (2014).

An optimal smoothing degree would minimize the asymptotic mean-squared error

of λ̂ (xxx; p), which is the sum of the leading terms of the asymptotic squared bias and the

asymptotic variance. Notice that the dependence of asymptotic bias and variance on

the concentration parameter cannot be generalized with respect to the kernel, because

it is not a scale factor.

For the important case of a von Mises-Fisher kernel (which can be regarded as the

spherical counterpart of the Gaussian kernel), and is defined onSd−1 as

Kκ (xxx′µµµ) =
κ d/2−1

(2π)d/2Id/2−1(κ )
exp(κxxx′µµµ),

with Iu(·) being the modified Bessel function of the first kind and orderu, whenκ is

big enough, andj ∈ N, the following approximations ofb j(κ ) andν0(κ ) hold

b j(κ ) ∼
2 j/2Γ ((d+ j −1)/2)

κ j/2Γ ((d−1)/2)
, and ν0(κ ) ∼

κ (d−1)/2

2d−1π(d−1)/2
. (5)

As a consequence, whenKκ is a von Mises-Fisher kernel, the asymptotic bias and the

asymptotic variance, for bothp = 0 andp = 1, are

E[λ̂ (xxx; p)]−λ (xxx) = O

(

1
κ

)

, and Var[λ̂ (xxx; p)] = O

(

κ (d−1)/2

n

)

.

Then, in the case of a von Mises-Fisher kernel, for both localconstant and local lin-

ear estimators, the value ofκ which minimizes the asymptotic mean squared error is
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O(n2/(d+3)) and gives a convergence rate of magnitudeO(n−4/(d+3)). This is the same

rate attained by single bandwidth local constant and local linear estimators of a real-

valued regression function defined onRd−1, when a second-order kernel is employed.

4. Local logistic regression via likelihood

The approach discussed in the previous section does not producebona-fideesti-

mates when the polynomial degree is greater than 0. Despite the fact that a truncation

could be used for exploratory data analysis, the subsequentlack of differentiability may

be a serious issue. To take into account the binary nature of the response, one should

consider the estimator as the optimiser of a more suited objective function, such as the

log-likelihood one, instead of the least squares in(3).

Specifically, given theSd−1×{0,1}-valued random sample(XXX1,Y1), . . . ,(XXXn,Yn),

the log-likelihood connected with the binary regression is

n

∑
i=1

{Yi log(λ (XXXi))+ (1−Yi) log(1−λ (XXXi))} .

The locally weighted version, atxxx ∈ Sd−1, of the above log-likelihood can be ex-

pressed as
n

∑
i=1

{

Yi log

(

λ (XXXi)

1−λ (XXXi)

)

+ log(1−λ (XXXi))

}

Kκ (xxx′XXXi),

whereKκ (xxx′XXXi) is a spherical kernel with mean directionXXXi , and evaluated atxxx. Setting

δ = log(λ /(1−λ )), the above expression can be re-written as

n

∑
i=1

{Yiδ(XXXi)− log(1+exp(δ(XXXi)))}Kκ (xxx′XXXi),

and, approximatingδ(XXXi) aroundxxx in the local log-likelihood function by using ex-

pansion (2), a class of nonparametric estimators forλ (xxx) can be obtained. Specifically,

let β0 = δ(xxx), and letβββ ℓ be the matrix of the derivatives of total orderℓ ∈ (1, . . . , p)
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of δ̄ at xxx. Then, for fixedxxx∈ Sd−1, by expressingXXXi according to the tangent normal

decomposition, we define

qp(XXXi ;β0,βββ1, . . . ,βββ p) = β0 +
p

∑
ℓ=1

θℓ
i

ℓ!
ξξξ ′

iβββ ℓξξξ
⊗(ℓ−1)
i .

Hence, under suitable smoothness assumptions, thep-degree expansion of the log-

likelihood can be expressed as

n

∑
i=1

{

Yiqp(XXXi ;β0,βββ1, . . . ,βββ p)− log(1+exp(qp(XXXi ;β0,βββ1, . . . ,βββ p)))
}

Kκ (XXX′
ixxx). (6)

It is interesting to note that, whenκ goes to 0, the kernelKκ (xxx′XXXi) approaches

the uniform density and assigns the same weight to each sample point, for anyxxx. As

a consequence, forκ going to 0, the local log-likelihood optimization reduces to the

standard logistic regression problem with spherical predictor.

Now, letting β̂0 be the solution forβ0 of the maximization of (6) with respect to

{β0,βββ1, . . . ,βββ p}, a p-degree local polynomial estimator forλ (xxx) is

λ̂L(xxx; p) =
exp(β̂0)

1+exp(β̂0)
.

Whenp = 0, the resulting estimator is thelocal constantone previously discussed,

while, whenp= 1, we obtain the spherical version of thelocal linear logistic estimator

studied in the Euclidean setting by Fan et al. (1995) and Signorini and Jones (2004).

A closed-form expression for̂λL(xxx;1) does not exist, but, obviously, distinctly from

λ̂ (xxx;1), the estimator always takes value on[0,1].

Concerning the asymptotic properties, by reasoning as in Theorem 3 and Theorem

4 of Fan et al. (1995) withg being the logit link, and by using Result 1, we get the

following

Result 2. Given aSd−1 × {0,1}-valued random sample(XXX1,Y1), . . . ,(XXXn,Yn), con-
sider the estimator̂λL(xxx;1), xxx∈ Sd−1. If assumption i) and assumption ii) of Result 1
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hold, then

E[λ̂L(xxx;1)]−λ (xxx) =
b2(κ )

2(d−1)
Tr

{

∇ 2
δ̄(xxx)

}

λ (xxx)(1−λ (xxx))+o(b2(κ )) ,

and

Var[λ̂L(xxx;1)] =
ν0(κ )

n
λ (xxx)(1−λ (xxx))

f (xxx)
+o

(

ν0(κ )

n

)

.

Notice thatλ̂L(xxx;1) shares both the asymptotic variance and the order of the asymp-

totic bias ofλ̂ (xxx; p), p∈ (0,1). Moreover, the asymptotic bias depends only onλ and

the derivatives of̄λ but not onf , as it happens for̂λ (xxx;1).

Clearly, by virtue of Result 2, if a von Mises-Fisher kernel is employed as the

weight, by recalling the approximations in (3), the estimator attains the convergence

rate of ordern−4/(d+3).

Concerning the selection ofκ , a possible way is to start from a least-squares objec-

tive function, and choose the value ofκ which minimizes

n

∑
i=1

(

Yi − λ̂−i(XXXi ;κ )
)2

,

whereλ̂−i(XXXi ;κ ) stands for the estimate ofλ at XXXi with the ith sample observation

removed. A more natural way is to start from the leave-one-out version of the local

log-likelihood, i.e. to select the value ofκ maximizing

n

∑
i=1

{

Yi log

(

λ̂−i(XXXi ;κ )

1− λ̂−i(XXXi ;κ )

)

+ log
(

1− λ̂−i(XXXi ;κ )
)

}

. (7)

Remark 2. A possible generalization of the discussed approach arisesfrom consider-
ing different weights forsuccessesand failuresin the local log-likelihood expression,
i.e.

n

∑
i=1

Yiqp
(

XXXi ;β0,βββ1, . . . ,βββ p

)

Kκ1(xxx
′XXXi)− log

(

1+exp(qp(XXXi ;β0,βββ1, . . . ,βββ p))
)

Kκ2(xxx
′XXXi),

with Kκ1 and Kκ2 being spherical kernels giving weight to the observations of the pre-
dictor corresponding to Y= 1 and Y= 0, respectively.

When p= 0, the solution forβ0 of the maximization of the above local log-likelihood
function gives the estimator ofλ (xxx) studied by Di Marzio et al. (2018b). This latter
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is defined by using the kernel estimators, sayf̂1(xxx;κ1) and f̂2(xxx;κ2), of the spherical
densities f1 and f2 respectively characterizing the distributions of the predictor in the
spaces of successes and failures, based on random samples ofrespective sizes n1 and
n2, i.e.

λ̂ (xxx;κ1,κ2) =
n1 f̂1(xxx;κ1)

n1 f̂1(xxx;κ1)+n2 f̂2(xxx;κ2)
. (8)

5. Numerical examples

5.1. Simulation

In this section we use simulation experiments to test the performance of the pro-

posed estimator for classification tasks. In particular, weconsider the problem of as-

signing label 0 or 1 to an observationxxx∈Sd−1. To this end, we adopt the rule according

to whichxxx is assigned to the population with label 1 if the estimate ofλ (xxx) is greater

or equal to 0.5.

We usevMF(µµµ ,γ) to denote the von Mises-Fisher distribution onS2 with mean

directionµµµ (polar co-ordinates expressed in degrees) and concentration parameterγ.

We consider different experiments using the following scenarios, where samples of

sizesn1 = n2 = 200 are respectively drawn fromvMF(µµµ1,γ1) andvMF(µµµ2,γ2):

Scenario 1:µµµ1 = (270,20), µµµ2 = (270,−20) andγ1 = γ2 = 10;

Scenario 2:µµµ1 = (270,20), µµµ2 = (270,−20) andγ1 = γ2 = 20;

Scenario 3:µµµ1 = (270,20), µµµ2 = (220,−20), γ1 = 5 andγ2 = 10.

In Scenario 1 the populations, which share the longitude of the mean direction and

the value of the concentration parameter, generate rather overlapping groups. Scenario

2 refers to more concentrated populations generating more separated groups. Finally,

in Scenario 3 two well-separated groups are generated by populations with different

co-ordinates of the mean directions and different concentrations.

In the first experiment we consider the estimator (8) withKκ1 andKκ2 both being

von Mises-Fisher kernels. The smoothing degrees are selected using the von Mises-

Fisher reference rule (see, Di Marzio et al. (2018b) for details). In a second experiment
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Figure 1: From left: Misclassified observations using KDE classification (marked by ‘X’) and using lo-
cal likelihood with p = 0 (marked by ‘o’) for one dataset drawn fromvMF(µµµ111,γ1) (cyan points) and
vMF(µµµ222,γ2) (green points) in scenarios 1, 2 and 3.

we consider estimator (4). Also in this case we use the von Mises-Fisher kernel as

the weight, by selecting the concentration parameter by least squares cross-validation.

Figure 1 illustrates the misclassified observations obtained according to the rule for

estimators (8) and (4) by using one dataset for each of the described scenarios. In

Table 1, for each experiment, we report as the accuracy measure the average misclas-

sification rate over 200 simulated datasets. The results show that the binary regression

estimator slightly outperforms the kernel density classifier (KDE), especially when the

groups are well-separated. Moreover, the results forn1 = n2 show that, in the con-

sidered scenarios, estimator (4) performs slightly betterthan the same estimator using

two concentration parameters (which leads to the same classification rule as the kernel

density one).

Table 1: Estimate of the misclassification rates for kernel density classification and local binary regression
with p= 0, using 200 samples of sizesn1 = n2 = 200 respectively drawn fromf j = vMF(µµµ j ,γj ), j ∈ (1,2),
given in scenarios 1–3. For both classification rules we use avon Mises-Fisher kernel: for KDE,κ1 andκ2
are selected according to the von Mises-Fisher reference rule, and for the local binary regression estimatorκ
is selected by least squares cross validation.

Classification rule
Misclassification rate

Scenario 1 Scenario 2 Scenario 3
KDE estimator 0.178 0.090 0.112
p = 0 estimator 0.147 0.065 0.086
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5.2. Handwritten digit recognition

We apply our methods to the digits dataset used in the StatLogproject (Michie

et al., 1994). The dataset consists of 18,000 examples of thedigits 0 to 9 (i.e.q =

10 classes) extracted from hand-written postcodes in Germany. These numbers were

initially digitised onto 16× 16 images with 256 grey levels; examples are shown in

Figure 2. To enable meaningful comparisons with previouslyobtained results, we have

used the same train-test split of the data which has 900 examples of each number (0–9)

in the training set and the test set, and an averaging over 4× 4 pixels resulting in 16

real-valued variables. These data were then transformed tothe unit sphere by simply

normalizing each observation replacingXXXi by XXXi/||XXXi ||.

Figure 2: Examples of 10 handwritten, digitised digits withresolution 16×16 and 256 grey scales, extracted
from postcodes in Germany (Michie et al., 1994).

Our implementation, which corresponds to a 1-degree local polyomial estimator,

used logistic regression with weights obtained from a spherical kernel. The smoothing

parameter was selected — for each pair of classes( j,k) ∈ {0,1, . . . ,9}×{0,1, . . . ,9}

—using cross-validation (i.e. Equation (7)), which yielded solutions for the smoothing

parameter ranging from 0.9 to 38.8. Then, for each element ofthe test set, we compute

the probability of membership of classj, given an alternative of classk, sayPjk with

Pjk = 1−Pk j (also settingPj j = 1), using the correspondingκ jk(= κk j) found by cross-

validation. Finally, we allocate this observation to the class argmaxk minj Pjk. The error

rate for 9000 observations in the test set, was 0.043, which is much better than the

unweighted multinomial logistic regression (error 0.086), a simple linear discriminant

(0.114) and just better than the top rank classifier (k-nearest neighbour, with an error

rate of 0.047) of those given in (Michie et al., 1994, p. 136).The confusion matrix

for this classifier is shown in Figure 3, in which it can be seenthat the most common
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classification mistakes were to recognize an ”8” as a “0”, a “2” as a “3”, and a ”7” as a

”9”.

true digit

0 1 2 3 4 5 6 7 8 9

0 853 4 2 0 5 2 2 2 8 2
1 4 886 3 3 1 1 0 6 0 8
2 0 0 858 22 1 3 3 1 16 1
3 0 0 11 839 0 5 0 2 7 14
4 4 1 2 0 876 1 4 4 0 4
5 0 0 7 18 1 868 5 0 11 4
6 8 0 0 0 3 8 880 0 5 0
7 2 5 0 2 3 0 0 870 1 22
8 21 2 12 9 1 5 6 4 845 11
9 8 2 5 7 9 7 0 11 7 834

Figure 3: Confusion matrix for local multinomial logistic classifier applied to German handwritten postcode
digits. Columns represent true label, and rows the predicted label.

Although the error rate is very good, we note that this approach was computation-

ally intensive, with the multinomial logistic model entailing the estimation ofq(q−

1)/2 = 45 smoothing parameters in the training phase, and a furtherfitting of nq(q−

1)/2 = 405,000 models in the testing phase. Whilst it would be straightforward to

considerp = 2 (including interaction terms, if desired) this would takean excessive

amount of time without a common choice ofκ across all class pairs.

Using a classification rule based on a kernel density estimator, a single smooth-

ing parameter (for all classes) was selected by leave-one-out cross-validation on the

training data. This value ofκ (= 140.6) was then used to classify the test data. For

this classifer, the error rate of 0.039 was unexpectedly somewhat better than the result

given in Michie et al. (1994) (0.068) for data which have not been transformed to the

sphere.
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