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1. INTRODUCTION

The use of in silico analytical tools is widely accepted in
biomedical and clinical research. They support decision-
making process by employing mathematical modelling
that allows the interpretation of biological processes via
simplified prototypes (Bekey and Beneken, 1978). The rapid
development of the in silico biology is driven by three
key processes: novel measurement technologies, continuous
improvement and training of models representing complex
biological processes, and fitting of the existing models to
available experimental data. Both the task of model fitting
and the model training can be viewed as a parameter
estimation problem and solved using classical system
identification tools.

Chemotaxis is a directed migration of cells driven by
external attractant concentrations. This type of movement
facilitates key processes in living organisms, both physiolog-
ical, such as tissue generation or immune system response,
and pathological, such as cancer metastasis. Chemotaxis
is performed by a wide range of cell types, from bacteria
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to eukaryotes, including neutrophils - a major class of
mammalian white blood cells that respond to pathogen-
associated stimuli. Their ability to kill invading microor-
ganisms makes neutrophils the main mediators of innate
immune system response to external threats. Therapeutic
importance of neutrophil regulation is obvious, but it
requires the quantitative evaluation of multiple aspects
of cell migration that are experimentally inaccessible.

Knowledge of the underlying chemoattractant environment
is crucial for model-based analysis of cell motility. The
investigation of the cell-environment interaction has been
greatly facilitated by biological experiments, most of which
are conducted in vitro (Latin for ”in the glass”) within a
regulated environment that can be easily quantified. Unfor-
tunately, artificial environments designed during in vitro
experiments do not accurately represent natural attractant
generation process. Recent achievements in image process-
ing led to the development of in vivo (Latin for ”in the
living”) microscopy in various animal models such as flies,
zebrafish, and mice. For instance, transparency of zebrafish
early embryo and excessive genomic resources available for
its genetic modification are utilised in experiments where
the cell migration is observed directly in the living organism
(Renshaw and Loynes, 2006). Neutrophil recruitment is
triggered either by full tail fin transection or by a tail fin

Abstract: Neutrophilic chemotaxis is essential to immune system response to external threats.
During this process cells alternate between directed motion towards the higher concentration
of external stimuli and correlated random walk. An individual neutrophil migration can
thus be characterised as a stochastic dynamical process driven by an external chemotactic
environment that is typically not measured. This introduces the problem of estimating spatially-
varying chemoattractant concentration field from the observed migration patterns of cell
populations. We propose a solution to this estimation problem in a statistical inference
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the chemoattractant field decomposed with cubic B-splines. The performance of the developed
algorithm is accessed via process in vivo measurements of cell positions in the injured tail fin
of zebrafish. Estimation results for different injury types evidence that the proposed estimation
algorithm provides a rigorous connection between mathematical modelling and experimental
data.
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nick injury. Although this type of experiments fostered
multiple experimental studies, there are very few models
available to date that would describe the chemoattractant
field at the whole organism scale.

Processing of in vivo data presents a new challenge in
quantifying the unobserved environment. Experiments are
conducted with living organisms, where it is impossible
to generate controllable excitation signals. That is why,
while migration is actively triggered by a tail fin injury, the
concentration of attractant cannot be measured directly in
the body. This poses a problem of chemoattractant field
estimation based on cell migration patterns observed in
vivo.

The problem we address here is similar to the ones solved
by Liepe et al. (2012) and Kadirkamanathan et al. (2012).
Authors of the former tackle environment estimation
problem by introducing three different phenomenological
models of the hidden field and discriminating between them
within the Bayesian framework. The proposed solution
requires making prior assumptions about the shape of the
field, whose description becomes constrained to several
generic models. The latter introduces a more flexible
methodology in terms of field representation that relies
on basis function decomposition of the chemoattractant
environment. However, the authors solve the problem
deterministically by decoupling field parameter learning
and cell state estimation.

In this paper, we introduce a maximum likelihood frame-
work that can estimate the unobserved chemoattractant
concentration field and recover cell states simultaneously
from spatiotemporally resolved in vivo data. Our solu-
tion employs the potential field method of modelling
object-environment interaction, popular in simultaneous
localisation and mapping (Murphy and Godsill, 2012)
and swarming robotics (Mangion et al., 2011). In this
approach, the underlying environment is modelled as a
static potential field U driving object movement. This
translates to the cell migration as follows: a cell that moves
through the chemoattractant concentration field is subject
to the attractive force that is proportional to the field
gradient at the current cell position. The underlying field
is parametrised via basis function decomposition which
provides the flexibility necessary for inference of complex
shapes without changing the model structure.

The framework is applied to six zebrafish larvae to test
whether the model will confirm the experimental results
that show the highest attractant concentration near the
wound (Niethammer et al., 2009). Estimation results
suggest that the proposed framework can serve as a
foundation for model-based investigations of underlying
mechanisms regulating the cell-environment interaction
during chemotaxis and other cell signal mediated processes.

2. PRELIMINARIES

The estimation of the chemoattractant field relies on the
assumed model of cell-environment interaction. This section
describes the model of cell dynamics that incorporates
both random aspect of Brownian-like cell motion and the
influence of the underlying field as a deterministic term.
Combined with the basis function representation of the

field structure, proposed model facilitates the formulation
of the inference problem within the well-known EM setting.

2.1 Cell dynamics

The dynamics of the k-th cell is described by a discrete-time
state-space model
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where the state vector at sample time t contains position
and velocity of the cell centroid on the two-dimensional
image
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and where the state noise wt ∼ N (0, Qw), Qw ∈ IR2×2

and the measurement noise vt ∼ N (0, Rv), Rv ∈ IR2×2

are i.i.d. Gaussian sequences. System matrices A,B,G, and
C are defined as follows
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where T is the time increment, I is an identity matrix and
O is a zero matrix of size 2× 2.

The input vector ut in (1) incorporates the influence of the
environment on the moving cell. In the adopted potential
filed paradigm, the force acting on a cell that moves through
the chemoattractant field is given by the gradient of the
field at the current cell location x = [x1, x2].

Assumption 1. The input of the SSM (1) is proportional to
the steepest gradient of the chemoattractant concentration
field U

ut = µ∇U , (5)

where µ is a proportionality constant arbitrary set to 1.

2.2 The environment

A parametrised model of the functional form of the gradient
is required for solving the field inference problem. Since no
prior information about the environment is available, it is
desirable to make minimum assumptions about its shape.
This is achieved via basis function decomposition

U(x) =

Nb
∑

h=1

βh(x)θh, (6)

where θh is a scaling parameter corresponding to a basis
function βn(x) at the coordinate x, and where Nb is the
number of basis functions. This representation of the
potential field provides a parametric description of input
at the position x

u = µ∇B(x)Θ, (7)

where
B(x) = [β1(x), β2(x), . . . , βNb

(x)] , (8)

Θ = [θ1, θ2, .., θNb
]
⊤
. (9)
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Combining (1) and (7) leads to a parametrised state-space
model of cell-environment interaction that is linear with
respect to the unknown parameter vector Θ.

2.3 Problem formulation

Consider K cells whose dynamics described by the discrete
time SSM in the form

x
k

t+1 = Ax
k

t
+ φk

t
Θ+Gwk

t
, (10)

where φk
t

= BµB(xt). The measurement process is de-
scribed by (2).

Assumption 2. The full state xk
t
of the k-th cell at sam-

pling time t is unobserved. A sequence states of all cells at
all sampling times constitutes the hidden data set

X =
{
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}K

k=1
, (11)
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{
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t
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is a sequence of true states of an individual cell that is
observed from until the sampling time Tk.

Assumption 3. A set of cell tracks is available from the
tracking algorithm
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{
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, (13)

where each track is a set of measured cell positions at each
sampling time
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{
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where a single measurement corresponds to the observed
position of the cell centroid
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[
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t
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Tracking results for six fish are presented in Fig. 1.

Given the model defined above and a set of observations
Y, we can address following estimation objectives:

• Cell state estimation, where each hidden state in the
set X is estimated given the estimate of parameters
Θ and the full set of observations Y.

• Field parameter inference, where unknown parameters
Θ are estimated given the complete data set Z =
{X ,Y}.

3. POTENTIAL FIELD INFERENCE

This section presents the formulation of the chemoattrac-
tant field inference problem within a maximum likelihood
framework. Since the full set of observations Y is available
from the tracking procedure, unknown parameters can be
estimated via the expectation maximisation (EM) algo-
rithm (Dempster et al., 1977). It is a popular approach
for the joint state-parameter estimation of generic linear
SSMs (Gibson and Ninness, 2005). The algorithm efficiently
separates two estimation problems and solves them iter-
atively until convergence. The fact that the EM method
does not require any a priori knowledge about unobserved
data makes it particularly applicable to biological systems,
where it is desirable to minimise the number of model
assumptions (Dewar and Kadirkamanathan, 2007).

3.1 The likelihood function

In the EM algorithm, maximum likelihood estimates
(MLEs) of unknown parameters can be obtained by max-
imising the complete data log-likelihood function

Θ̂ML = argmax
Θ

L(Z | Θ), (16)

where
L(Z | Θ) = log p(Z | Θ). (17)

The fact that part of the data in the set Z is hidden
prevents the computation of the full likelihood. Instead,
the EM algorithm evaluates the expectation of p(Z | Θ)
given current parameter estimates and conditioned on the
available measurement set Y. The expected value of the
complete data log-likelihood taken with respect to the
hidden data distribution p(X | Y, Θ̂i) is termed the Q-
function and defined as follows

Q(Θ, Θ̂i) = E

[

log p(Z | Θ) | Y, Θ̂i

]

. (18)

The process of evaluating (18) constitutes the expectation
step of the algorithm. The maximisation step updates
parameter estimates by maximising the Q-function

Θ̂i+1 = argmax
Θ

Q(Θ, Θ̂i). (19)

3.2 The maximisation step

For K cells observed across all sampling times there exists
complete data set Z = {X ,Y} with joint probability
defined as follows
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We note that only the term (21b) is a function of Θ.

Lemma 4. Suppose that all constituent terms of (20) are
estimated during the expectation step. Then the MLE of
the unknown parameter vector is given by
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are expectations of cell full states at two subsequent
times conditioned available measurements and the current
parameter estimate Θ̂i.

Proof. Expanding (18) using the definition of probabilities
(21) leads to
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(a) Full tail transection (b) Tail fin nick

Fig. 1. Tracking results plotted against greyscale images of zebrafish larvae. Figure (a) shows results for full transection
injury. Figure (b) presents results obtained from a tail fin nick.
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where the constant includes all terms independent of Θ.
We can expand (24) further and rearrange it using the
properties of the expectation to produce
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where the constant is extended to include more non-
dependent terms.

The estimate of the parameter vector corresponding to the
maximum of the log-likelihood function can be obtained
by taking the partial derivative of (25) with regard to Θ
and setting it equal to zero,

∂Q(Θ, Θ̂i)
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Solving (26) for Θ leads directly to (22). Furthermore, the
2nd partial derivative of the Q-function defined by

∂2Q(Θ, Θ̂i)

∂Θ2
= −
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∑
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is negative definite, which verifies that the new parameter
estimate Θ̂i+1 is located at a local maximum of the
likelihood function, completing the proof.

3.3 The expectation step

Prior to the maximisation step we must evaluate the Q-
function conditioned on the current parameter estimates
and available measurements. This process involves estima-
tion of full cell states at two successive sampling times:

Ĕ
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= E
[
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where x̂
k
t−1|Tk

and x̂
k
t|Tk

are smoothed states. Since the

set of full tracks Y is available a priori, the state space
model described by (10) and (2) is used in a fixed-interval
smoother to recover full cell states (Rauch et al., 1965).

Remark 5. Since the basis functions B depend on the
current position xk

t of the k-th cell at time t, the matrix
φk
t may be a nonlinear function of the cell hidden state. In

order to solve the state-parameter estimation as a linear
problem, all matrices φ are calculated at the beginning of
the expectation step on each iteration of the EM algorithm
by replacing hidden xk

t with its estimate from the previous
iteration (x̂k

t )
(i−1).

3.4 The estimation algorithm

The algorithm is initialised by calculating values of φk
t for

all measured cell positions φ̂k
t = BµB(yk

t ). These matrices
are then utilised in the estimation of full cell states with
the assumption that there is no field acting on moving cells,
i.e. all magnitude coefficients are set equal to zero Θ̂0 = 0.
The maximisation step is performed afterwards to obtain
an initial parameter estimate. The two steps defined above
are repeated until convergence. It has been established that
the likelihood function increases at each iteration (Wu,
1983). However, assessing convergence of the likelihood
function comes at a high computational cost as it requires
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computation of all terms included in the constant in (25) at
each iteration of the algorithm. Instead, use the following
stopping criteria

∆Θi =
(Θi

−Θi−1)⊤(Θi
−Θi−1)

(Θi)⊤Θi
< ǫ. (30)

The rate of convergence is highly depended on the selection
of the initial parameter vector estimate.

Remark 6. As an EM solution, the algorithm described in
this section is liable to converge to local maxima of the
likelihood function.

4. RESULTS

The estimation is performed with the same settings across
all fish larvae. The time increment T = 0.5 min used in the
model matches settings of the the microscopy procedure.
The process noise covariance is set to Qw = 2Iµm4/min4

and the measurement noise covariance is Rv = Iµm2, where
I is a 2× 2 identity matrix. Initial cell speed estimates for
forward and backward passes of the smoother are arbitrary
assumed to be zero with the covariance 0.5I µm2/min2.

In this study, the decomposition of chemoattractant field
is performed using tensor spline products

βh(x) =

n1
∑

j=1

n2
∑

l=1

cj,lψj(x1)ϕl(x2), (31)

where ψj(x1) and ϕl(x2) are cardinal cubic B-splines
constructed for a uniform knot sequence in each spatial
dimension, and where cj,l is a scaling coefficient arbitrary
set equal to 1. B-splines are selected over Gaussian bases
used in (Kadirkamanathan et al., 2012), as they provide a
better approximation of first order functions.

A 5 × 3 grid of basis functions overlapping at one third
of their base width is placed over each fish image. The
node spacing is changed automatically for different image
sizes. The boundary conditions are introduced for the
visualisation of the estimated field by masking the area of
the image outside of fish boundary.

4.1 Estimation results

The estimated chemoattractant fields for six zebrafish
larvae are presented in Fig. 2. Each result demonstrates
the correlation between the total number of cells passing
through the area and the estimated chemoattractant field
magnitude of that area.

Remark 7. The solution provided by the algorithm is
unique for the selected initial estimate Θ̂0, but the shape
of the estimated chemoattractant field is only unique up
to an additive constant since it is not the magnitude of the
field that drives the cell migration but its gradient.

As illustrated in Fig. 2, estimated fields for Fish 1 and
3 conform to the well-established hypothesis that the
chemoattractant is uniformly distributed along the axis
parallel to the injury with the highest concentration located
at the injury site. Fish 4, however, demonstrates a different
type of neutrophil behaviour. Contrary to the expected
pattern, cells ”swarm” towards the lower region of the
injury site. The swarming may be caused by the self-
generated gradient recently observed in (Lammermann

et al., 2013), that may be modulated predominantly by the
LTB4 mediator released by neutrophils themselves. In Fish
2, for which the lowest number of cell tracks is available,
the
the most persistent cell tracks.

For the nicked tail fin injury the range of chemoattractant
concentrations is narrower, which is expected for a minor
injury. The highest field magnitude is also smaller compared
to models with the full tail fin transection, which is
consistent with the fact that smaller injury attracts fewer
cells. While in Fish 5 the estimated peak of chemoattractant
concentration is located near the wound, Fish 6 has an
outlier peak that matches the area with several persistent
cell tracks directed away from the wound. Cells may be
driven by another neutrophil-generated gradient. Results
for Fish 4 and Fish 6 indicate that the future modelling
and estimation work on population dynamics should take
into account cell-to-cell interaction.

5. CONCLUSION

In this paper, we introduce a maximum-likelihood frame-
work for the chemoattractant environment inference from
observed migration patterns of eukaryotic cells. The pro-
posed expectation-maximisation algorithm builds on the
potential field model of interaction between migrating cells
and the hidden underlying environment. Based on the
assumption that cell movement is driven exclusively by the
field gradient, we utilise cell positions tracked in vivo to
infer the chemoattractant environment. The performance of
the developed framework is demonstrated on several data
sets of neutrophil recruitment to the tail injury site observed
in a transgenic zebrafish larvae. Presented inference results
for two types of tail fin injury are obtained with the same
settings and support our claim that the framework does
not require any a priori knowledge about the shape of the
environment.

A number of extensions for the proposed solution can be
considered. For instance, changes in the behaviour of an
individual migrating cell fall beyond the scope of the linear
state space representation. A more complex hybrid model
can be employed to represent heterogeneous dynamics of
moving cells, although lack of exact methods for state
estimation of hybrid systems would significantly increase
the complexity of the resulting algorithm. Furthermore, we
consider a model based on Newton’s second law, where all
dynamic matrices are known. Including model selection
algorithm to discriminate between various representations
of cell dynamics in the existing framework will extend its
applicability to a broader range of models.
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Appendix A. DATA ACQUISITION

Ethics statement. All animal experiments were per-
formed according to legislation and guidelines detailed
in the Animals (Scientific Procedures) Act 1986. Ethical
approval was given by the University of Sheffield Local
Ethical Review Panel and experiments were fully approved
by the Home Office (Project license PPL 70/8178).

Zebrafish husbandry. The neutrophil-specific fluores-
cent Tg(mpx:GFP)i114 zebrafish line, also referred to as
mpx:GFP, was used for all experiments. Adult zebrafish
were raised in the Bateson Centre at The University
of Sheffield in UK Home-Office approved aquaria. All
zebrafish were maintained according to standard protocols
in (Nusslein-Volhard and Dahm, 2002).

Microscopy. All experiments were conducted on 3 days
post fertilisation (dpf) mpx:GFP embryos anaesthetised by
immersion in E3 containing 4.2% tricaine (Sigma-Aldrich).
The inflammatory response was activated by tail fin transec-
tion using a sterile scalpel blade as described previously in
(Renshaw and Loynes, 2006). 3dpf mpx:GFP embryos were
mounted in 0.7% low melting point agarose (Sigma-Aldrich)
containing 4.2% tricaine for imaging immediately after tail
transection. Time lapse imaging was performed from 0-5
hours post injury with 30 second intervals between time
points using an Eclipse TE2000-U fluorescence microscope
with a Andor Zyla 5.5 camera. The neutrophil trajectory
data was extracted from time lapse images via the tracking
tool within the NIS Elements software.


