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Feature Extraction for Incomplete Data via

Low-rank Tensor Decomposition with Feature

Regularization
Qiquan Shi, Student Member, IEEE, Yiu-Ming Cheung, Fellow, IEEE, Qibin Zhao, Senior Member, IEEE and

Haiping Lu, Member, IEEE

Abstract—Multi-dimensional data (i.e., tensors) with miss-
ing entries are common in practice. Extracting features from
incomplete tensors is an important yet challenging problem
in many fields such as machine learning, pattern recognition
and computer vision. Although the missing entries can be
recovered by tensor completion techniques, these completion
methods focus only on missing data estimation instead of effective
feature extraction. To the best of our knowledge, the problem of
feature extraction from incomplete tensors has yet to be well
explored in the literature. In this paper, we therefore tackle
this problem within the unsupervised learning environment.
Specifically, we incorporate low-rank Tensor Decomposition with
feature Variance Maximization (TDVM) in a unified framework.
Based on orthogonal Tucker and CP decompositions, we design
two TDVM methods, TDVM-Tucker and TDVM-CP, to learn
low-dimensional features viewing the core tensors of the Tucker
model as features and viewing the weight vectors of the CP model
as features. TDVM explores the relationship among data samples
via maximizing feature variance and simultaneously estimates the
missing entries via low-rank Tucker/CP approximation, leading
to informative features extracted directly from observed entries.
Furthermore, we generalize the proposed methods by formulating
a general model that incorporates feature regularization into
low-rank tensor approximation. In addition, we develop a joint
optimization scheme to solve the proposed methods by integrating
the alternating direction method of multipliers with the block
coordinate descent method. Finally, we evaluate our methods
on six real-world image and video datasets under a newly
designed multi-block missing setting. The extracted features
are evaluated in face recognition, object/action classification
and face/gait clustering. Experimental results demonstrate the
superior performance of the proposed methods compared with
the state-of-the-art approaches.

Index Terms—Incomplete tensor, feature extraction, orthogo-
nal tensor decomposition, low-rank tensor completion, feature
regularization, variance maximization.

I. INTRODUCTION

Feature extraction is a fundamental and significant topic in

many fields such as machine learning, pattern recognition, data

mining, and computer vision. In recent decades, many methods

for feature extraction have been developed, such as the clas-

sical principal component analysis (PCA) [1]. In real-world,
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many data such as color images, videos and 4D fMRI data

are multi-dimensional, i.e., tensors, and have become increas-

ingly popular and ubiquitous in many applications [2]. Tensor

decomposition is a powerful computational tool for extracting

valuable information from tensorial data, which can effectively

perform dimensionality reduction, feature extraction, etc..

To learn features from tensorial data, many multilinear

methods have been proposed based on tensor decomposition

[3], [4], [5], [6]. There are two popular and fundamental

decomposition models: Tucker decomposition [7], which de-

composes a tensor into a core tensor multiplied by a fac-

tor matrix along each mode, and CANDECOMP/PARAFAC

(CP) decomposition [8], [9], which factorizes a tensor into

a weighted sum of rank-one tensors. Based on the Tucker

model, for example, multilinear principal component analysis

(MPCA) [3] is developed as a popular extension of PCA

and can directly extract features from higher-order tensors.

Furthermore, based on CP decomposition, a semi-orthogonal

multilinear PCA with relaxed start (SOMPCARS)[6] improves

[10] by relaxing the orthogonality constraint and initialization

on factors. In addition, robust methods such as robust tensor

PCA (TRPCA) [11] have been well studied for learning

features from data with corruptions (e.g., noise and outliers).

In practice, some entries of tensors are often missing in

the acquisition process, costly experiments, etc. [12], [13].

The reasons for missing data are numerous. For example,

in social science, when data are collected in surveys, it is

likely that some people refuse to answer a few questions

related to personal privacy or sensitive topics, thus resulting

in missing values with arbitrary patterns [14]. In industrial

applications, some data, such as images, are corrupted with

irregular patterns due to the insufficient resolution of a device

or the dysfunction of equipment [15]. Over all, missing data

are common in real-world [16]. In these scenarios, the feature

learning methods mentioned above cannot work well due

to missing data. How to correctly handle missing data is a

fundamental yet challenging problem in many fields [17], [18],

[15], which is critical to many real-world applications such

as classification [12], [19], [16], image inpainting [20] and

clustering [21], [22]. However, to the best of our knowledge,

effectively extracting features from incomplete tensors has yet

to be well explored.

There are two possible approaches to solving the problem

of extracting features from incomplete tensors. One natural

solution is to fill in the missing values and then view the
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recovered tensors as the extracted features. Many tensor com-

pletion techniques have been extended from matrix completion

cases [23], [24], which are widely used for predicting missing

data given partially observed entries and have drawn much

attention in many applications such as image/video recovery

[25], [26]. For example, Liu et al. [25] defined the Tucker-

based tensor nuclear norm by combining nuclear norms of

all matrices unfolded along each mode and proposed a high

accuracy low-rank tensor completion algorithm (HaLRTC) for

estimating missing values in tensor visual data. Jain et al. [27]

developed an alternating minimization algorithm (TenALS) for

tensors with a fixed low-rank orthogonal CP decomposition,

which yields good completion results for incomplete data

under certain conditions (e.g., a good CP rank [28]). Further-

more, Liu et al. [26] proposed a nuclear norm regularized

CP decomposition method (TNCP) for tensor completion by

imposing the Tucker-based tensor nuclear norm on factor

matrices. Although these tensor completion methods can re-

cover data well under typical conditions, they focus only on

tensor recovery without considering the relationship among

data samples for effective feature extraction. In addition, by

treating the recovered data as learned features, the dimension

of features cannot be reduced.

Another straightforward approach is a “two-step” strat-

egy: applying tensor completion algorithms (e.g., HaLRTC)

to estimate missing entries first and then feature extraction

methods (e.g., MPCA) on the recovered tensors to learn the

features, i.e., “tensor completion methods + feature extraction

methods”. For example, LRANTD [4] employs nonnegative

Tucker decomposition (NTD) for incomplete tensors by in-

corporating low-rank representation (LRA) with nonnegative

feature extraction. LRANTD requires a tensor completion

algorithm to estimate the missing entries in the preceding

LRA step. This approach likely amplifies the approximation

error as the missing data and the features are learned in

separate stages. Besides, the reconstruction error from the

tensor completion step can deteriorate the performance of

feature extraction in the subsequent step. Moreover, the “two-

step” strategy combining two separate methods is usually not

computationally efficient.

On the other hand, a few supervised methods have been

proposed for classifying low-rank missing data [12], [16], and

some studies have integrated a discriminant analysis criterion

into low-rank matrix/tensor completion models for feature

classification [29], [30]. However, these methods require la-

bels, which are expensive and difficult to obtain in practice,

especially for incomplete data.

To solve the problem of feature extraction for incomplete

tensors, we incorporate low-rank Tensor Decomposition with

feature Variance Maximization (TDVM) into a unified frame-

work. In this paper, we focus on two popular tensor de-

compositions for TDVM and design two methods: TDVM-

Tucker and TDVM-CP based on Tucker and CP mod-

els, respectively. These two methods are essentially de-

ployed under a general unsupervised model that incorporates

low-rank Tensor Decomposition with Feature Regularization

(TDFR). TDFR simultaneously estimates missing data via

low-rank approximation and explores the relationship among

samples via feature regularization. In other words, TDVM-

Tucker and TDVM-CP specify TDFR by employing low-rank

Tucker/CP decomposition for low-rank approximation and

using feature variance maximization as the feature constraint.

Specifically, TDVM-Tucker imposes the Tucker-based tensor

nuclear norm on the core tensors of Tucker decomposition

with orthonormal factor matrices (a.k.a., higher-order singular

value decomposition (HOSVD) [31]) while minimizing the

approximation error, and meanwhile maximizes the variance

of core tensors. Here, the learned core tensors (analogous to

the singular values of a matrix) are viewed as the extracted

features. TDVM-CP realizes the low-rank CP approximation

by minimizing the CP-based tensor nuclear norm [32] of

weight vectors and the reconstruction error based on or-

thogonal CP decomposition, and meanwhile maximizes the

variance of learned feature vectors for feature regularization.

The weight vector of the orthogonal CP decomposition of a

tensor (analogous to the vector of singular values of the SVD

of a matrix) is viewed as the feature vector.

TDVM incorporates Tucker- and CP-based tensor nuclear

norm regularization with variance maximization on features

while estimating missing entries, which results in informative

features extracted directly from observed entries. Moreover,

TDVM-Tucker aims to learn low-dimensional tensorial fea-

tures from high-dimensional incomplete tensors (i.e., tensor-

to-tensor projection [10]), while TDVM-CP can extract low-

dimensional vectorial features (i.e., tensor-to-vector projection

[10]). The proposed methods differ from both tensor com-

pletion methods and two-step strategies as follows. 1) Tensor

completion methods aim to recover the incomplete tensors

only without exploring the relationship among samples for

effective feature extraction. In contrast, TDVM methods focus

on extracting low-dimensional features instead of estimating

missing data. Moreover, TDVM utilizes a feature constraint

(feature variance maximization) to capture the relationship

among samples for extracting informative features; 2) un-

like the “two-step” strategies, which learn the features of

incomplete data via two separate stages, TDVM simultane-

ously estimates missing entries and learns low-dimensional

features directly from the observed entries in the unified frame-

work. Thus, TDVM can extract more informative features and

reduce computational cost; 3) compared with the supervised

methods, TDVM does not require label information during

feature learning, which is more feasible in practice.

We employ Alternating Direction Method of Multipliers

(ADMM) [33] and Block Coordinate Descent (BCD) to op-

timize TDVM models. After feature extraction via TDVM,

we evaluate the extracted features on six image and video

databases for three applications: face recognition, object/action

classification and face/gait clustering. Partial work pertaining

to TDVM-Tucker has been published in the conference version

[34] of this paper, and the main contributions of this work are

threefold:

1) We propose two unsupervised methods, TDVM-Tucker

and TDVM-CP, for feature extraction of incomplete ten-

sors. The TDVM methods explore the relationship among

tensor samples via feature variance maximization while

estimating missing values by low-rank approximation,
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leading to informative features extracted directly from

observed entries. Moreover, we discuss the generalization

of TDVM by proposing the general model TDFR.

2) We develop an ADMM-BCD joint optimization scheme

to solve the TDVM-CP model, in which each subproblem

of TDVM-CP can be solved in a closed form although

its overall objective is non-convex and non-smooth.

3) We evaluate the proposed methods on six tensor datasets

with newly designed multi-block missing settings. Ten-

sors with multi-block data missing are not only more

general, as they cover the existing pixel-based and block-

based missing settings, but are also more difficult and

practical in real-world scenarios. More importantly, the

experimental results show that the proposed methods out-

perform the state-of-the-art approaches with significant

improvements.

The rest of the paper is organized as follows. We review related

preliminaries and related works in Section II. Then, we present

the proposed methods and general model in Section III. We

report the empirical results in Section IV and conclude this

paper in Section V.

II. PRELIMINARIES AND RELATED WORK

A. Notations and Operations

The number of dimensions of a tensor is the order and

each dimension is a mode of it. A vector is denoted by a

bold lower-case letter x ∈ R
I and a matrix is denoted by

a bold capital letter X ∈ R
I1×I2 . A higher-order (N ≥ 3)

tensor is denoted by a calligraphic letter X ∈ R
I1×···×IN .

The ith entry of a vector a ∈ R
I is denoted by a(i), and

the (i, j)th entry of a matrix X ∈ R
I1×I2 is denoted by

X(i, j). The (i1, · · · , iN )th entry of an N th-order tensor X
is denoted by X (i1, · · · , iN ), where in ∈ {1, · · · , In} and

n ∈ {1, · · · , N}. The Frobenius norm of a tensor X is defined

by ‖X‖F = 〈X ,X〉1/2. Ω ∈ R
I1×···×IN is a binary index

set: Ω(i1, · · · , iN ) = 1 if X (i1, · · · , iN ) is observed, and

Ω(i1, · · · , iN ) = 0 otherwise. PΩ is the associated sampling

operator which acquires only the entries indexed by Ω:

(PΩ(X ))(i1, · · · , iN ) =

{

X (i1, · · · , iN ), if(i1, · · · , iN ) ∈ Ω

0, if(i1, · · · , iN ) ∈ Ω
c ,

(1)where Ωc is the complement of Ω.

Definition 1. Mode-n Product. A mode-n product of X ∈
R

I1×···×IN and U ∈ R
In×Jn is denoted by Y = X ×n

U⊤ ∈ R
I1×···×In−1×Jn×In+1×···×IN , with entries given by

Yi1···in−1jnin+1···iN =
∑

in
Xi1···in−1inin+1···iNUin,jn , and

Y(n) = UTX(n)[10].

Definition 2. Mode-n Unfolding. a.k.a., matricization, is the

process of reordering the elements of a tensor into matrices

along each mode [2]. A mode-n unfolding matrix of a tensor

X ∈ R
I1×···×IN is denoted as X(n) ∈ R

In×Πn∗6=nIn∗ .

B. Tucker and CP Decomposition

1) Tucker Decomposition: It represents a tensor Xm ∈
R

I1×I2×···×IN as a core tensor with factor matrices [2]:

Xm = Cm×1U
(1)×2U

(2) · · · ×NU
(N), (2)

where {U(n) ∈ R
In×Rn , n = 1, 2 · · ·N, and Rn < In}

are factor matrices with orthonormal columns and Cm ∈
R

R1×R2×···×RN is the core tensor with lower dimension. The

Fig. 1. The Tucker decomposition of a third-order tensor sample Xm, where
the core tensor Cm consists of extracted features from Xm.

Fig. 2. The CP decomposition of a third-order tensor sample Xm, where the
core tensor Dm is super-diagonal and its elements {dm1, dm2, · · · , dmR}
(i.e. feature vector dm) are viewed as extracted features from Xm.

Tucker-rank of an N th-order tensor X is an N -dimensional

vector, denoted as r = [R1, · · · , Rn, · · · , RN ], whose n-th

entry Rn is the rank of the mode-n unfolded matrix X
(n)
m

of Xm. Figure 1 illustrates this decomposition. In this paper,

Tucker-rank is equivalent to the dimension of features (each

core tensor). Based on Tucker decomposition, Liu et al. [25]

have defined Tucker-based Tensor Nuclear Norm, that is,

Definition 3. Tucker-based Tensor Nuclear Norm [25] of

a tensor X is defined as: ‖X‖∗ =
∑N

n=1 ‖X
(n)‖∗ =

∑N
n=1

∑Rn

j=1 σj , where X(n) is the mode-n unfolding matrix

of X and σj is the singular values of the unfolded matrix.

2) CP Decomposition: It decomposes a tensor Xm ∈
R

I1×···×IN as the sum of a set of weighted rank-one tensors:

Xm =

R
∑

r=1

dmr u
(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r

= Dm×1U
(1)×2U

(2) · · · ×NU
(N),

(3)

where each common factor {u
(n)
r , n = 1, · · · , N} is a

unit vector with a weight absorbed into the weight vector

d = [dm1, · · · dmr, · · · dmR]
⊤ ∈ R

R, and ◦ denotes the outer

product [2]. Figure 2 shows that CP decomposition can also be

reformulated as Tucker decomposition where the core tensor

Dm is super-diagonal, i.e., Dm(r, · · · , r) = dmr. R is the

CP-rank as the minimum number of rank-one components. In

this paper, CP-rank is equivalent to the dimension of features

(each weight vector). Based on orthogonal CP decomposition,

we have defined the CP-based Tensor Nuclear Norm:

Definition 4. CP-based Tensor Nuclear Norm [32] of a

tensor X is defined as the L1 norm of the weight vector d

of its orthogonal CP decomposition: ‖X‖CP = ‖d‖1.

C. Related Work

Considering the target problem of extracting features from

incomplete data, there are four categories of related ap-

proaches, which are briefly summarized as follows.

1) Tensor Completion Approach: Tensor completion ap-

proach is extended from the matrix case [23] and widely

used for recovering missing data. There are many successful

tensor completion methods, such as HaLRTC [25], TenALS

[27], TNCP [26] and [35], [20], [36], [37]. These completion

methods can yield good recovery results under typical condi-

tions, but they focus only on estimating missing data instead

of extracting informative features.

2) Feature Extraction Approach: Many tensor methods

have been proposed for feature extraction directly from mul-

tilinear data, e.g., the classical MPCA [3] and [4], [5], [6],
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[38], [11], [39], [40], [41], [42]. These methods can achieve

state-of-the-art results for learning features from complete (and

noisy) tensors, however, they cannot perform well on data with

missing values.

3) Supervised Classification Approach: Some classification

algorithms have been well studied for classifying low-rank

missing data [12], [16]. Besides, a few studies have integrated

a discriminant analysis criterion into low-rank matrix/tensor

completion models for classification [29], [30]. However, these

methods require labels which are expensive and difficult to

obtain in practice, especially for incomplete data.

4) Subspace Clustering Approach: Subspace clustering

models such as sparse subspace clustering [43] were applied

in the presence of missing data in [21], [22]. In addition,

some studies have incorporated matrix completion approaches

with subspace clustering for incomplete matrices [44], [45].

However, these algorithms do not yield good results for

learning features from incomplete tensors because they are

developed for clustering incomplete vectors/matrices.

In Sec. IV, we compare the proposed unsupervised methods

with related state-of-the-art algorithms selected the abovemen-

tioned category 3) as they are supervised.

III. THE PROPOSED: TDVM-TUCKER AND TDVM-CP

A. Problem Definition

Given a total M tensor samples {T1, · · · , Tm, · · · , TM}
with missing entries in each sample Tm ∈ R

I1×···×IN . In is the

mode-n dimension. We denote T = [T1, · · · , Tm, · · · TM ] ∈
R

I1×···×IN×M , where the M are the number of tensor samples

concatenated along the mode-(N + 1) of T . To achieve

feature extraction (dimension reduction) objective, we aim to

directly extract low-dimensional features from the given high-

dimensional incomplete tensors T .

Remark 1: This problem is different from the case of data

with corruptions (e.g., noise and outliers), which has been

well studied in [11], [46], [47], [43]. Missing data could be

equivalent to the corruption case only if the corruptions are

arbitrary and the indices of corruptions are known. However, in

reality, the magnitudes of corruptions are not arbitrarily large.

In other words, here we study a different feature extraction

problem that existing methods cannot solve well.

To solve this problem, we propose an unsupervised

feature extraction approach by incorporating low-rank Tensor

Decomposition with feature Variance Maximization (TDVM).

Based on two widely used Tucker and CP decomposition

models, we develop two algorithms of TDVM as follows.

B. TDVM-Tucker: Learning Low-dimensional Tensor Features

We first propose a TDVM method based on orthogonal

Tucker decomposition: we impose the Tucker-based tensor

nuclear norm on the core tensors while minimizing the re-

construction error, and meanwhile maximize the variance of

core tensors (features), i.e., incorporating low-rank Tucker

Decomposition with feature Variance Maximization, namely

TDVM-Tucker:

min
Xm,Cm,U(n)

M
∑

m=1

1

2
‖Xm − Cm×1U

(1) · · · ×NU
(N)‖2F

+
M
∑

m=1

‖Cm‖∗ −
M
∑

m=1

1

2
‖Cm − C̄‖2F ,

s.t. PΩ(Xm) = PΩ(Tm),U(n)⊤
U

(n) = I, n = 1 · · ·N,

(4)

where {U(n) ∈ R
In×Rn}Nn=1 are common factor matrices with

orthonormal columns. I ∈ R
Rn×Rn is an identity matrix. Cm ∈

R
R1×···×RN is the core tensor, which consists of the extracted

features of an incomplete tensor Tm with observed entries in

Ω. ‖Cm‖∗ is the Tucker-based tensor nuclear norm of Cm. C̄ =
1
M

∑M
m=1 Cm is the mean of core tensors (extracted features).

To optimize the objective function of TDVM-Tucker using

ADMM, we apply the variable splitting technique, introduce a

set of auxiliary variables {Sm ∈ R
R1×···×RN ,m = 1 · · ·M},

and then reformulate Eq. (4) as follows:

min
Xm,Cm,Sm,U(n)

M
∑

m=1

1

2
‖Xm − Cm×1U

(1) · · · ×NU
(N)‖2F

+

M
∑

m=1

‖Sm‖∗ −

M
∑

m=1

1

2
‖Cm − C̄‖2F ,

s.t. PΩ(Xm) = PΩ(Tm),Sm = Cm,U(n)⊤
U

(n) = I.

(5)

Remark 2: The objective function Eq. (5) integrates three

terms into a unified framework. The first and second term lead

to low-rank Tucker approximation, which aims to minimize

the reconstruction error and obtains low-dimensional features.

Because imposing the Tucker-based tensor nuclear norm on

a core tensor Cm is equivalent to that on its original tensor

Xm [48], we obtain a low-rank solution, i.e., Rn can be

small (Rn < In). Therefore, the feature subspace is naturally

low-dimensional. Moreover, imposing nuclear norm on core

tensors instead of original ones reduces the computational cost.

The third term (minimizing −
∑M

m=1
1
2‖Cm − C̄‖2F ) aims to

maximize the variance of learned features inspired by PCA.

TDVM-Tucker thus explores the relationship among tensor

samples via feature variance maximization while estimating

the missing data via low-rank Tucker approximation.

1) Derivation of TDVM-Tucker by ADMM: To facilitate

the derivation of Eq. (5), we reformulate the equation by

unfolding each tensor variable along mode-n and absorbing

the constraints 1. Thus, we obtain the Lagrange function as

follows:

L =
M
∑

m=1

N
∑

n=1

(1

2
‖X(n)

m −U
(n)

C
(n)
m H

(n)⊤‖2F

+ ‖S(n)
m ‖∗ + 〈Ymn,C

(n)
m − S

(n)
m 〉

+
µ

2
‖C(n)

m − S
(n)
m ‖2F −

1

2
‖C(n)

m − C̄
(n)‖2F

)

(6)

where H(n) = U(N)
⊗

· · ·
⊗

U(n+1)
⊗

U(n−1) · · ·
⊗

U(1) ∈
R

∏

j 6=n Ij×
∏

j 6=n Rj , and µ and {Ymn ∈ R
Rn×

∏

j 6=n Rj , n =
1, · · · , N,m = 1, · · · ,M} are the Lagrange multipliers.

X
(n)
m ∈ R

In×
∏

j 6=n Ij and {C
(n)
m ,S

(n)
m , C̄(n)} ∈ R

Rn×
∏

j 6=n Rj

are the mode-n unfolded matrices of Xm and {core tensor

Cm, auxiliary variable Sm, mean of features C̄}, respectively.

ADMM solves the problem (6) by successively minimizing

L over {S
(n)
m ,U(n),C

(n)
m ,X

(n)
m }, and then updating Ymn.

1For simplicity, the iteration number k is omitted in the updates of all
variables in TDVM-Tucker and TDVM-CP optimization.
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Algorithm 1 Low-rank Tensor (Tucker) Decomposition with

Feature Variance Maximization (TDVM-Tucker)

1: Input: Incomplete tensors PΩ(T ), Ω, µ, and the maximum
iterations K, feature dimension D = [R1, · · · , RN ] (Tucker-
rank), and stopping tolerance tol.

2: Initialization: Set PΩ(Xm) = PΩ(Tm),PΩc(Xm) = 0,m =
1, · · · ,M ; initialize {Cm}Mm=1 and {U(n)}Nn=1 randomly; ρ =
10, µmax = 1e10.

3: for k = 1 to K do
4: for m = 1 to M do
5: for n = 1 to N do
6: Update S

(n)
m , U(n) and C

(n)
m by (8), (11) and (13)

respectively.

7: Update Ymn by Ymn = Ymn + µ(C
(n)
m − S

(n)
m ).

8: end for
9: Update Xm by (15).

10: end for
11: If ‖Cm − Sm‖2F /‖Cm‖2F < tol, break; otherwise, continue.
12: Update µk+1 = min(ρµk, µmax).
13: end for
14: Output: Tensorial features: C = [C1, · · · , Cm, · · · CM ] ∈

R
R1×···×RN×M .

a) Update S
(n)
m : Eq. (6) with respect to S

(n)
m is,

L
S
(n)
m

=

M
∑

m=1

N
∑

n=1

(

‖S
(n)
m ‖∗ +

µ

2
‖(C

(n)
m + Ymn/µ) − S

(n)
m ‖

2
F

)

, (7)

where S
(n)
m is computed via soft-thresholding operator [49]:

S
(n)
m =prox1/µ(C

(n)
m +Ymn/µ)=Udiag(maxσ −

1

µ
, 0)V⊤, (8)

where prox is the soft-thresholding operation and

U diag(maxσ − 1
µ , 0)V

⊤ is the SVD of (C
(n)
m +Ymn/µ).

b) Update U(n): Eq. (6) with respect to U(n) is:

L
U(n)=

M
∑

m=1

N
∑

n=1

1

2
‖X

(n)
m − U

(n)
C

(n)
m H

(n)⊤
‖
2
F , s.t. U

(n)⊤
U

(n)
=I, (9)

The minimization of (9) over the matrices

{U(1), · · · ,U(N)} with orthonormal columns is equivalent to

the maximization of the following problem [50]:

U(n) = argmax trace
(

U(n)⊤X(n)
m (C(n)

m H(n)⊤)
⊤
)

(10)

where trace() is the trace of a matrix, and we denote W(n) =

C
(n)
m H(n)⊤. The problem (10) is actually the well-known

orthogonal Procrustes problem [51], whose global optimal

solution is given by the SVD of X
(n)
m W(n)⊤, i.e.,

U(n) = Û(n)(V̂(n))
⊤
, (11)

where Û(n) and V̂(n) are the left and right singular vectors

of SVD of X
(n)
m W(n)⊤, respectively.

c) Update C
(n)
m : Eq. (6) with respect to C

(n)
m is:

L
C

(n)
m

=

M
∑

m=1

N
∑

n=1

(

‖X(n)
m −U

(n)
C

(n)
m H

(n)⊤‖2F

+
µ

2
‖C(n)

m − S
(n)
m + Ymn/µ‖

2
F

−
1

2
‖(1−

1

M
)C(n)

m −
1

M

M
∑

j 6=m

C
(n)
j ‖2F

)

,

(12)

setting the partial derivative ∂L
C

(n)
m

/∂C
(n)
m to zero, we get:

C
(n)
m =

M2

M2µ+ 2M − 1

(

µS(n)
m −Ymn + U

(n)⊤

X
(n)
m H

(n) −
(

(
1

M
−

1

M2
)

M
∑

j 6=m

C
(n)
j

)

)

.

(13)

d) Update Xm: Eq. (5) with respect to Xm is:
M
∑

m=1

1

2
‖Xm − Cm×1U

(1)×2U
(2) · · · ×NU

(N)‖2F ,

s.t. PΩ(Xm) = PΩ(Tm),

(14)

by deriving the Karush-Kuhn-Tucker (KKT) conditions for

function (14), we can update Xm by:

Xm = PΩ(Xm) + PΩc(Cm×1U
(1)×2U

(2) · · · ×NU
(N)). (15)

We summarize the proposed method, TDVM-Tucker, in

Algorithm 1.

Remark 3: TDVM-Tucker explores the relationship among

tensor samples via feature variance maximization while esti-

mating the missing data via low-rank Tucker approximation,

leading to low-dimensional informative features directly from

observed entries. The proposed methods differ from both

tensor completion methods and two-step strategies as follows.

• Tensor completion methods aim to recover incomplete

tensors only without exploring the relationship among

samples for effective feature extraction. In contrast,

TDVM-Tucker focuses on extracting low-dimensional

features instead of estimating missing data. Moreover,

TDVM utilizes a feature constraint (feature variance

maximization) to capture the relationship among samples

for extracting informative features.

• Unlike the “two-step” strategies, which learn the features

of incomplete data via two separate stages, TDVM-

Tucker simultaneously estimates missing entries and

learns low-dimensional features directly from the ob-

served entries in the unified framework. The “two-step”

strategies can amplify the approximation error because

the missing data and the features are learned in separate

stages, and the reconstruction error from the tensor com-

pletion step can deteriorate the performance of feature

extraction in the subsequent step. This claim has been ver-

ified by our experimental results (as shown in the Tables

I, II and III in Section IV-C). Therefore, TDVM-Tucker

and TDVM-CP (which is introduced in the following)

can extract more informative features within the unified

framework.

C. TDVM-CP: Learning Low-dimensional Vector Features

We further propose another new TDVM method to

learn low-dimensional vectorial features based on CP

decomposition, i.e., incorporating low-rank CP decomposition

with feature variance maximization, namely TDVM-CP. Be-

cause tensor decomposition with missing data is more chal-

lenging than that with complete data in traditional problems,

here we consider incorporating orthogonality into the CP

model for TDVM-CP (i.e., imposing orthogonality constraints

on factors {u
(n)
r } in Eq. (3)) with the following two motiva-

tions:

• Like HOSVD [31], CP decomposition can be regarded as

a generalization of SVD to tensors [52]. It appears natural

to inherit the orthogonality of SVD in the CP model.

• The orthogonality constraint is considered unnecessary

in general or even impossible in certain cases in exact

CP decomposition [53], [54], [55], but some studies have
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proved that imposing orthogonality in CP decomposition

can transform a non-unique tensor model into a unique

one with guaranteed optimality [54], [27], [56].

Like the orthogonality used in TDVM-Tucker, we believe

that imposing orthogonality constraints can help TDVM-CP

estimate missing values and extract features better. In addition,

here we do not use the Tucker-based nuclear norm [25];

instead, we use a new CP-based tensor nuclear norm 2 [32] to

achieve low-rank CP approximation.

In other words, TDVM-CP couples orthogonal CP

decomposition with the CP-based tensor nuclear norm for the

low-rank approximation, while maximizing the variance of

learned features as the feature regularization term. Thus, the

objective function of TDVM-CP is as follows:

min
Xm,dm,u

(n)
r ,R

M
∑

m=1

1

2
‖Xm −

R
∑

r=1

dmru
(1)
r ◦ · · · ◦ u(N)

r ‖2F

+
M
∑

m=1

λ‖dm‖1 −
M
∑

m=1

1

2
‖dm − d̄‖22,

s.t. PΩ(Xm) = PΩ(Tm),u(n)
r

⊤
u
(n)
r = 1, n = 1 · · ·N,

u
(n)
r

⊤
u
(n)
q = 0, q = 1 · · · r − 1, r = 1 · · ·R,

(16)

where ‖dm‖1 is the CP-based tensor nuclear norm on each

weight vector, and we view the weight vector dm ∈ R
R of

the orthogonal CP decomposition (analogous to the vector of

singular values of a matrix) as the feature vector extracted

from a tensor sample Xm. d̄ = 1
M

∑M
m=1 dm is the mean of

the weight vectors (extracted features). λ > 0 is a penalty

parameter. Compared with TDVM-Tucker, TDVM-CP can

obtain much lower dimensional features because it learns

vectorial features from each tensor sample.

1) ADMM-BCD Joint Optimization for TDVM-CP: To

solve the objective function Eq. (16) which is non-convex

and non-smooth, we design a ADMM-BCD joint optimization

scheme. We divide all the target variables into M × (R+ 1)

groups: {{dmr,u
(1)
r ,u

(2)
r , · · · ,u

(N)
r }Rr=1,Xm}Mm=1, where we

optimize a group of variables while fixing the other groups,

and update one variable while fixing the other variables in

each group. After updating the R+ 1 groups for each sample

using BCD, we jump to the outside loop to update all samples

iteratively using ADMM. To apply ADMM, we introduce a set

of auxiliary variables {sm ∈ R
R}Mm=1 for the weight vectors

{dm}Mm=1, i.e., sm = dm ∈ R
R,m = 1 · · ·M . Then, we

formulate the Lagrangian function of Eq. (16) as follows:

L =
M
∑

m=1

(1

2
‖Xm −

R
∑

r=1

dmru
(1)
r ◦ · · · ◦ u(N)

r ‖2F + λ‖dm‖1

−
1

2
‖sm − s̄‖22 + 〈ym,dm − sm〉+

γ

2
‖dm − sm‖22

)

− η(u(n)
r

⊤
u
(n)
r − 1) −

r−1
∑

q=1

µqu
(n)
r

⊤
u
(n)
q ,

(17)
where γ, η, {µq}

r−1
q=1 and ym are the Lagrange multipliers.

In the ADMM-BCD joint optimization, we first update the

variables {dmr,u
(1)
r ,u

(2)
r , · · · ,u

(N)
r }Rr=1 of each data sample

via BCD. Thus, we formulate the Eq. (17) with respect to the

r-th group {dmr,u
(1)
r ,u

(2)
r · · · ,u

(N)
r } as follows:

2For easy reading, we use ‖dm‖1 instead of ‖Xm‖CP in the derivation.

L
dmr,u

(n)
r

=
1

2
‖Xmr − dmru

(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r ‖2F + λ|dmr|

+
γ

2
‖dmr + ymr/γ − smr‖

2
2

− η(u(n)
r

⊤
u
(n)
r − 1)−

r−1
∑

q=1

µqu
(n)
r

⊤
u
(n)
q ,

(18)

where Xmr = Xm −
∑r−1

q=1 dmqu
(1)
q ◦ u

(2)
q ◦ · · · ◦ u

(N)
q is the

residual of the approximation of each tensor sample.

a) Update u
(n)
r : Eq. (18) with respect to u

(n)
r is,

L
u
(n)
r

=
1

2
‖Xmr − dmru

(n)
r ◦ u(2)

r · · · ◦ u(N)
r ‖2F

− η(u(n)
r

⊤
u
(n)
r − 1)−

r−1
∑

q=1

µqu
(n)
r u

(n)
q .

(19)

Then we set the partial derivative of L
u

(n)
r

with respect to

u
(n)
r to zero and eliminate the Lagrange multipliers, and get:

u
(n)
r =(Xmr ×j {u

(j)
r }j 6=n)/dmr

−
(

r−1
∑

q=1

u
(n)
q

⊤
(Xmr ×j {u

(j)
r }j 6=n) u

(n)
q

)

/dmr,
(20)

where Xmr ×j {u
(j)
r }j 6=n = Xmr ×1 u

(1)
r · · · ×(n−1)

u
(n−1)
r ×(n+1) u

(n+1)
r · · · ×N u

(N)
r , j = 1, 2, · · · , n − 1, n +

1, · · · , N , and we normalize u
(n)
r = u

(n)
r /‖u

(n)
r ‖2. Note that

we only update the variable groups with non-zero weights (i.e.

dmr 6= 0).

b) Update dmr: Eq. (18) with respect to dmr is:

Ldmr =
1

2
‖Xr − dmru

(1)
r ◦ u(2)

r · · · ◦ u(n)
r ‖2F + λ|dmr|

+
γ

2
‖dmr + ymr/γ − smr‖

2
2.

(21)

Setting the partial derivative ∂Ldmr
/∂dmr to zero, we obtain,

dmr =
1

(1 + γ)

(

γsmr − ymr + Xr ×1 u
(1)
r ×2 u

(2)
r

· · · ×N u
(N)
r − λ|dmr|/∂dmr

)

.

(22)

According to the soft thresholding algorithm [57] for L1

regularization, we update dmr by:

dmr = shrinkt(Q) =







Q− t (Q > t)
0 (|Q| ≤ t)

Q+ t (Q < −t)
. (23)

where shrink is the shrinkage operator [57], and t =
λ

(1+γ) , Q = 1
(1+γ) (γsmr − ymr +Xr ×1 u

(1)
r ×2 · · ·×N u

(N)
r ).

After updating {dmr,u
(1)
r ,u

(2)
r , · · · ,u

(N)
r }Rr=1 by the BCD

method, we jump out of the inner loop for each tensor sample

and update the variables {sm,Xm}Mm=1 for all tensor samples

iteratively via ADMM.

c) Update sm: Eq. (17) with respect to sm is,

Lsm =

M
∑

m=1

1

2
γ‖dm + ym/γ − sm‖22 −

M
∑

m=1

1

2
‖sm − s̄‖22, (24)

where ym consists of Lagrange multipliers. Then we set the

partial derivative ∂Lsm
/∂sm to zero and obtain,

sm =
M2

γM2 + 1− 2M +M2

(

γdm + ym

)

+
M − 1

γM2 + 1− 2M +M2

M
∑

j 6=m

sj

(25)
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Algorithm 2 Low-rank Tensor (CP) Decomposition with

Feature Variance Maximization (TDVM-CP)

1: Input: Incomplete tensors PΩ(T ), Ω, λ, feature dimension D =
R (CP-rank), maximum iterations K, and tol.

2: Initialization: Set PΩ(Xm) = PΩ(Tm), PΩc(Xm) = 0, γ =

10; Initialize {u
(1)
r ,u

(2)
r , · · ·u

(N)
r }Rr=1, {dm}Mm=1 randomly.

3: for k = 1, ...,K do
4: for m = 1, ...,M do
5: Xmr = Xm;
6: for r = 1, ..., R do
7: if dmr 6= 0 then

8: Update u
(n)
r and dmr by (20) and (23),respectively.

9: Xmr = Xmr − dmru
(1)
r ◦ u

(2)
r · · · ◦ u

(N)
r .

10: end if
11: end for
12: Update sm and Xm by (24) and (27) respectively.
13: Update ym = ym + γ(dm − sm)
14: end for
15: If ‖dm − sm‖22/‖dm‖22 < tol, break; otherwise, continue.
16: end for
17: output: Vectorial features D = [d1, · · ·dm, · · ·dM ] ∈ R

R×M .

d) Update Xm: Eq. (16) with respect to Xm is,

min
Xm

1

2
‖Xm−

R
∑

r=1

dmru
(1)
r ◦ u(2)

r · · · ◦ u(N)
r ‖2F ,

s.t. PΩ(Xm) = PΩ(Tm),

(26)

by deriving KKT conditions for Eq. (26), Xm is updated by:

Xm = PΩ(Xm) + PΩc(

R
∑

r=1

dmru
(1)
r ◦ u(2)

r · · · ◦ u(N)
r ). (27)

Using the ADMM-BCD joint optimization, we solve each

subproblem of Eq. (16) in a closed-form. Finally, we summa-

rize the proposed TDVM-CP in Algorithm 2.

Remark 4: TDVM-CP is similar in spirit to TDVM-Tucker,

but it can yields features with lower dimension than TDVM-

Tucker: the former extracts low-dimensional vector features

from each data sample, while the latter aims to learn low-

dimensional tensor features from each sample. Thus, using

TDVM-CP to extract features can reduce the computational

cost and memory requirements for further applications such

as classification and clustering.

D. Computational Complexity Analysis

For TDVM-Tucker, we set the feature dimensions (Tucker-

rank) R1 = R2 · · · = RN = R for simplicity. In each itera-

tion, the time complexity of computing the soft-thresholding

operator (8) is O(MNRN+1). The time complexities of

multiplications in (11)/(13) and (15) are O(MNR(
∏N

j=1 Ij))

and O(MR(
∏N

j=1 Ij)), respectively. Thus, the total time

complexity of TDVM-Tucker is O(M(N + 1)R(
∏N

j=1 Ij))
in each iteration. For TDVM-CP, the time complexity of

performing the shrinkage operator in (23) is O(R(
∏N

j=1 Ij).

This is also the time complexity of computing {u
(n)
r }Nn=1 and

Eq. (27). Hence, the total time complexity of TDVM-CP is

O(MR(
∏N

j=1 Ij) in each iteration.

E. Discussion: General Model–TDFR

The proposed TDVM-Tucker and TDVM-CP essentially can

be summarized into a general model, i.e., low-rank Tensor

Decomposition with Feature Regularization (TDFR):

min
X ,Z

F (X , Z) +G(Z) s.t. PΩ(X ) = PΩ(T ), (28)

where F (X , Z) refers to a low-rank tensor decomposition

model and G(Z) is a regularization of target features Z.

X ∈ R
I1×I2×···IN×M is the approximation of incomplete data

(tensors) T based on observed entries indexed by Ω. Z is

a component of X and could be a lower-dimensional tensor

(e.g., a core tensor of Tucker model) or vector (e.g., a weight

vector of CP model) that consists of all features extracted from

T .

In this paper, we specify TDFR by TDVM-Tucker and

TDVM-CP. In addition, we briefly discuss more specific cases

of TDFR. For example, considering the whole dataset as a

tensor including all samples along the last mode, we can

specify TDFR as follows:

min
X ,C,U(n),Z

1

2
‖X−C×1U

(1)×2U
(2) · · · ×NU

(N)×N+1Z‖
2
F

+ ‖C‖∗ −
1

2
‖Z⊤‖2F ,

s.t. PΩ(X ) =PΩ(T ),U(n)⊤
U

(n) = I, n = 1 · · ·N,

(29)

where the (N+1)th factor matrix Z ∈ R
M×R(N+1) are viewed

as the extracted features from T = [T1, · · · , Tm, · · · TM ] ∈
R

I1×···×IN×M . Such usage of treating the (N + 1)th factor

matrix as features can also be found in [58], [59]. Inspired by

PCA, the third term: min− 1
2‖Z

⊤‖2F = max trace(ZZ⊤), aims

to maximize the variance of extracted features. Due to space

limitations, more specific cases are discussed in Appendix A

of the Supplementary Material 3.

Remark 5: As TDFR simultaneously estimates missing

data via low-rank tensor approximation and explores the

relationship among samples via feature regularization (e.g.,

maximizing variance of features in TDVM), we assume that

TDFR can solve the problem of extracting features from

incomplete tensors. In addition to the two proposed methods,

there are many variants of specific cases of the general model

TDFR: 1) For the low-rank approximation F (X , Z) of Eq.

(28), we can not only use Tucker and CP decompositions

in conjunction with the Tucker- and CP-based tensor nuclear

norm, but can also consider other tensor decomposition models

such as Tensor SVD [60], [11], Tensor-train decomposition

[61], [62], etc., coupled with other constraints such as tensor

nuclear norm [60], [11] to achieve low-rank tensor approxi-

mation; 2) For the feature regularization term G(Z), we can

use not only variance maximization for regularization such

as TDVM but also other constraints such as uncorrelation or

orthogonality, etc., to learn informative features.

IV. EXPERIMENTS

We evaluate the performance of the proposed TDVM-

Tucker and TDVM-CP on six real-world tensor datasets

with 30% − 90% missing entries under multi-block missing

settings. “MR” refers to the Missing Ratio. We implement

the proposed methods in MATLAB, and all experiments are

performed on a PC (Intel Xeon(R) 4.0 GHz, 64 GB memory).

3Supplementary Material: https://www.dropbox.com/sh/
zbqyofzwc5lsd0w/AABiDJVamrMuwwVfGUd-uvOfa?dl=0
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A. Experimental Setup

1) Data: We evaluate TDVM-Tucker and TDVM-CP on

six real-world datasets for three applications, including four

third-order tensors and two fourth-order tensors 4:

• For face recognition, we use two face datasets: one is

a subset of the Facial Recognition Technology database

(FERET)5 [63], which has 721 face samples from 70

subjects. Each subject has 8 to 31 face images with at

most 15 degrees of pose variation, and each face image is

normalized to an 80×60 gray image. The other dataset is

a subset of the extended Yale Face Database B (YaleB) 6

[64], which has 2414 face samples from 38 subjects. Each

subject has 59 to 64 near frontal images under different

illumination and each image is normalized to a 32 × 32
gray image.

• For object/action classification tasks, we evaluate two

datasets: one is a subset of the COIL-100 image database,

which contains 100 different objects, each viewed from

72 different angles 7[65]. The size of each sample (totally

1000 samples) is normalized to a 64 × 64 gray image

following [66]. The other dataset is a subset of the

Weizmann action dataset 8 [67], which consists of 80

videos of 8 actors performing ten different actions: “bend-

ing”, “jumping”, “jumping jacks”, “jumping in place”,

“running”, “galloping sideways”, “skipping”, “walking,

“one hand-waving”, and “two hands waving”. Each video

is resized to 32× 22× 10.

• For face/gait clustering tests, we also test two datasets:

one is a subset of the AR face database [68], which

contains 1200 face images with size 55 × 40 of 100

subjects including images of non-occluded faces, and face

occluded by scarves/glasses following [66]9; the other

dataset is the gallery set (731 samples from 71 subjects)

of the USF HumanID “Gait Challenge” database 10 [69].

Each gait video sample is resized to 64× 44× 20.

2) Compared Methods: We compare TDVM-Tucker and

TDVM-CP with 17 methods in four categories 11:

(i) Three Tucker-/CP- based tensor completion methods:

HaLRTC [25], TenALS [27] and TNCP [26].

(ii) Nine {tensor completion methods + feature extraction

methods} (i.e., “two-step” strategies): HaLRTC + MPCA

[3], TenALS + MPCA, TNCP + MPCA, HaLRTC +

SOMPCARS [6], TenALS + SOMPCARS, TNCP +

4For fast evaluation, we use resized tensor samples with smaller dimensions,
while the proposed methods are applicable to original (larger) tensors without
subsampling (resizing). Refer to Appendix D of the Supplementary Material
for results on large tensors.

5http://www.dsp.utoronto.ca/∼haiping/MSL.html
6http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
7http://machineilab.org/users/pengxi
8http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeActions.html
9http://machineilab.org/users/pengxi
10http://www.dsp.utoronto.ca/∼haiping/MSL.html
11We have also compared with the state-of-the-art tensor singular value decomposition

(t-SVD) methods such as [70] and its combined two-step strategies. Although the t-SVD

based tensor completion methods slightly outperform the Tucker and CP based methods

(such as HaLRTC and TNCP), they still give much poorer feature extraction results than

our TDVM methods. Because the proposed methods are based on the Tucker and CP

models, we do not present the comparison against t-SVD methods here for simplicity

and please refer to Appendix C of the Supplementary Material for these results.

Original FERET sample Missing 30% entries Missing 50% entries Missing 70% entries Missing 90% entries

(a) FERET with {20×15, 6×8, 4×4, 1×1} multi-block missing entries.

Original video frame 1 Missing 30% entries Missing 50% entries Missing 70% entries Missing 90% entries

Original video frame 10

Original video frame 15

Original video frame 20

(b) USF gait with {32×20×10, 20×15×5, 4×3×4, 1×1×1} multi-block missing entries.

Fig. 3. Examples of (a) one sample of FERET database (b) four
frames of the first video sample (20 frames) of USF gait database, with
{30%, 50%, 70%, 90%} missing entries generated by MbM settings.

SOMPCARS, HaLRTC + LRANTD [4], TenALS +

LRANTD, TNCP + LRANTD.

(iii) One robust tensor feature learning method: TRPCA [11].

(iv) Four clustering methods (used for the comparison of

clustering with missing data): Sparse subspace clustering

(SSC) [43], Zero-Fill + SSC (ZF + SSC) [21], SSC by

Column-wise Expectation-based Completion (SSC-CEC)

[21], Sparse Representation with Missing Entries and

Matrix Completion (SRME-MC) [22].

We compare the 13 methods of the first three categories

with respect to face recognition and object/action classification

tasks, and compare all 17 methods in face/gait clustering

tests. After feature extraction, we use the Nearest Neighbors

Classifier (NNC) to evaluate the extracted features for face

recognition and object/action classification. For face/gait clus-

tering tests, we use the K-means [71] to cluster the features

extracted by the first 13 methods and use a spectral clustering

technique as a post-processing step for the four subspace

clustering methods.

3) Multi-block Missing (MbM) Setting: In this paper, we

design a “Multi-block Missing (MbM)” setting to generate

random missing patterns of tensors. According to the data

sample size, we use a set of tensorial blocks with different

sizes as missing blocks to generate missing entries randomly

in each tensor sample. We progress from the largest missing

blocks to the smallest missing blocks to generate missing

patterns until the required ratio of missing entries is achieved.

For example, we can use a random set of missing blocks

{32× 20× 10, 20× 15× 5, 4× 3× 4, 1× 1× 1} to obtain an

incomplete USF gait database (sample size 64×44×20) with

50% missing entries. We first use the k largest (32×20×10)

blocks to create missing entries randomly until the (k + 1)th
largest block exceeds the required missing ratio (e.g., k = 5);

then we use the p second largest (20×15×5) blocks until the

(p + 1)th second largest block exceeds the required missing

ratio (e.g., p = 12). We continue by using the s third largest
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(4×3×4) blocks (e.g., s = 25) to generate the missing data

successively. Finally, we use the q smallest missing blocks

with smallest size (e.g., q = 70) to make up the remaining

missing region. Thus, we use (k+ p+ s+ q) missing blocks

of different sizes to generate an incomplete USF gait tensor

sample with 50% missing entries. Here, these missing blocks

can be overlapped (i.e., the values of k, p, s, q are different

in different samples) and the missing blocks are distributed

randomly in each tensor sample. Hence, the irregular missing

shapes (positions of missing data, i.e., Ω) are different in

each tensor sample, while the total number of missing entries

is the same. Nevertheless, one can set any types of MbM

sets with multiple blocks of different sizes under the MbM

setting. Figure 3 illustrates the data samples with missing

entries generated by the proposed MbM setting.

Remark 6: The Multi-block Missing setting generates

different irregular missing shapes (missing patterns) in tensor

samples, which is more general and practical in real-world

applications. MbM setting with only one type of block (with

size = 1) is equivalent to the pixel-based missing (uniformly

selecting MR (e.g., MR = 50%) pixels (entries) from each

tensor sample as missing at random) which is widely used in

matrix/tensor completion fields. MbM setting with only one

type of block (with size > 1) is equivalent to the block-based

missing setting (randomly selecting a single block entries of

each tensor sample as missing) which is also commonly used

in missing data imputation. In other words, existing missing

data settings are special cases of our MbM setting. Intuitively,

handling data with general multi-block missing is more difficult

than that with pixel-based missing and block-based missing if

the number of missing entries is the same. The reason is that

the MbM setting is somehow close to the non-random missing

setting especially when MR is higher (e.g., when MR= 90%,

some whole rows/columns of images/videos are missing as

shown in Figure 3), although the MbM setting is essentially

random block missing with overlapping.

4) Parameter Settings: We set the maximum iterations K =
500, tol = 1e−5 for all methods, although our methods usually

converge within 10 iterations. For Tucker decomposition-based

methods, namely, TDVM-Tucker and LRANTD, we set the

feature dimension D = [R1, R2, · · · , RN ] (Tucker-rank) =
round (1/2×([I1, I2, · · · IN ])) for each tensor sample. For CP

decomposition-based methods, namely, TDVM-CP, TenALS

and TNCP, we set D = R (CP-rank) = round (min{1/2×
mean([I1, I2, · · · , IN ]),min([I1, I2, · · · , IN ])}) for each sam-

ple. For other parameters of the compared methods, we have

tuned the parameters based on the original papers to obtain

the best results under same experimental settings. On the other

hand, we further evaluate extracted features for classification

via NNC, in which we randomly select L = {1, 7} extracted

feature samples from each subject of FERET for training in

NNC. Similarly, we set L = {5, 50}, {1, 8} and {1, 7} on the

YaleB, COIL-100 and Weizmann datasets, respectively.

B. Analysis of Different (Parameter) Settings and Convergence

1) Effect of Different Multi-block Missing Settings: Here,

we study the effect of applying TDVM-Tucker and TDVM-

CP to datasets with different MbM settings. We randomly set
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(a) TDVM-Tucker on Weizmann with MbM settings
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(b) TDVM-CP on Weizmann with MbM settings

Fig. 4. Classification results of Weizmann with 30%− 90% missing entries
generated by seven different MbM settings via TDVM-Tucker and TDVM-CP
(feature dimension D = {16× 11× 5, 10} respectively).
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(a) TDVM-Tucker with different feature dimensions
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(b) TDVM-CP with different feature dimensions

Fig. 5. Classification results on Weizmann with 30%− 90% missing entries
(MbM set ={10×8×6, 4×7×5, 3×3×3, 1×1×1}) via TDVM-Tucker
and TDVM-CP with seven different feature dimensions.

seven MbM sets using different types of missing blocks to

generate missing pattern on the Weizmann database to obtain

incomplete Weizmann data, i.e., MbM set 1 using only one

type of block with size {8×6×3}, which also refers to the

commonly used block-based missing setting; MbM set 2 using

two types of blocks:{5×4×8, 7×3×2}; MbM set 3 using three

types of blocks: {8×5×3, 3×5×2, 2×2×2}; MbM set 4 using

four types of blocks: {10×8×6, 4×7×5, 3×3×3, 1×1×1};

MbM set 5 using four types of blocks: {15×7×3, 3×13×
9, 12×12×4, 2×2×2}; MbM set 6 using five types of blocks:

{12×6×10, 8×5×4, 4×7×5, 2×3×4, 2×2×2}; and MbM set 7

using only one type of block with size = 1 (1×1×1), which

is equivalent to the pixel-based missing setting widely used

in matrix/tensor completion. Using the seven MbM sets, we

generate an incomplete Weizmann database (32×22×10×80)

with 30%− 90% missing entries. TDVM-Tucker and TDVM-

CP directly extract 16×11×5×80 and 10×80 features from

these incomplete tensors, respectively, and these features are

further evaluated via NNC using L = 7 video feature samples

per subject (each subject has 8 samples) as training.

Figure 4 shows that on the Weizmann dataset with various

missing patterns using different random MbM sets, both

TDVM-Tucker and TDVM-CP consistently yield good results.

Two cases are particularly worth mentioning. On the Weiz-

mann dataset with MbM set 1 and set 7, TDVM-Tucker and

TDVM-CP can achieve better classification results than other

cases (MbM set 2-6) especially when MR > 70%. This verifies

our claim mentioned in Remark 6: handling data with the

MbM setting which uses multiple missing blocks (MbM set 2-

6) is more difficult than that with existing block-based missing

(MbM set 1) and pixel-based missing (MbM set 7) settings.

For general MbM settings (MbM set 2-6), TDVM-Tucker and

TDVM-CP can obtain similar results with acceptable deviation

of classification accuracy. On the other hand, using these
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(b) TDVM-CP with different λ

Fig. 6. Classification results on Weizmann with 50% missing entries (MbM
set ={10× 8× 6, 4× 7× 5, 3× 3× 3, 1× 1× 1}) via TDVM-Tucker and
TDVM-CP with 11 different values of µ and λ, respectively.
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Fig. 7. Convergence curves of TDVM-Tucker and TDVM-CP in terms
of Relative Error: ‖Gm − Sm‖2F /‖Gm‖2F and ‖dm − sm‖22/‖dm‖22
respectively, on Weizmann with 50% missing entries (MbM set = {10 ×
8× 6, 4× 7× 5, 3× 3× 3, 1× 1× 1}).

MbM sets with different types of missing blocks, the achieved

missing ratios are likely slightly different, especially for these

MbM sets without size = 1 block to make up the remaining

missing entries. For example, with MbM set 5, we actually

obtain Weizmann with 29.94% – 89.92% instead of exact

30%– 90% missing entries because of the sizes of the missing

blocks. This slight difference of actual number of missing

entries can also slightly affect the classification results, leading

to an increase in the deviation of classification accuracy under

different MbM settings.

In short, the proposed TDVM-Tucker and TDVM-CP are

are not highly sensitive to the missing patterns overall and

consistently yield good results under various MbM settings.

Thus, in the following tests, we test datasets with four types of

missing blocks in MbM settings for simplicity, and each MbM

set includes the size = 1 block to ensure the total number of

missing entries is the same under different MbM settings.

2) Effect of Different Feature Dimensions: We study the

effect of different feature dimensions used in TDVM-Tucker

and TDVM-CP for feature extraction on an incomplete Weiz-

mann database. Figure 5 shows that, with different dimensions

of features, TDVM-Tucker and TDVM-CP yield similar clas-

sification results stably on the whole, except in the case of

TDVM-Tucker with D7=2×2×2 (i.e., only 8 features are

extracted from each 32× 22× 10 video) where the number

of features is too limited to achieve good results. TDVM-CP

obtains much fewer learned features, but it consistently achieve

good results. On the other hand, as TDVM-Tucker and TDVM-

CP are based on the orthogonal Tucker and CP models respec-

tively, the dimension of effective features for TDVM-Tucker

is upper-bound by the data dimension in each mode, and that

of TDVM-CP is limited by the minimum sample dimension.

Thus, setting {D1=30×30×30> 32×22×10} for TDVM-

Tucker and {D1=32, D2=21, D3=15>10=min [32, 22, 10]}
for TDVM-CP leads to a slight deterioration of classification

performance especially in the cases of Weizmann with higher

missing ratio (e.g., MR=90%), as seen from Figs. 5(a) and

5(b) respectively.

In short, the proposed methods are not sensitive to the

feature dimensions. Since a larger feature dimension will

lead to higher computational costs and memory requirements,

and we aim to learn low-dimensional features, we thus set

D= round (1/2×([I1, I2, · · · IN ])) and D= round (min{1/2×
mean([I1, I2, · · · , IN ]),min([I1, I2, · · · , IN ])}) for TDVM-

Tucker and TDVM-CP by default, respectively.

3) Sensitivity Analysis of Parameter µ and λ: Figure 6

shows the classification results given features extracted by

TDVM-Tucker and TDVM-CP with 11 different values for the

penalty parameters µ and λ, respectively, on Weizmann videos

with 50% missing entries via an MbM set. Figure 6(a) show

that TDVM-Tucker yields good results stably with different

values of µ. Figure 6(b) shows that the feature extraction

performance of TDVM-CP is also stable and not sensitive

to the values of λ, except for the case in which λ = 1. In

other words, the proposed methods are not sensitive to the

parameters overall. In addition, as the parameters ρ and γ can

be fixed (fix ρ = 10, γ = 1) within Algorithm 1 and Algorithm

2 respectively based on preliminary studies, we thus do not

examine them here.

In short, we do not need to carefully tune the parameters µ
and λ for TDVM-Tucker and TDVM-CP, respectively. In this

paper, we fix µ = λ = 10 for all tests.

4) Convergence: We study the convergence of TDVM

in terms of the relative error on a Weizmann dataset with

50% missing entries via an MbM set. Figure 7 shows that:

TDVM-Tucker converges within 10 iterations while TDVM-

CP requires more iterations (about 20) to reach convergence.

If set tol=1e−5, our methods converge fast with around 5-10

iterations.

C. Evaluation of Extracted Features from Incomplete Tensors

To save space, we report the results of six real tensor

datasets with {30%, 50%, 70%, 90%} missing pixels under

random MbM settings in Tables I, II and III 12. We highlight

the best results in bold font and underline the second best

results, and we use “–” to indicate that the method diverges

(e.g., TenALS) in some cases. The average results of 10 runs

are reported.

1) Face Recognition: Table I shows that TDVM-Tucker

and TDVM-CP consistently outperform all the methods com-

pared in all cases. Specifically, TDVM-Tucker and TDVM-CP

directly learn 40 × 30 × 721 features and 35 × 721 features

from FERET (80 × 60 × 721) with {30%, 50%, 70%, 90%}
missing pixels via a random MbM set ({32× 32, 10× 4, 8×
16, 1 × 1}). As shown in the left half of Table I, TDVM-

Tucker and TDVM-CP share the two best recognition results,

12The proposed methods are based on low-rank decompositions and thus
can yield good results on tensors with good low-rank structure even when the
missing ratio reaches 90%. However, if too many (e.g., 95%, 99%) entries
are missing, the performance of our methods will drop dramatically.
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TABLE I
FACE RECOGNITION RESULTS (AVERAGE RECOGNITION RATES %) ON THE FERET AND YALEB DATABASE WITH {30%, 50%, 70%, 90%} MISSING

ENTRIES UNDER MULTI-BLOCK MISSING SETTINGS.

Data FERET (Image sample size 80 × 60) YaleB (Image sample size 32 × 32)

Multi-Block Missing Setting {20 × 15, 6 × 8, 4 × 4, 1 × 1} {16 × 16, 10 × 5, 4 × 8, 1 × 1}

Missing Ratio (MR) 30% 50% 70% 90% 30% 50% 70% 90%

L 1 7 1 7 1 7 1 7 5 50 5 50 5 50 5 50

HaLRTC [25] 34.1 71.2 31.1 67.1 26.3 58.4 19.2 46.3 32.9 73.9 30.8 70.8 27.2 63.0 19.5 44.8

TenALS [27] 31.3 65.6 29.4 63.3 25.0 55.5 12.4 24.8 25.0 56.5 18.0 38.5 7.7 14.8 2.7 2.7

TNCP [26] 33.6 71.0 32.0 66.6 26.5 59.4 20.8 45.2 28.9 66.9 24.5 58.7 20.1 47.8 17.8 36.5

HaLRTC + MPCA [3] 40.4 73.8 30.8 65.2 21.2 51.7 16.9 41.0 24.7 65.6 12.9 38.4 10.2 18.5 8.7 20.7

TenALS + MPCA [3] 31.1 62.0 23.9 49.4 12.9 24.9 4.8 9.1 18.6 40.8 16.8 36.0 13.4 24.2 8.5 13.8

TNCP + MPCA [3] 33.4 63.7 19.7 33.7 13.7 22.3 12.6 18.4 19.9 55.4 11.4 30.7 12.9 26.3 10.3 16.1

HaLRTC + SOMPCARS [6] 32.0 63.7 25.7 51.1 17.7 30.8 12.2 19.6 11.6 23.3 11.4 20.1 11.2 19.3 8.5 11.7

TenALS + SOMPCARS [6] 28.5 52.2 11.8 17.1 6.4 7.8 3.6 4.9 11.1 24.0 12.9 22.4 11.1 20.8 8.4 14.4

TNCP + SOMPCARS [6] 29.5 55.2 14.4 26.4 7.5 10.7 8.5 10.0 17.8 38.8 15.3 33.7 9.8 17.7 6.2 10.3

HaLRTC + LRANTD [4] 34.0 72.3 30.5 66.4 25.3 58.3 19.2 45.7 24.5 58.4 21.4 52.3 17.6 42.5 13.8 29.7

TenALS + LRANTD [4] 30.9 65.5 29.0 63.2 26.4 58.4 14.6 29.4 12.7 27.5 12.9 26.5 13.2 25.6 9.5 16.5

TNCP + LRANTD [4] 34.1 71.0 31.1 67.9 26.8 60.2 20.1 45.0 21.1 49.6 17.8 41.9 16.3 36.6 15.5 31.2

TRPCA [11] 30.0 64.4 21.8 51.1 17.8 43.1 16.5 36.0 32.5 72.5 30.0 66.3 26.2 54.4 19.6 36.0

TDVM-Tucker 75.7 92.1 73.9 91.1 71.8 91.0 70.6 90.3 58.2 94.8 47.2 93.0 46.2 92.1 45.1 91.0

TDVM-CP 76.3 90.9 75.9 88.0 75.2 87.2 72.6 86.6 94.9 97.6 93.0 95.6 90.6 95.4 81.9 91.4

TABLE II
CLASSIFICATION RESULTS (AVERAGE CLASSIFICATION ACCURACIES %) OF THE COIL-100 OBJECT IMAGES AND WEIZMANN ACTION VIDEOS WITH

{30%, 50%, 70%, 90%} MISSING ENTRIES UNDER MULTI-BLOCK MISSING SETTINGS.

Data COIL-100 (Image sample size 64 × 64) Weizmann (Video sample size 32 × 22 × 10)

Multi-Block Missing Setting {32 × 32, 10 × 4, 8 × 16, 1 × 1} {10 × 8 × 6, 4 × 7 × 5, 3 × 3 × 3, 1 × 1 × 1}

Missing Ratio (MR) 30% 50% 70% 90% 30% 50% 70% 90%

L 1 8 1 8 1 8 1 8 1 7 1 7 1 7 1 7

HaLRTC [25] 49.4 67.3 47.1 65.6 43.7 58.7 30.9 41.5 47.1 77.0 35.7 64.0 21.9 44.0 11.3 19.0

TenALS [27] 50.8 71.7 44.9 60.8 35.3 42.9 21.3 25.7 25.6 56.0 10.6 15.0 – – – –

TNCP [26] 50.7 68.7 49.5 65.4 44.6 57.9 30.5 38.9 54.9 90.0 54.1 87.0 40.7 66.0 19.9 41.0

HaLRTC + MPCA [3] 57.8 77.7 50.8 68.2 39.0 51.0 9.6 5.3 56.3 91.0 35.9 65.0 24.6 39.0 12.4 21.0

TenALS + MPCA [3] 39.3 55.5 26.0 35.5 16.6 18.0 10.2 5.2 – – – – – – – –

TNCP + MPCA [3] 52.5 70.3 47.8 62.8 19.1 21.8 14.0 11.1 59.0 88.0 44.0 68.0 26.4 44.0 10.6 19.0

HaLRTC + SOMPCARS [6] 42.9 57.3 43.8 57.3 20.5 24.3 10.3 5.0 39.1 63.0 25.7 44.0 20.7 40.0 16.4 28.0

TenALS + SOMPCARS [6] 37.6 45.4 22.0 22.3 13.3 10.7 9.5 3.9 – – – – – – – –

TNCP + SOMPCARS [6] 30.4 37.1 21.6 24.3 16.9 14.9 17.3 14.7 45.1 65.0 38.1 53.0 21.6 38.0 11.7 18.0

HaLRTC + LRANTD [4] 51.8 71.4 51.2 68.6 47.1 62.0 15.8 15.2 55.4 90.0 52.1 87.0 44.4 82.0 22.0 43.0

TenALS + LRANTD [4] 51.6 70.2 47.3 63.1 37.0 46.8 20.6 21.0 – – – – – – – –

TNCP + LRANTD [4] 52.0 72.0 50.0 66.2 45.9 60.6 30.4 37.1 56.7 90.0 54.7 82.0 45.6 69.0 19.4 38.0

TRPCA [11] 42.2 58.4 33.9 49.5 24.8 28.8 14.5 11.8 46.9 77.0 38.4 67.0 25.4 49.0 13.3 21.0

TDVM-Tucker 82.9 96.8 76.7 96.1 76.3 94.6 70.3 93.7 85.7 99.0 74.0 96.0 51.6 85.0 44.7 48.0

TDVM-CP 83.4 92.4 82.0 92.0 73.9 86.0 72.6 85.2 82.0 94.0 82.3 89.0 82.3 87.0 56.7 61.0

while TDVM-CP shows greater advantages, particularly when

the number of training features is smaller (e.g., L = 1). As

the missing ratio increases, the performance of the compared

methods drops more quickly than that of our methods, which

retain high accuracy. When there are 90% missing entries,

TDVM-Tucker and TDVM-CP outperform all other methods

by {60.9%, 59.4%} on average, respectively.

As reported in the right half of Table I: TDVM-Tucker

and TDVM-CP outperform the 13 competing methods by

29.1% − 69.2% and 47.3% − 75.5% on average, respec-

tively. TDVM-CP consistently yields the best results in

all cases, especially in the case of L = 5 (use only 5

feature samples per subject for training), where the method

outperforms the second best performing method (TDVM-

Tucker) by {36.7%, 45.8%, 44.4%, 36.8%} on YaleB with

{30%, 50%, 70%, 90%} missing entries, respectively. Here,

TDVM-CP only uses 16 × 2414 features extracted directly

from the YaleB database (32×32×2414). Moreover, HaLRTC,

TRPCA and TNCP perform better than other existing methods

on the whole, although their results are much worse than ours.

2) Object/Action Classification: We further evaluate the

proposed methods using COIL-100 object images (64× 64×
1000) and Weizmann action videos (32 × 22 × 10 × 80) for

object and action classification, respectively. Table II shows

that TDVM-Tucker and TDVM-CP outperform the compared

methods in all cases. Specifically, TDVM-Tucker outperforms

the other methods by {34.7%, 38.5%, 50.8%, 63.9%} in cases

of COIL-100 with {30%, 50%, 70%, 90%} missing values

respectively, where TDVM-CP outperforms these compared

methods by {32.8%, 39.1%, 45.3%, 60.8%} respectively using

32 features learned from each object sample. These results

clearly demonstrate that: With more missing entries, the pro-

posed methods show more superiority, particularly when the

missing rate reaches 90% where the performance of the other

methods drops sharply. This observation is further confirmed

in the cases of Weizmann action videos: Although some
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TABLE III
CLUSTERING RESULTS (AVERAGE NORMALIZED MUTUAL INFORMATION (NMI) AND CLUSTERING ACCURACY (ACC) %) ON THE AR FACIAL IMAGES

AND USF GAIT VIDEOS WITH {30%, 50%, 70%, 90%} MISSING ENTRIES UNDER MULTI-BLOCK MISSING SETTINGS.

Data AR (Image sample size 55 × 40) USF gait (Video sample size 64 × 44 × 20)

Multi-Block Missing Setting {20 × 20, 16 × 7, 3 × 10, 1 × 1} {32 × 20 × 10, 20 × 15 × 5, 4 × 3 × 4, 1 × 1 × 1}

Missing Ratio (MR) 30% 50% 70% 90% 30% 50% 70% 90%

Metric NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

HaLRTC [25] 51.5 17.5 48.5 15.8 49.0 15.4 46.6 15.0 49.7 19.0 48.7 17.5 48.9 16.1 48.5 15.5

TenALS [27] 50.1 15.9 48.2 15.3 45.2 13.3 42.5 12.6 – – – – – – – –

TNCP [26] 51.1 17.8 48.9 15.8 46.3 14.8 45.6 14.3 49.2 18.2 48.2 16.6 48.5 16.3 48.1 15.2

HaLRTC + MPCA [3] 49.6 17.6 48.6 15.8 46.6 15.4 44.8 15.0 49.7 19.8 48.8 16.3 48.2 14.9 48.1 14.9

TenALS + MPCA [3] 50.2 16.3 47.4 15.1 44.4 13.7 41.8 12.7 – – – – – – – –

TNCP + MPCA [3] 50.0 16.0 49.0 15.1 47.2 14.8 46.1 13.8 50.3 19.0 48.9 16.8 48.4 15.5 48.0 14.9

HaLRTC + SOMPCARS [6] 52.0 18.1 50.6 17.4 47.7 15.6 45.6 14.8 49.6 20.0 47.8 18.1 45.7 17.2 45.4 16.7

TenALS + SOMPCARS [6] – – – – – – – – – – – – – – – –

TNCP + SOMPCARS [6] 50.8 16.7 48.5 15.2 47.3 15.0 46.0 14.1 50.3 20.0 48.5 17.4 48.2 17.2 47.6 15.9

HaLRTC + LRANTD [4] 50.8 16.5 49.2 15.8 47.9 15.7 46.3 15.6 49.7 18.7 48.3 15.9 48.5 15.3 48.3 15.3

TenALS + LRANTD [4] 50.6 16.7 47.9 15.5 45.2 13.9 43.3 13.7 – – – – – – – –

TNCP + LRANTD [4] 51.2 17.3 49.8 16.4 48.3 15.1 45.9 14.8 49.7 18.7 49.2 16.6 49.2 16.1 48.1 15.2

TRPCA [11] 45.8 12.9 42.7 12.4 39.1 11.7 36.1 10.8 48.2 18.2 47.0 15.2 46.0 15.2 45.8 13.8

SSC [43] 46.3 13.9 46.3 13.3 45.8 13.1 45.5 13.0 49.4 19.4 47.0 16.3 45.9 15.2 45.2 14.3

SSC-CEC [21] 48.1 14.3 47.6 13.4 47.5 13.0 46.5 12.1 44.4 14.6 44.4 13.5 – – – –

ZF + SSC[21] 48.8 15.0 48.5 14.2 47.7 13.5 47.6 13.2 50.0 19.4 48.6 16.8 47.9 15.7 46.7 13.8

SRME-MC [22] 49.1 15.6 47.3 12.3 47.3 12.1 47.1 11.8 50.0 19.3 47.4 15.6 47.1 14.8 47.0 14.6

TDVM-Tucker 85.8 65.1 84.2 61.8 83.2 61.6 82.1 58.8 90.0 75.4 88.4 71.8 88.2 71.8 87.6 70.3

TDVM-CP 84.2 59.6 82.3 54.8 79.2 48.7 77.0 45.4 87.4 68.4 86.5 67.7 85.5 65.8 82.8 64.3

compared methods such as HaLRTC + LRANTD, TNCP

and TNCP + LRANTD also achieve good results especially

in the cases of MR≤ 70%, these state-of-the-art methods

cannot maintain good performance with increasing missing

data (MR > 70%). In this scenario, TDVM-CP achieves

the best performance although it extracts only 10 features

from each video sample. Moreover, TenALS and its combined

“two-step” strategies fail to work on the higher-order dataset

(Weizmann).

3) Face/Gait Clustering: For clustering tasks, we test on

AR facial images (55 × 40 × 1200) and USF gait videos

(64× 44× 20× 731). To measure the clustering performance,

we adopt two metrics: Normalized Mutual Information (NMI)

and Clustering Accuracy (ACC). Table III shows that TDVM-

Tucker and TDVM-CP still outperform all other methods,

including the four state-of-the-art clustering methods. Al-

though these subspace clustering methods have shown good

performance in the original papers, they do not achieve good

results (and even fail to work on a few cases in which

MR ≥ 70%) on these incomplete tensors probably because

they are not applicable in this scenario (i.e., tensors with

multi-block missing). Here, TDVM-Tucker achieves the best

clustering results in all cases followed closely by TDVM-CP.

In terms of NMI, TDVM-Tucker and TDVM-CP outperform

the other methods by at least 36.7% and 33.5% on average

on the AR dataset, and this improvement increases to over

40.5% and 37.5% on average on the USF gait database,

respectively. In terms of ACC, the results of the 17 compared

methods are worse than those of measuring in NMI, while

TDVM-Tucker and TDVM-CP achieve much better clustering

accuracy, particularly on the gait videos with 55.8% and 50.1%
improvements on average, respectively.

4) Time Cost: We report the average time cost of feature

extraction in Appendix B of the Supplementary Material.

TDVM-Tucker is faster than the compared methods in most

cases although our implementations are not optimized for

efficiency as our focus here is accuracy. TDVM-CP is slightly

slower than TDVM-Tucker because it requires more iterations

to achieve convergence. Besides, HaLRTC, TNCP and TRPCA

are more efficient than other existing methods, while certain

two-step strategies such as TenALS + MPCA/LRANTD are

very time consuming (more than 50 times slower than TDVM).

Nevertheless, the efficiency can be improved, for example, by

using sparse implementations in future work.

D. Summary of Experimental Results

– The proposed methods, TDVM-Tucker and TDVM-CP,

outperform the 17 competing methods with 15.3% to

75.5% improvements in all cases of face recognition,

object/action classification and face/gait clustering on six

real-world image and video datasets. With more missing

entries, our methods show more advantages with much

better results than other methods. These results verify the

effectiveness and superiority of incorporating low-rank

tensor decomposition with feature variance maximization.

– TDVM-Tucker and TDVM-CP consistently achieve good

results regardless of various multi-block missing set-

tings and parameters. Besides, our methods also demon-

strate its stability and superiority with respect to feature

dimension reduction, benefitting from low-rank (low-

dimensional) tensor decomposition. Although TDVM-CP

yields the best results in fewer cases than TDVM-Tucker,

it extracts low-dimensional vector features resulting in

more dimensionality reduction. TDVM-CP, therefore, not

only provides informative features but also reduces more

time cost and memory space for further application (e.g.,

classification).

– HaLRTC, HaLRTC + LRANTD and HaLRTC + SOM-

PCARS are the best performing existing algorithms on

the whole in Tables I, II and III respectively. TNCP
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and TNCP + LRANTD also achieve the best results in

some cases while TenALS shows much worse perfor-

mance (and even fails to work) than HaLRTC and TNCP.

Nevertheless, the proposed methods outperform these

tensor completion methods significantly. That supports

our prediction: tensor completion methods only focus on

recovering missing data and do not explore the relation-

ship among samples for effective feature extraction.

– Although a few “two-step” strategies show slight

improvement in some cases, more “two-step”

strategies (e.g., TNCP + SOMPCARS, TenALS +

MPCA/SOMPCARS) perform worse than when using

only the tensor completion methods (e.g., TNCP and

TenALS) in most cases with high computational costs.

That confirms our assumption: the reconstruction error

from the completion step can deteriorate performance

in feature extraction step, and “two-step” strategies

usually work slowly. Moreover, although TRPCA is

the state-of-the-art robust feature learning method for

corrupted tensors, it does not perform well on these

incomplete tensors as we predicted.

– Although SSC, SSC-CEC, ZF + SSC and SRME-MC

have achieved good clustering results shown in the orig-

inal papers, they are not applicable to these incomplete

tensors with irregular missing patterns via multi-block

missing settings, and even fail to work in a few cases

in which MR ≥ 70% as shown in Table III. This prob-

ably because these subspace clustering methods cannot

handle this scenario as we discussed with the authors. In

addition, these results also supports our claim: the MbM

setting is more general and difficult than existing widely

used pixel-based and block-based missing settings (e.g.,

used in the tensor completion and SSC methods), which

is also verified in Sec. IV-B1.

V. CONCLUSION

In this paper, we have proposed two unsupervised meth-

ods, TDVM-Tucker and TDVM-CP, to solve the problem

of feature extraction from incomplete tensors, based on or-

thogonal Tucker and CP decompositions, respectively. We

first propose the TDVM approach which incorporates low-

rank tensor decomposition with feature variance maximization

into the unified framework. Focusing on orthogonal Tucker

and CP decompositions, we have further proposed TDVM-

Tucker which learns low-dimensional tensor features viewing

the core tensors as features and TDVM-CP which extracts

low-dimensional vector features viewing the weight vectors as

features. TDVM-Tucker and TDVM-CP explore the relation-

ship among data samples via feature variance maximization

while estimating the missing entries via low-rank Tucker/CP

approximation. We further discuss the generalization of the

proposed methods by formulating the general model TDFR.

Besides, we have developed the ADMM-BCD joint optimiza-

tion scheme to solve the TDVM-CP model. Finally, we have

evaluated our methods on six real-world image and video

datasets with missing entries under the newly designed multi-

block missing settings. Experimental results demonstrate that:

the proposed methods not only stably yield similar good results

under various MbM settings and different parameters on the

whole, but also outperform the state-of-the-art methods with

significant improvements in the applications of face recogni-

tion, object/action classification and face/gait clustering.
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