
This is a repository copy of Magnetic alginate/chitosan nanoparticles for targeted delivery 
of curcumin into human breast cancer cells..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/138772/

Version: Published Version

Article:

Song, W., Su, X., Gregory, D.A. orcid.org/0000-0003-2489-5462 et al. (3 more authors) 
(2018) Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into 
human breast cancer cells. Nanomaterials, 8 (11). 907. ISSN 2079-4991 

https://doi.org/10.3390/nano8110907

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


nanomaterials

Article

Magnetic Alginate/Chitosan Nanoparticles for
Targeted Delivery of Curcumin into Human Breast
Cancer Cells

Wenxing Song 1,2, Xing Su 3, David Alexander Gregory 1 , Wei Li 4, Zhiqiang Cai 2 and

Xiubo Zhao 1,2,*

1 Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK;

wsong4@sheffield.ac.uk (W.S.); d.a.gregory@sheffield.ac.uk (D.A.G.)
2 School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China;

zhqcai@cczu.edu.cn
3 Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK;

whitesnowleopard@126.com
4 Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S3 7HQ, UK;

WLi27@sheffield.ac.uk

* Correspondence: xiubo.zhao@sheffield.ac.uk; Tel.: +44-114-222-8256

Received: 27 September 2018; Accepted: 2 November 2018; Published: 5 November 2018 ����������
�������

Abstract: Curcumin is a promising anti-cancer drug, but its applications in cancer therapy are

limited, due to its poor solubility, short half-life and low bioavailability. In this study, curcumin

loaded magnetic alginate/chitosan nanoparticles were fabricated to improve the bioavailability,

uptake efficiency and cytotoxicity of curcumin to Human Caucasian Breast Adenocarcinoma cells

(MDA-MB-231). Alginate and chitosan were deposited on Fe3O4 magnetic nanoparticles based on

their electrostatic properties. The nanoparticle size ranged from 120–200 nm, within the optimum

range for drug delivery. Controllable and sustained release of curcumin was obtained by altering

the number of chitosan and alginate layers on the nanoparticles. Confocal fluorescence microscopy

results showed that targeted delivery of curcumin with the aid of a magnetic field was achieved.

The fluorescence-activated cell sorting (FACS) assay indicated that MDA-MB-231 cells treated with

curcumin loaded nanoparticles had a 3–6 fold uptake efficiency to those treated with free curcumin.

The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay indicated that the

curcumin loaded nanoparticles exhibited significantly higher cytotoxicity towards MDA-MB-231

cells than HDF cells. The sustained release profiles, enhanced uptake efficiency and cytotoxicity to

cancer cells, as well as directed targeting make MACPs promising candidates for cancer therapy.

Keywords: alginate; chitosan; layer-by-layer; magnetic nanoparticles; drug delivery;

cancer; curcumin

1. Introduction

Curcumin (CUR) is a yellow, hydrophobic, polyphenolic compound of turmeric that is extracted

from the rhizomes of Curcuma longa, which are widely cultivated in Asian countries, such as India

and China, and have been historically used as a spice [1]. CUR is generally recognised as safe (GRAS)

by the Food and Drug Administration (FDA) [1], and has been widely used in medicine due to its

anti-oxidant [2–4], anti-inflammatory [5–7], wound-healing [8,9] and anti-bacterial [10,11] properties.

Recent research has demonstrated that CUR has the ability to inhibit carcinogenesis in various cell

lines, including breast, colon and gastric cancer cells, which has resulted in an increased interest as
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a promising anticancer drug [12–15]. However, CUR exhibits poor solubility in aqueous solutions,

limiting its applications for cancer therapy [16–18].

It has been reported that after an oral administration of 2 g/kg of CUR in humans an extremely

low serum concentration (0.006 ± 0.005 µg/mL) of CUR was observed after 1 h [19]. As a

result, the bioavailability and anti-cancer efficiency of CUR is limited by its low solubility [16–18].

In order to improve the bioavailability, various nanocarriers have been used, including lipid-based

nanoparticles [20–24], polymer nanoparticles [17,25–30] and inorganic nanoparticles [31]. The main

advantages of the CUR loaded nanocarriers are their small size and large surface area, which enable

them to pass through the cell membranes with an enhanced uptake efficiency [1,29]. Research

has increasingly focused on the fabrication of biopolymer nanoparticles for CUR delivery, due to

advantages of low cytotoxicity, excellent biocompatibility and biodegradability [29]. Two of the

most commonly used biopolymers in medical applications are alginate and chitosan (CHI). Alginate

is an anionic polysaccharide composed of (1–4)-linked β-D-mannuronate (M) and α-L-guluronate

(G) residues, while CHI is a cationic polysaccharide composed of N-acetyl-β-D-glucosamine and

β-D-glucosamine [32] and is positively charged below neutral pH, due to the protonation of amino

groups [33]. Moreover, alginate based nanoparticles can be fabricated by simple processes, such as

Ca2+, cross-linking or altering of pH [34]. CHI based nanoparticles can be prepared by via polyanion

of tripolyphosphate (TPP) without introducing harsh cross-linking agents or organic solvents [35].

Electrostatic interactions between positive CHI chains and negative drugs, such as CUR, enable the

retention of the drug in CHI based nanoparticles providing a prolonged drug release profile [36].

These advantages of alginate and CHI make them promising candidates as nanocarriers for drug

delivery [37]. Various alginate or CHI based nanoparticles have been developed for the delivery of

CUR [30,38–41].

Targeted delivery by magnetic nanoparticles (MNPs) has been reported as a promising strategy

for cancer therapy with the advantages ranging from visualisation of the targeting process, rapid

targeting and accumulation of drug carriers at the tumour sites via magnetic forces. The MNPs can

be heated in a magnetic field to promote the drug release [42]. MNPs have been reported to have

very low toxicity within the human body [43]. Their small size and large surface area make them

suitable for polyelectrolyte layer-by-layer deposition. The incorporation of MNPs has shown the

targeted delivery of drugs to tumour sites with the help of external magnetic fields [42]. For example,

Mancarella et al. [44] developed layer-by-layer functionalized nanoparticles by coating MNPs with

positively charged Poly-L-lysine and negatively charged Dextran. The layer-by-layer coating enabled a

high loading efficiency of CUR into the particles, and the MNP cores promoted the uptake of CUR into

SKOV-3 cells. In another example Pavlov et al. [45] prepared luciferase enzyme and plasmid DNA

loaded particles with alternative layers of poly-L-arginine hydrochloride and dextran sulphate sodium

salt. MNPs were incorporated into the particles and the resulting MNPs improved the delivery of

enzymes and plasmids into 293T cells. In addition, MNPs could be efficiently navigated to cells with a

magnet below the targeted tissue culture wells [45].

Exploiting the electrostatic properties of alginate and CHI, a layer-by-layer coating method can be

employed to prepare multilayer alginate/CHI polyelectrolyte nanoparticles, allowing desired surface

features to be engineered for specific applications [46]. By altering the number of layers deposited, it is

possible to encapsulate a high payload of drugs and control the drug release rate [47–50]. In this paper,

magnetic alginate/CHI layer-by-layer nanoparticles (MACPs) were fabricated for the delivery of CUR

into MDA-MB-231 breast cancer cells and HDF cells.

2. Materials and Methods

2.1. Materials

Curcumin (C8069) was purchased from LKT Laboratories (Cambridge, UK). Paraformaldehyde

(sc-253236A) was purchased from Chem Cruz® (Dallas, TX, USA). Ca(OH)2 (21181) was purchased
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from Honeywell Fluka™ (Bucharest, Romania). Sodium alginate (W201502), Na2HPO4 (S7907),

NaH2PO4 (S8282), ammonium hydroxide (221228), and DMSO (Dimethyl sulfoxide, D5879) were

purchased from SIGMA-ALDRICH (Gillingham, UK). RPMI (Roswell Park Memorial Institute)

1640 Medium (BE 12-167F), PBS (Dulbecco’s Phosphate Buffered Saline, BE17-512F), Penicillin

5000 U/ml-Streptomycin 5000 U/mL (DE17-603E), L-Glutamine (17-605F) were purchased from

Lonza® (Manchester, UK). Chitosan (349051000), Iron (II) chloride tetrahydrate (44939), Iron (III)

chloride hexahydrate (44944), NaHCO3 (A17005), Alexa Fluor® 568 phalloidin (A12380), MTT

(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide, M6494) assay, FBS (Fetal Bovine

Serum, 10500064) and DAPI (4′,6-Diamidino-2-phenylindole dihydrochloride, D1306) were purchased

from Thermo Fisher Scientific (Waltham, MA, USA). MDA-MB-231 cells (Human Caucasian Breast

Adenocarcinoma cells) were purchased from ECACC (Salisbury, UK). Neonatal foreskin HDFs (Human

Dermal Fibroblasts) were obtained from the Sheffield RNAi Screening Facility (Sheffield, UK).

2.2. Preparation of Nanoparticles

2.2.1. Preparation of Fe3O4 Magnetic Nanoparticles

Fe3O4 MNPs were prepared by co-precipitation as previously described in Song et al. [27]. 4 g

Iron (III) chloride hexahydrate and 4.5 g Iron (II) chloride tetrahydrate were each dissolved in 150 mL

deionized (DI) water and degassed with nitrogen for 30 min to remove any dissolved oxygen. The

solutions were then mixed in a 500 mL round-bottom flask and 15 mL of ammonium hydroxide was

added under vigorous stirring under a nitrogen atmosphere at room temperature. The solution was

then vigorously stirred for 2 h and the synthesised MNPs were collected with strong Neodymium

magnets and washed several times with DI water until neutral pH. Finally, the magnetic nanoparticles

were dried over night at room temperature and stored for future usage.

2.2.2. Preparation of Magnetic Alginate Nanoparticles

Magnetic alginate nanoparticles (MAPs) were prepared based on the procedure described by

Liu et al. [51] Briefly, 20 mL of ethanol and 10 mL of DI water was mixed into a beaker and 0.25 g

of MNPs were suspended in the prepared mixture. Next, 40 mL of sodium alginate (SA) solution

(20 mg/mL) was added into the beaker, upon which the mixture was sonicated for 10 min to allow full

homogenous dispersion of MNPs in the suspension. The resulting suspension was vigorously stirred

for 30 min at room temperature. Subsequently, 128 mL of Ca(OH)2 solution (0.74 mg/mL) was added

into the suspension and stirred for 1 h before 16 mL of NaHCO3 solution (10 mg/mL) was added.

The suspension was then stirred for a further 12 h at room temperature and the resulting MAPs were

collected with strong Neodymium magnets, washing thoroughly with ethanol and water to remove

any excess salts. Finally, purified MAPs were re-suspended in DI water before being used for the

layer-by-layer coating process.

2.2.3. Preparation of Magnetic Alginate/Chitosan Layer-by-Layer Nanoparticles

The preparation of magnetic alginate/chitosan layer-by-layer nanoparticles (MACPs) was based

on the layer-by-layer self-assembly of SA and CHI on MAPs. Chitosan solution (10 mg/mL) was

prepared in 1% (v/v) acetic acid aqueous solution. The first layer was deposited by adding 1 g of

MAPs into 100 mL of the chitosan solution under vigorous stirring for 20 min at room temperature.

The resulting MA/CHI particles were collected with a Neodymium magnet and the excess CHI was

removed by washing the particles several times with DI water. The next SA layer was deposited by

adding the previously prepared particles into 100 mL of SA solution (10 mg/mL) under vigorous

stirring for 20 min thus forming MA/CHI/SA particles. For each layer the previously described

purification process was used. Particles with more layers were fabricated by alternatively coating

positively charged CHI and negatively charged SA on MACPs until the desired number of layers

was reached.
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2.3. Curcumin Loaded Magnetic Alginate/Chitosan Layer-by-Layer Nanoparticles

20 mL of CUR solution (7.5 mg/mL in DMSO) was added into 30 mL of DI water to prepare the

CUR mixture (3 mg/mL). Then 30 mg of MACPs were added into 20 mL of the CUR mixture and stirred

for 24 h. The resulting CUR loaded magnetic alginate/chitosan layer-by-layer nanoparticles (CMACPs)

were collected with a Neodymium magnet and washed three times with DI water. The supernatants

were collected and analysed with a UV-Vis spectrometry (JENWAY 6715, Bibby Scientific, Stone,

UK) to determine the concentration of residual CUR. The CMACPs were dispersed in 5 mL of DI

water and the concentration of these particles was determined by weighing dried particles from 1 mL

solution. Encapsulation and loading efficiencies were determined by Equation (1), where EE% is the

Encapsulation Efficiency, mPCUR is the amount of CUR encapsulated in particles, and mintCUR is the

amount of CUR initially added. In Equation (2), LE% is the Loading Efficiency and NP is the total

amount of CUR loaded particles:

EE%(w/w%) =
mPCUR

mintCUR
× 100%, (1)

LE%(w/w%) =
mPCUR

NP
× 100%. (2)

2.4. Release of CUR from CMACPs

5 mg of CMACPs were suspended in 5 mL PBS buffer (pH 7.4) in vials and incubated at 37 ◦C

under constant agitation (200 rpm). The particles were collected with strong Neodymium magnets

at pre-determined time points and the supernatants were carefully removed before re-dispersing

the particles in 5 mL fresh PBS. The CUR concentrations of the supernatants were analysed using

UV-Vis-spectrometry and the percentage of cumulative CUR release was plotted as a function of

incubation time.

2.5. Particle Characterisation

2.5.1. Nanoparticle Tracking and Zeta Potential Analysis

MACPs and CMACPs were dispersed in sodium phosphate solution (10 mM, pH 7) and injected

into the scattering cell of an NTA (Nanoparticle Tracking Analysis, Nanosight LM10, Malvern, UK)

where their motion was analysed and average size was calculated. The zeta potential measurement

of particles was carried out by a Dynamic Light Scattering analyser (DLS, NanoBrook 90 plus Pals

Particle size Analyzer, Brookhaven Instrument, Holtsville, NY, USA). Particles were washed several

times and dispersed in DI water (pH 6.5–7.5) or 10 mM sodium phosphate buffer (pH 7) prior to zeta

potential measurements.

2.5.2. Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FTIR) analysis was conducted with a Spectrum 100

spectrophotometer (PerkinElmer, Waltham, MA, USA). Particles were washed three times with DI

water and dried in an oven at 60 ◦C for 24 h before being placed on the diamond attenuated total

reflectance (ATR) accessory and compressed. The wavenumber region was set from 4000 to 600 cm−1

with a resolution of 1 cm−1. The spectral processing was conducted with IRPal 10 software.

2.5.3. Atomic Force Microscopy Analysis

The aggregation size and morphology of particles was characterised using Atomic Force

Microscopy (AFM, Dimension Icon with ScanAsyst, Bruker Corporation, Billerica, MA, USA). Particle

suspensions were dropped on mica substrates and air dried before being placed on the sample

stage. AFM measurements were conducted using ScanAsyst mode and SCANASYST-AIR tips (spring
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constant: 0.4 N/m, length: 115 µm, width: 25 µm, resonant frequency: 70 kHz) and data were analysed

with NanoScope Analysis 1.5 software.

2.5.4. Transmission Electron Microscopy Analysis

MACPs or CMACPs were dispersed in DI water and dropped onto copper TEM (transmission

electron microscope) grids and incubated at room temperature for 30 s. Excess solution on the grids

was then removed with filter paper, by gently dapping the edge and allowing excess liquid to be

absorbed prior to TEM imaging (Tecnai G2 Spirit, FEI, Hillsboro, OR, USA). An acceleration voltage

of 80 kV was used and images were recorded using a Gatan Orius SC1000B bottom mounted digital

camera and analysed in Gatan Digital Micrograph software (version 3.9.1).

2.6. Cellular Uptake Assays

CUR medium solutions were prepared by adding CUR dissolved in DMSO (50 mg/mL) dropwise

into media to obtain different final CUR concentrations (0.5, 1.5, 5, 15, 30 µg/mL). CMACPs were

dispersed in media to reach the final CUR concentrations equivalent to those of CUR medium solutions.

MDA-MB-231 and HDF cells were seeded onto 6 well plates at a density of 3 × 105 cells per well

and incubated overnight at 37 ◦C and 5% CO2. Then the media were replaced with 2 mL CUR or

CMACPs medium solutions and incubated for a further 24 h. After this, the cells were harvested with

trypsin and washed twice with PBS to remove any free CUR or CMACPs. The resulting cells were

collected and analysed with an BD™ LSR II flow cytometer (BD Biosciences, USA) to investigate the

cells CUR uptake.

2.7. Magnetically Targeted Delivery Assay

MDA-MB-231 cells were seeded in glass bottom dishes (Nunc™, diameter 35 mm, Thermo Fisher

Scientific, Loughborough, UK) at a density of 3 × 105 cells per dish and incubated overnight to allow

attachment. Free CUR and CMACPs were added into cell cultures to reach a final CUR concentration

of 5 µg/mL and incubated for 4 h. Magnetically targeted delivery was conducted by initially placing a

Neodymium magnet under the dish for the first 15 min during incubation. Cells were then washed

twice with PBS buffer and fixed with 4% paraformaldehyde. The fixed cells were stained with Alexa

Fluor 568 Phalloidin and DAPI for 1 h. Confocal fluorescence images of cellular uptake of CUR were

taken with an Inverted Zeiss LSM 510 NLO microscope (Zeiss, Oberkochen, Germany) and analysed

with LSM Image Browser software version 4.2.0.121.

2.8. In Vitro Cytotoxicity Assay

The cytotoxicity of free CUR, MACPs, and CMACPs against MDA-MB-231 and HDF cells was

investigated using the MTT assay. MDA-MB-231 or HDF cells were seeded into 96-well plates at a

density of 5 × 103 cells per well and incubated overnight at 37 ◦C and 5% CO2. The media were then

removed and replaced with CUR medium solution, MACPs or CMACPs dispersions (CUR content

in the particles is equivalent to the dosage of free CUR) to reach the final CUR concentrations of 0.5,

1.5, 5, 15, 30 µg/mL. After 48 h of incubation, 50 µL of 3 mg/mL MTT was added to each well and

incubated at 37 ◦C for 3 h followed by removing the supernatants and adding 200 µL DMSO. A plate

reader (FLUOstar galaxy, BMG LABTECH, Ortenberg, Germany) was used to measure the absorbance

of each well, including control wells, containing only cells and medium at 570 nm. The relative cell

viability was determined by comparing the absorbance with control wells.
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3. Results and Discussion

3.1. Characterisation of Magnetic Alginate/Chitosan Layer-by-Layer Nanoparticles and Curcumin Loaded
Magnetic Alginate/Chitosan Nanoparticles

3.1.1. Zeta Potential, Size and FTIR Spectra

As shown in Scheme 1, magnetic alginate particles (MAPs) were prepared via the self-assembly

of alginate on the surface of MNPs in Ca2+ solution (Stage 1). Following this the formation of MACPs

(Stage 2) was achieved by coating MAPs with CHI. Stage 3: Particles with 1 layer of SA and CHI were

then coated with SA again. Stage 2 and 3 were then repeated consecutively for the desired number

of layers.

 

ƺ

ƺ

ƺ

ƺ
ƺ

Scheme 1. Schematic illustration for the preparation of MAPs and MACPs. MAPs were fabricated

by coating cross-linked alginate on MNPs using Ca2+ as the cross-linker. MACPs were prepared by

alternatively depositing CHI and sodium alginate (SA) on MAPs based on the electrostatic interaction

between the two biopolymers. The alternative coating was repeated until MACPs with desired number

of layers were obtained (Stage 2 and 3). MACPs 1, 2, 3, 4 and n represent CMACPs that possess 1, 2, 3,

4 and n layers of polymers coated on MNPs respectively.

MAPs and MACPs with different number of layers were dispersed in DI water (pH was adjusted

to 7 using HCl and NaOH) or sodium phosphate solution (pH 7) and their zeta potential was analysed

using DLS. As shown in Figure 1a, the zeta potential of MAPs in water was −21.4 mV which was

similar to the results of Ca2+ crosslinked alginate particles reported in previous literature [52,53].

The zeta potential of free SA in water has been reported as −50 mV [54]. The reason for the increased

zeta potential of MAPs is due to crosslinking with Ca2+. The carboxyl groups contribute to the anionic

charge of the alginate polymer [55]. Upon gelation, the negatively charged carboxyl groups from the G

blocks in the alginate chains interact with Ca2+ ions and form an ‘egg-box’-like structure, reducing

the density of free carboxyl groups, as well as the anionic charges [55]. Therefore, an increase of zeta

potential was observed for MAPs. After deposition of the first layer (CHI), the zeta potential of the

particles became positive (+19.2 mV) followed by a reduction to −44.8 mV after the negatively charged

alginate polymer was coated as the second layer. Positive charges ranging from +12.1 to +19.2 mV

were observed when CHI was coated as the outermost layer and negative charges ranging from −43

to −48.5 mV were associated with alginate coatings as the outermost layer. An oscillation of zeta

potential was observed with the alternative deposition of SA and CHI, indicating the successful coating

of the two polymers.
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Figure 1. Zeta potential (a) and average diameter (b) of MACPs and CMACPs as a function of the

number of coated layers. Zeta potential of particles was analysed in water (pH 7) and phosphate

solution (10 mM, pH 7). Particle size was analysed in phosphate solution. Oscillations of zeta potential

and average diameter were observed with the alternate coating of SA and CHI; (c) Size distribution of

MAPs and MACPs with 1–5 layers of coated polymers; (d) FTIR spectra of MAPs and MACPs with the

number of deposited polymer layers from 1 to 5. The results are shown in mean ± SD, n ≥ 3.

The zeta potential of particles in sodium phosphate solution (10 mM) is also shown in Figure 1a

and exhibited a similar oscillation behaviour between coatings. However, negative surface charges

were observed for MACPs (layer number: 1, 3, 5, 7, 9) with CHI outermost layer. This phenomenon is

due to the adsorption of the phosphate anions onto the surface of the chitosan polymers. Phosphates

contain small multivalent anions and therefore tend to interact or complex with cationic amino groups

on CHI surfaces via electrostatic interactions [35]. Therefore, the phosphate anions adsorbed onto

CHI layers increased the overall negative charge of the particles. Similar phenomena have been

reported previously: For example, Swain et al. [56] analysed the zeta potential of CHI in both 1 and

10 mM NaCl and found that the zeta potential value decreased as the ionic strength of NaCl increased.

The authors suggested the reduced surface charge was attributed to the adsorption of anions onto

the surface of CHI polymers [56]. Further to this, Acevedo et al. [57] analysed the zeta potential of

CHI (5 mg/mL) in water and NaCl solution (0.2 M) and reported zeta potential values of +72 mV

in water and +33 mV in NaCl. It was suggested that this reduced absolute zeta potential value was

governed by a compression of the electrical double layer, due to the electrostatic interactions with Cl−

in the solvent [57]. As shown in Figure 1a, the zeta potential of MACPs with alginate as the outermost

layer in phosphate solution exhibited similar values as they were in water, which is in agreement with

previously reported data [54]. On the other hand, MAPs exhibited a more negative zeta potential

values in phosphate solution (−36 mV) compared to water (−21.4 mV). This is due to reaction between

Ca2+ and phosphate ions to form insoluble calcium phosphate, which leads to the loss of Ca2+ and

the increased density of free carboxyl groups thus resulting in an overall increased negative charge.

The zeta potential behaviour of drug carriers can be utilised to control the drug loading and release
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processes. For example, cationic drug carriers, such as CHI nanoparticles, can be used to improve the

loading of anionic drug molecules and prolong their release time based on electrostatic interactions

between positive CHI and negative drug molecules [36]. In the case of MACPs, different numbers of

polymer layers with different zeta potentials can potentially be used to improve drug loading.

The average diameter of MACPs was analysed by NTA, as shown in Figure 1b, where the

diameter of MACPs was found to be 141 nm which increased to 167 nm after the first CHI layer coating.

The size of particles increased gradually per bi-layer of SA/CHI and reached 187 nm for 9 layers. Size

differences were observed depending on the outermost polymer of MACPs. For example, the average

diameter of MACPs decreased from 167 (3 layers) to 128 nm (4 layers) and then increased to 174 nm

after the deposition of CHI as the fifth polymer layer. This leaves a mean size difference of ~40 nm

between CHI and SA. In addition, the size distribution of MAPs and MACPs (with 1–5 layers of coated

polymers) is shown in Figure 1c. Broader size distributions were observed for particles with CHI as

the outermost layer (MACPs 1, 3 and 5) compared to particles with alginate as the outermost layer

(MAPs and MACPs 2 and 4). These results illustrate that particles with CHI outermost layers are

larger and less condensed than particles with alginate as the outermost layer. This is most likely due to

the different surface charges of the particles. For MACPs with CHI as the outermost layer, the zeta

potential ranged from −20 to −25.1 mV in phosphate buffer solutions, while the zeta potential for

alginate as the outermost layer ranged from −47 to −55.2 mV. Particles with absolute zeta potential

values higher than 30 mV can be considered stable in solution [58]. Therefore, MACPs with alginate

outermost layers were very stable in solution, due to their sufficient surface charges. On the other hand,

particles with CHI as the outermost layer were less stable and more likely to aggregate in aqueous

solutions forming larger particles.

The zeta potential of CMACPs in sodium phosphate solution at pH 7 is shown in Figure 1a.

A significant change in surface charge was observed for particles after CUR loading. The zeta potential

of free CUR sodium phosphate solution was −31.1 mV. In contrast, the zeta potentials of MAPs and

MACPs with the outermost layer of alginate (layer number: 0, 2, 4, 6, 8, 10) was within the range

from −36 to −55.5 mV (Figure 1a) while the zeta potentials of the particles with CHI outermost layer

(layer number: 1, 3, 5, 7, 9) were around −20 mV. After CUR loading, the zeta potentials of CMACPs

were found between −28.7 and −34.2 mV suggesting CUR was encapsulated in or adsorbed onto

the particles, reducing the difference of the zeta potentials between MACPs with alginate and CHI

outermost layers. Increased particle sizes (between 172–199 nm) were observed for CMACPs (Figure 1b)

compared to MACPs (122–187 nm), which can be attributed to the loading of CUR. For CMACPs with

the same outermost polymer (SA or CHI), the average diameter of particles increased as the number

of layers increased, due to the fact that larger polymer matrixes encapsulate more CUR molecules.

Larger particle size was observed for CMACPs with the outermost polymer being CHI for the same

reason as described above. The resulting particle sizes are optimal for drug delivery applications [59].

The chemical compositions and interactions between different polymer layers were analysed by FTIR,

as shown in Figure 1d. For SA, the peaks at 1590 cm−1 and 1402 cm−1 were characteristic for the

asymmetric stretching and symmetric stretching of -COOH groups respectively [60,61]. In MAPs

and MACPs with the number of layers (1, 2, 3, 4 and 5), these two peaks moved towards higher

wavenumbers, indicating the formation of Ca2+-alginate ionic cross-linking [62]. This is because of

the changes in charge density, atomic radius and atomic weight of the cations [62,63]. For CHI, the

peak at 1538 cm-1 was characteristic of -NH2 bonds [64]. The presence of CHI in the MACPs was

also confirmed by comparing the curves of MAPs (0 L) and MACPs (1–5 L). The broad characteristic

adsorption at 3329 cm−1 for −OH groups in MAPs shifted to a lower frequency for MACPs (1–5 L),

demonstrating the superposition of amine N–H stretching in chitosan and −OH groups of alginate

and chitosan [64,65]. The peak at 1596 cm−1 in MAPs became broader, and moved to a lower frequency

for MACPs, which can be attributed to the overlapped −NH2 stretching from chitosan and −COOH

stretching from alginate [66]. These results confirmed that CHI and alginate chains were successfully

incorporated into the MACPs.
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3.1.2. Morphology Characterisation

The size distribution and morphology of MAPs and MACPs were also analysed by AFM and TEM

(Figure 2). As shown in Figure 2a, the particles exhibited heights of 50 nm with bottom diameters around

140 nm, which is due to (1) The tip-sample convolution effect, leading to the lateral broadening of surface

protrusions [67]; and (2) The aggregation of small MAPs, flattened on mica substrates, leading to the

expanded bottom diameter. MACPs (Figure 2b,d,f) with CHI as the outermost layer showed larger

bottom diameters than those (Figure 2c,e) with SA as the outermost layer, suggesting larger aggregation

occurred for particles with CHI as the outermost layer. This is also due to the fact that the mica surface

is negatively charged, therefore particles with positive net charges attach tightly and become more fat

and flat. This result is consistent with the data obtained from NTA, confirming that MACPs with CHI as

the outermost layer are loosely packed due to their lower net surface charges. Particles with alginate as

the outermost layer are negatively charged and expected to be less attached therefore are more roundly

shaped. Cross section AFM images indicated that MAPs (Figure 2a) possess rough topography, which were

attributed to the aggregation of small solid MAPs. After alternate coating with SA and CHI, the resultant

MACPs (Figure 2b–f) exhibited more spherical shapes and smooth surfaces, which further confirmed the

successful coating of both polymers. For MACPs, inter-digitation among the adjacent CHI/SA layers were

constructed due to the existence of surface charges. Therefore, after the removal of excess polymers, stable

films were formed by soft polymers of CHI and SA leading to the smooth surface of MACPs.

 

 

a. b. c. 

d. e. f. 

g. i. 

j. k. l. 

h. 

Figure 2. Atomic force microscopy (AFM) and transmission electron microscope (TEM) images of

MAPs (a,g) and MACPs with the layer number of 1 (b,h), 4 (c,i), 5 (d,j), 8 (e,k) and 9 (f,l). Smaller

particles were observed for MACPs with SA as the outermost layer.
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Characterisation of MAPs and MACPs via TEM revealed magnetic cores (dark areas) surrounded

by polymer shells, which were the chitosan and alginate layers, as shown in Figure 2. The inset

in Figure 2i. is an enlarged section of the image clearly showing magnetic core particles and the

surrounding CHI/SA layers. It can be observed from Figure 2 that particle aggregates were formed

on the TEM grids. This is most likely due to the aggregation of particles during the drying process.

In solutions, the magnetic core-shall particles are stabilized by the charged polymer layers (chitosan

and alginate) and the aggregation degree of particles is related to the balance between the repulsive

electrostatic interactions and the attractive interactions. During the drying process, the concentration of

particles increased, which will increase the probability of particle collisions and enhance the attractive

interactions, leading to promoted aggregation of particles.

AFM was also used to investigate the morphology of CMACPs. As shown in Figure 3a, the bottom

diameter of CUR loaded MAPs was ~150 nm and increased layer by layer, reaching a maximum of

~200 nm for 9 layers (Figure 3f), which is in agreement with the size tendency analysed by NTA, as

shown in Figure 1b. However, rougher surface morphology was observed for CMACPs compared to

MACPs, as shown in Figure 2. CUR is known as a highly hydrophobic drug [68–70] and the loading of

CUR into MACPs increased the hydrophobicity of the particles. This meant that the particles rapidly

dehydrated during AFM analysis and exhibited rough surfaces, indicating the successful loading of

CUR into MACPs.

 

 

a. b. c. 

d. e. f. 

Figure 3. AFM images of Curcumin (CUR)-loaded MAPs (a) and CUR loaded MACPs (CMACPs) with

the layer number of 1 (b), 4 (c), 5 (d), 8 (e) and 9 (f).

3.2. Loading and Release of Curcumin

CUR loaded MACPs were prepared by dispersing MACPs in CUR water/DMSO solution and

incubated under stirring for 24 h. The addition of DMSO increases CUR solubility and its permeability

into MACPs. The volume ratio of water:DMSO was 3:2, resulting in a homogeneous CUR solution
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(3 mg/mL) without sedimentation during the 24 h of incubation [71]. Figure 4a clearly demonstrates

that the resultant CMACPs can be collected with a Neodymium magnet while CUR itself in the bulk

solution was not affected by the magnetic field. Therefore, MACPs can be potentially used for targeted

delivery of CUR via external magnetic fields.
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Figure 4. CMACPs were prepared by suspending MACPs in CUR water/DMSO solution and

incubating for 24 h under stirring. The resulting CMACPs can be rapidly collected by a Neodymium

magnet (pull force 25 Kg, 25.4 mm diameter × 30 mm thick) within 1 min (a). The free CUR in solution

on the other hand was not affected by the magnetic force (b).

Encapsulation efficiency results reveal that 49.2% of CUR was loaded into CMAPs and the

encapsulation efficiency increased to 67.5% with increasing number of layers of CHI and SA (see

Figure 5a). For particles with the same type of polymer (CHI or SA) on the outermost surface an

increased trend of encapsulation efficiency was observed with increasing layer number. However, as

illustrated in Figure 5a, a higher encapsulation efficiency of CUR was observed for CMACPs with CHI

as the outermost layer (layer number: 1, 3, 5, 7 and 9) compared to SA as the outermost layer (layer

number: 2, 4, 6, 8, 10). The most feasible explanation for this is the different surface charges between

the particle outermost layers. As illustrated in Figure 1a, CHI layers exhibited positive surface charges

in water while SA layers exhibited negative surface charges. Therefore, the negatively charged CUR

molecules are adsorbed on the surface of the CHI layer more readily, facilitating a more efficient and

faster encapsulation into polymer matrix. On the other hand, SA layer was negatively charged in water,

and thus CUR molecules were less readily to interact with the particle surface, due to the electrostatic

repulsion. Moreover, larger amount of CUR molecules were expected on the surface of CHI layer,

which also led to a higher encapsulation efficiency. The same hypothesis can be used to explain the

loading efficiency of CMAPs and CMACPs. As shown in Figure 5b, a higher loading efficiency of CUR

was observed for MACPs with CHI as the outermost layer to those with SA as the outermost layer.

Higher loading efficiencies from 54.8% to 64.9% were achieved for CMAPs and CMACPs compared

to many previously reported CUR loaded CHI and alginate based particles [25,28,38] with loading

efficiencies from 2.7% to 48%, suggesting CMAPs and CMACPs possess great potential loading CUR

into nanoparticles for drug delivery applications.
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Figure 5. The drug loading and release profiles of the CMAPs and CMACPs are affected by the type

of outermost polymers and the number of layers. Encapsulation efficiency of CMAPs and CMACPs

(a). Curcumin loading efficiency into CMAPs and CMACPs (b). Curcumin release profile of CMAPs

and CMACPs with different layers (1, 4, 5, 8, 9) of deposited polymers (c). Curcumin release profile of

CMAPs and CMACPs (layer number: 1 and 4) in PBS buffer at pH 7.4 and pH 5.6 (d). The results are

shown in mean ± SD, n = 3.

In order to investigate the release profile of CMAPs and CMACPs, 5 mg of particles were dispersed

in 5 mL PBS buffer at pH 7.4 and incubated at 37 ◦C under shaking (200 rpm) at predetermined time

intervals. The particles were collected with strong Neodymium magnets and the CUR concentration in

supernatants were analysed to obtain the accumulative CUR release profiles. As shown in Figure 5c,

for all particles, CUR was released more rapidly within the first two days and then released slower,

but at more sustained rates in PBS for up to 2 weeks. The faster release in the first two days is most

likely due to the loss of weakly adsorbed CUR molecules on the surface of the particles or in the

polymer matrix close to particle surfaces. The sustained CUR release after the first two days was

then dependent on the diffusion of CUR molecules through the polymer matrixes into the bulk PBS

solution, thus exhibiting a slower and more sustained release pattern. No significant burst release

was observed during the whole release process [26,72]. CMACPs with CHI as the outermost layer

exhibited a faster release rate of CUR than CMAPs and CMACPs with SA as the outermost layer

(CMACPs 4 and 8). As mentioned previously in Section 3.3.1, CHI is positively charged in water, but

negatively in phosphate solution, due to the adsorption of negative phosphate ions [35], therefore

more negatively charged CUR molecules are adsorbed onto the CHI layer surface when these particles

were dispersed in CUR water/DMSO solution than on alginate, as illustrated in Figure 5a,b. When

CMACPs with layer numbers of 1, 5 and 9 were dispersed in PBS, CUR molecules were released from

the particle surface, due to CUR and phosphate ions competing for free amino groups on the CHI

chains, this in turn facilitates the loss of CUR molecules from the inner layers to the surface via a

concentration gradient driven diffusion. Thus, faster CUR release rates were observed for CMACPs

with layer numbers of 1, 5 and 9. On the other hand, CMAPs and CMACPs with layer numbers

of 4 and 8, where alginate was deposited as the outermost layer, showed similar negative surface
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charges in water and phosphate solutions, less CUR molecules were adsorbed during the loading

process and thus the drug release rate was not promoted in phosphate solutions. For particles with

the same type of polymer, reduced release rates were observed as the number of layers increased

(release rate: CMACPs 1 > CMACPs 5 > CMACPs 9, CMAPs > CMACPs 4 > CMACPs 8). By increasing

the number of polymer layers it was more difficult for the innermost CUR to permeate out. This is

in agreement with previously reported data [47–49], where Chai et al. [47] fabricated doxorubicin

loaded poly (lactic-co-glycolic acid) nanoparticles and layer-by-layer coated the particles with CHI

and alginate. After comparing the drug release rates of uncoated and polymer coated particles, the

authors found that with the CHI/SA coating the initial drug burst release was reduced from 55.1%

to 5.8% and the overall drug release rate was also reduced. In another example Haidar et al. [48]

prepared bovine serum albumin loaded liposomes and layer-by-layer coated them with CHI/SA. The

polymer coated liposomes showed a reduced albumin release rate to the uncoated ones. Further to

this Zhou et al. [49] developed polyethyleneimine coated PLGA nanoparticles and reported that the

drug release rate reduced with increasing layers.

In order to investigate the drug release profile of CMAPs and CMACPs at different pH, CMAPs,

CMACPs with 1 and 4 layers were dispersed in PBS with pH 7.4 and pH 5.6. As illustrated in Figure 5d,

the release pattern of CUR from particles at pH 5.6 was similar to those at pH 7.4, but slightly slower.

In 14 days, about 23%, 41% and 17% of CUR were released from CMAPs, CMACPs 1 and CMACPs 4

at pH 7.4 respectively, while about 20%, 37% and 13% of CUR were released at pH 5.6. The data are in

agreement with previously published work by Martins et al. [41] who investigated the release profiles

of CUR from N-trimethyl chitosan/alginate complexes at pH 7.4 and pH 1.2 and reported that 80% of

CUR was released at pH 7.4 within the first hour while only 22% of CUR was released at pH 1.2. The

pH dependent release pattern can be attributed to the altered surface charge and hydrophobicity of

polymers at different pH values.

3.3. Cellular Uptake Assays

3.3.1. CUR Uptake Assay by Flow Cytometry

To investigate the cellular uptake kinetics of CMAPs and CMACPs, MDA-MB-231 breast cancer

cells and HDF cells were incubated with free CUR and particles containing equivalent amounts of

CUR for 24 h. Except for skin cancers, breast cancer is most commonly diagnosed among US women

and the second leading cause of cancer death among women [73]. Therefore, MDA-MB-231 breast

cancer cells were selected as a cancer model and HDF cells were selected as a non-cancer model to

investigate the uptake effect of the drug loaded particles.

The cells were analysed by flow cytometry to determine the cellular uptake of CUR by different

cells. As shown in Figure 6a, it is evident that the percentage of MDA-MB-231 cells taking up

CUR was dose dependent. Significant higher uptake efficiency was observed for MDA-MB-231 cells

treated with CMAPs and CMACPs than those treated with free CUR, indicating that the nanoparticles

facilitate the CUR uptake. This is in agreement with previously reported data [1,17,74–76]. Here, at

a CUR concentration of 1.5 µg/mL, an uptake efficiency of 31.2%, 39.6% and 24.2% was observed

for MDA-MB-231 cells treated with CMAPs, CMACPs 1 and 4 respectively, which is 3–6 fold higher

than the uptake efficiency of cells treated with free CUR. The increased CUR uptake of CMAPs can

be attributed to the fact that the CUR loaded nanoparticles were more easily taken up by cells via

endocytosis, due to their smaller size (172–199 nm), while highly hydrophobic CUR was insoluble in

aqueous solutions forming larger aggregates, which are more difficult to be internalised by cells [75,77].

The order of uptake efficiency of free CUR and CUR loaded particles was CMACPs 1 > CMAPs

>CMACPs 4 > free CUR. Particles with CHI as the outermost layer exhibited the highest uptake

efficiency (39.6%). This result is in agreement with work by Zhou et al. [46], who compared the uptake

efficiency of CHI/alginate coated poly (lactide-co-glycolide) nanoparticles and observed the uptake

efficiency of particles with CHI as the outermost layer was the highest. The promoted CUR uptake
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by the CHI surface is because of the protonated amino groups, which interact with the negatively

charged cell surfaces and promote the accumulation of CMACPs 1 onto the surface of MDA-MB-231

cells. Figure 6b shows the CUR uptake efficiency for HDF cells after being treated with free CUR and

CUR loaded particles. HDF cells exhibited a similar uptake pattern, but an overall much lower CUR

uptake efficiency compared to MDA-MB-231 cells, suggesting CMAPs and CMACPs target cancer

cells rather than normal cells. This is in agreement with many previously published reports [28,78–80]

as cancer cells possess a higher metabolic activity than normal cells and their surfaces overexpress

various receptors that in turn increase the available binding sites promoting a higher uptake efficiency

of particles and drugs [81–83].
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Figure 6. Cellular uptake analysis of CUR in MDA-MB-231 cells (a) and HDF cells (b) after incubation

with CMAPs, CMACPs 1 and 4 and free CUR for 24 h. The CUR uptake was analysed by flow cytometry.

The dosages of CUR in particles were equivalent to the amounts of free CUR used. CMACPs 1 and 4

represent CMACPs that possess 1 and 4 layers of polymers coated on MNPs respectively. The results

are shown in mean ± SD, n = 3. The statistical significance is expressed as *** p < 0.001, ** p < 0.01,

* p <0.05.

3.3.2. Magnetically Targeted Delivery Assay

To investigate the potential of CMAPs and CMACPs for magnetically targeted delivery of CUR,

free CUR, CMAPs and CMACPs were incubated with MDA-MB-231 cells in glass bottom dishes.

A Neodymium magnet was placed under the target area of the dish to allow for the accumulation of

magnetic nanoparticles within the selected area. Taking advantage of the auto-fluorescent property

of CUR, the confocal fluorescence images show the cellular uptake of CUR in and out of the target

(magnet-affected) areas. The overall fluorescent intensity of MDA-MB-231 cells within the target areas

that were treated with free CUR (Figure 7a) was lower than cells treated with CUR loaded nanoparticles

(Figure 7c,e,g), suggesting CMAPs and CMACPs have enhanced the uptake of CUR. This result is

consistent with the uptake efficiency shown in Figure 6. No obvious difference in fluorescent intensities

was observed between Figures 7a and 7b, showing that the free CUR uptake is not affected by the

presence of magnetic forces. In contrast, cells treated with CMAPs (Figure 7c), CMACPs 1 (Figure 7e)

and CMACPs 4 (Figure 7g) within the magnet-affected area showed significant increase of fluorescent

intensity compared to the cells treated with same particles, but outside of the target (magnet-affected)

areas (Figure 7d,f,h). The enhanced CUR uptake in the target areas was attributed to the accumulation

of CUR loaded magnetic nanoparticles to the target areas driven by the magnetic force. On the

other hand, the local concentration of CUR loaded magnetic particles outside the target areas was

significantly lower, thus showing much lower fluorescent intensities. This result clearly shows that

CMAPs and CMACPs have the potential for targeted drug delivery.
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Figure 7. Confocal fluorescence microscopy images of MDA-MB-231 cells incubated with free CUR

(a,b), CMAPs (c,d), CMACPs 1 (e,f) and CMACPs 4 (g,h). CMACPs 1 and 4 represent CMACPs that

possess 1 and 4 layers of polymers coated on MNPs respectively. CUR loaded particles contained

equivalent amount of drug as free CUR (5 µg/mL). Cell nucleus and cytoskeleton were stained with

DAPI (blue) and Alexa Fluor 568 Phalloidin (red). M+ denotes the images taken within the magnet

affected area and M- denotes the images taken outside of the magnet-affected target area.
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3.4. In Vitro Cytotoxicity Assay

In order to investigate the cytotoxicity of CMACPs towards cancer and normal cells, MDA-MB-231

breast cancer cells and HDF cells were incubated with free CUR, CMACPs 1, CMACPs 4 and blank

MACPs for 48 h. The in vitro MTT assay results are shown in Figure 8. It can be observed in Figure 8a,b

that both free CUR and CMACPs exhibited increased cytotoxicity towards MDA-MB-231 cells with

increasing CUR concentration, which was in agreement with previously reported data that CUR

possesses dose dependent cytotoxicity towards cancer cells [1,17,74–76]. Both CMACPs 1 and 4 showed

enhanced cytotoxicity towards MDA-MB-231 cells compared to free CUR, which can be attributed to

an enhanced uptake of CMACPs. As discussed in Section 3.3.1, the uptake efficiency of MDA-MB-231

cells treated with CMACPs was 3–6-fold greater than those treated with free CUR. It is expected that

the sustained release of CUR from internalised CMACPs maintained a high CUR concentration within

the MDA-MB-231 cells, thus leading to lower viability of cells. CMACPs 1 were observed to exhibit

higher cytotoxicity towards MDA-MB-231 cells than CMACPs 4, which was due to a higher CUR

release rate (Figure 5c) and uptake efficiency (Figure 6a). As shown in Figure 8c,d, the viability of

HDF cells after treatment with free CUR and CMACPs was reduced at higher CUR concentrations

(>15 µg/mL), but a high viability was observed in contrast to MDA-MB-231 cancer cells at CUR

concentrations below 15 µg/mL. One of the major accepted theories is that cancer cells possess lower

glutathione levels than normal cells, due to their reprogrammed metabolic pathways [29]. Depletion

of glutathione, which is important for the sensitivity of cells to CUR can lead to the enhancement of

CUR sensitivity of cancer cells [29,78,84]. In addition, most cancer cells, but not normal cells, express

constitutively active NF-KB that mediates their survival. CUR can suppress NF-κB regulated gene

products, thus suppressing the proliferation of cancer cells [78,85]. High viabilities were observed for

both MDA-MB-231 cells and HDF cells after they were treated with blank MACPs, demonstrating that

MACPs are non-toxic towards these cells.
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Figure 8. The in vitro MTT assay suggested CMACPs exhibited significantly higher cytotoxicity

towards MDA-MB-231 breast cancer cells than to HDF cells. MDA-MB-231 cells (a,b) and HDF cells

(c,d) were treated with free CUR, CMACPs 1, CMACPs 4 and blank MACPs 1, MACPs 4 for 48 h.

CMACPs 1 and 4 (or MACPs 1 and 4) represent CMACPs (or MACPs) that possess 1 and 4 layers

of polymers, respectively. The amounts of CUR in CUR loaded nanoparticles were equivalent to the

amounts of free CUR (0.5–30 µg/mL), respectively. The results are shown in mean ± SD, n ≥ 3. The

statistical significance is expressed as *** p < 0.001, ** p < 0.01, * p <0.05.

4. Conclusions

MACPs were prepared by a layer-by-layer coating of CHI and SA onto the surface of Fe3O4

nanoparticles. The successful coating of CHI and SA was confirmed by the zeta potential and FTIR

spectral measurements of the particles. Incorporation of CUR was confirmed by a change in surface

charge and morphology of CMACPs, while the mean diameter of CMACPs was lower than 200 nm and

within the optimum size range for drug delivery applications. In vitro drug release profiles illustrated

the sustained release of CUR from CMACPs and indicated that it was possible to control the release

rate by altering the outermost polymer (CHI or SA), as well as by changing the number of layers. More

biopolymer layers resulted in a slower CUR drug release profile, where CHI as the outermost layer

showed a faster CUR release. Confocal fluorescence microscopic images confirmed the successful

internalisation of CUR into MDA-MB-231 breast cancer cells and indicated that rapid and targeted

delivery of CUR could be achieved in the presence of an external magnetic field. FACS analysis

indicated the CMACPs mediated uptake of CUR by MDA-MB-231 cells was 3–6 fold greater than that

of free CUR. MDA-MB-231 cancer cells showed a significantly higher uptake efficiency of CUR than

that of HDF normal cells after being treated with CMACPs. The MTT assay indicated that CMACPs

exhibited a significantly higher cytotoxicity towards MDA-MB-231 cancer cells than towards HDF

cells. In summary, the sustained release profiles, enhanced uptake efficiency and strong cytotoxicity

to cancer cells, as well as the potential for targeted delivery make MACPs a promising candidate for

anti-cancer drug delivery.
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CUR, curcumin; CHI, chitosan; MNPs, magnetic nanoparticles; MAPs, Magnetic alginate nanoparticles; MACPs,
magnetic alginate/CHI layer-by-layer nanoparticles; CMACPs, Curcumin loaded magnetic alginate/chitosan
layer-by-layer nanoparticles; CMACPs 1 and 4, Curcumin loaded magnetic alginate/chitosan layer-by-layer
nanoparticles with 1 and 4 layers of CHI/SA coating; HDF, Human Dermal Fibroblasts.
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