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ABSTRACT 

Negative Cerium (Ce) anomalies are observed in chondrite-normalized rare earth element 

patterns from various volcanic arc suites. These anomalies are well defined in volcanic rocks 

from the Mariana arc and have been interpreted as the result of addition of subducted 

sediments to the arc magma sources. This study combines 
143

Nd/
144

Nd and 
138

Ce/
142

Ce 

isotope measurements in Mariana volcanic rocks that have Ce anomalies ranging from 0.97 

to 0.90. The dataset includes sediments sampled immediately before subduction at the 

Mariana Trench (Sites 801 and 802 of ODP Leg 129) and primitive basalts from the Southern 

Mariana Trough (back-arc basin). Binary mixing models between the local depleted mantle 

and an enriched end-member using both types of sediment (biosiliceous and volcaniclastic) 

found in the sedimentary column in front of the arc are calculated. Marianas arc lavas have 

Ce and Nd isotopic compositions that require less than 2.5% of a sediment component 

derived from the volcaniclastics. With this proportion of sediment, most of the Ce/Ce* range 

measured in lavas is reproduced. Thus, this study confirms that the origin of the Ce 

anomalies in the Mariana arc magmas can be principally attributed to recycling of trench 

sediments through active subduction. The participation of a component derived from 

biosiliceous sediments does not explain the Ce-Nd isotope composition of the lavas because 

the involved proportion is too high (up to 8%) in comparison to results obtained from other 

geochemical proxys. Using this end-member, the modeled Ce anomalies are also too high 

(0.91-0.84) in comparison to those measured in lavas. Various processes and conditions are 

able to generate Ce anomalies: oxygen fugacity, residual mineral phases, partial melting, 

fractional crystallization and tropical weathering. Their influence in the case of Mariana 

volcanic arc magmas seems to be very limited but partial melting effect may explain the 

lowest measured Ce/Ce* values. Magmatic processes cannot be definitely ruled out in 

producing Ce anomalies in other arc system environments. Additional experimental data, 

however, are needed for a better understanding of the behavior of cerium relative to its 

neighboring elements. Also, this study highlights the importance of using local depleted 

mantle and sediments to model the isotopic compositions of arc lavas.  
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Highlights:  

 Origin of negative Ce anomalies in Mariana arc magmas. 

 Coupled 
138

Ce/
142

Ce and 
143

Nd/
144

Nd isotope measurements in Mariana arc magmas, 

sediments and back-arc basalts.   

 Ce-Nd isotopic binary mixing models coupled with Ce/Ce* prove that volcaniclastic 

sediments control the Ce/Ce* in Mariana lavas. 

 

Keyword: Ce anomalies, 
138

Ce/
142

Ce, sediment recycling, Mariana volcanic arc, Rare Earth 

Elements.  
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1. Introduction 

 

Arc magmas record chemical signatures associated with subduction processes. The 

subducted slab inventory is made up of variously altered and different in age subducted 

oceanic crust and its sedimentary cover. The sediments are diverse in type and origin 

depending on the age of the subducting plate, proximity to a continent, and the presence or 

absence of an accretionary prism (Plank and Langmuir, 1998a; von Huene and Scholl, 1991). 

Cerium anomalies have been measured in arc rocks from different localities, particularly the 

New Britain, Mariana, Tonga, Central America and the Lesser Antilles (Carr et al., 1990; 

Dixon and Batiza, 1979; Ewart et al., 1973; Jakes and Gill, 1970; White and Patchett, 1984). 

A negative Ce anomaly means that the Ce concentration normalized to the chondritic value is 

lower than the value interpolated from the two neighboring Rare Earth Elements (REE) 

Lanthanum (La) and Praseodymium (Pr). The origin of negative Ce anomalies in arc settings 

has been attributed to the addition of sedimentary component to the arc magma source 

(Dixon and Batiza, 1979; Elliott et al., 1997; Hole et al., 1984; Woodhead, 1989). Cerium is 

the only REE that exists in either 3
+
 or 4

+
 oxidation states and in nature Ce fractionations are 

related to the changes of the redox conditions. The short residence time of Ce
4+

 in seawater 

relative to the trivalent Ce
3+

 ions explains the large negative Ce anomaly in the seawater REE 

pattern (Elderfield and Greaves, 1982). Fe-Mn crusts and MnO clays preferentially scavenge 

Ce
4+

 relative to other REE
3+

 and thus have positive Ce anomalies (Amakawa, 1991; Bau et 

al., 2014). Conversely, negative Ce anomalies are generally identified in authigenic clays, 

hydrothermal sediments, nannofossil ooze, or fish debris (Moiroud et al., 2015; Picard et al., 

2002; Plank and Langmuir, 1998). The geochemical composition of subducting sediments is 

now fairly well known globally (Plank, 2013). However, the average “global subducting 

sediment” reservoir (GLOSS, see Plank and Langmuir (1998) and Plank (2013)) does not 

show significant Ce anomaly with Ce/Ce* values of 0.97 and 1.02 for GLOSS I and GLOSS II, 

respectively. The majority of the mean trench sedimentary piles in individual subduction 

zones used for the GLOSS reservoir calculation have negative Ce/Ce* values (57% of them 

based on the weighted mean composition of each pile). The lack of anomaly in GLOSS 

reflects the dominance of volcanic ashes and turbidites in some trench sediments that 
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represent large masses in the total budget, which are deposited too quickly to fractionate Ce 

from other REE.  

 

The 
138

La-
138

Ce isotope systematics (T1/2 = 292.5 Ga; Tanimizu, 2000) is an interesting 

tool to trace the recycling of sediments in subduction zones since material characterized by 

Ce anomalies have fractionated La/Ce ratios and then will develop by radiogenic ingrowth 

different 
138

Ce/
142

Ce ratios. Calculations show that significant deviations of the 
138

Ce/
142

Ce 

ratio from the chondritic reference can be generated in less than 100 Ma in sediments 

characterized by highly fractionated La/Ce ratios (3-8) as those measured in seawater (see 

Figure 1 in Bellot et al., 2015). Thus, combining the 
138

La-
138

Ce and 
147

Sm-
143

Nd systematics 

in magmatic arc samples may offer a unique opportunity to better characterize the nature of 

the sediments involved in the magma genesis because these sediments are characterized by 

different REE patterns and evolve to distinct 
138

Ce/
142

Ce and 
143

Nd/
144

Nd isotopic signatures. 

The Mariana arc is an ideal test site because this arc-basin subduction system is of intra-

oceanic type (located >2000 km away from continents) experiencing no terrigeneous (crustal) 

inputs to its trench sediments. Moreover, the plate entering into subduction is one of the 

oldest at the Earth’s surface (~ 170 Ma old; Bartolini and Larson, 2001; Koppers et al., 2003). 

On average the sedimentary material at the Mariana Trench is characterized by a large 

negative Ce/Ce* values of 0.73 (Plank, 2013) and sediments drilled on the fore-arc area show 

ages up to 170 Ma (Karpoff, 1992). During this period the subducted material will develop a 

radiogenic 
138

Ce/
142

Ce signature. The increase is +0.7 epsilon unit considering the average 

La/Ce ratio estimated for the bulk sedimentary column whereas the excess is +1.5 -unit for 

sediments characterized by the strongest La/Ce ratios (>0.85). Finally the Mariana Islands 

have been extensively studied with the aim of characterizing the nature of outfluxes 

originating from the subducting slab (e.g. Chauvel et al., 2009; Elliott et al., 1997; Freymuth et 

al., 2015; Gribble et al., 1998; Hole et al., 1984; Ishikawa and Nakamura, 1994; Martindale et 

al., 2013; Meijer, 1976; Meijer and Reagan, 1981; Moriguti and Nakamura, 1998; Ribeiro et 

al., 2015; Savov et al., 2005, 2007; Snyder et al., 2004; Stolper and Newman, 1994; Straub, 

2003; Tollstrup and Gill, 2005; Wade et al., 2005; Woodhead et al., 2012; Woodhead, 1989, 

1988; Woodhead and Fraser, 1985). The correlation observed between Ce/Ce* and several 
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other proxys (i.e. Ba/La, 
143

Nd/
144

Nd) confirms that the negative cerium anomalies measured 

in Marianna lavas are likely to be inherited from the sedimentary component rather than 

reflecting the process by which it was transferred (Elliott et al., 1997). Here we present La-Ce 

and new Sm-Nd isotope measurements in arc lavas coming from the Mariana Islands (Central 

Island province), in sediments sampled in front of the subduction trench, and in basalts from 

the back-arc area. We discuss the origin of negative cerium anomalies with respect to 

138
Ce/

142
Ce and 

143
Nd/

144
Nd isotope ratios and then extend our conclusions to the whole 

database of samples collected in the context of subduction zone for which combined Ce and 

Nd isotope measurements are available. 

 

 

2. Geological settings and sample selection 

 

The Mariana volcanic arc represents the southern segment of the Izu-Bonin-Mariana (IBM) 

arc-basin system, which results from the > 50 Ma of subduction of the Pacific plate under the 

Philippine Sea plate. The subducting Pacific plate is Jurassic (~ 170 Ma old; Bartolini and 

Larson, 2001; Koppers et al., 2003), making it the oldest subducted oceanic slab. Its 

subduction rate is relatively slow (~4 cm/yr) (Seno, 1977; Stern et al., 2003). The IBM 

volcanic arc is 2800 km long and extends from Mt. Fuji volcano on the Japanese peninsula to 

the island of Guam in the south. The Mariana arc can be divided into three well-defined 

zones: the fore-arc, the magmatic front and the back-arc basin or the Mariana Trough (Figure 

1). The Mariana fore-arc corresponds to the area between the trench and the magmatic arc 

front and is characterized by lack of accretionary sedimentary prism i.e. all sediments and 

underlying Pacific oceanic crust are effectively subducted. The magmatic front of the Mariana 

arc includes around 40 active volcanoes (Pearce et al., 2005), many of which are currently 

submerged. The volcanic activity over the last two centuries has been sub-aerial in the central 

part and underwater in the northern and southern arc segments. The western segment of the 

arc forms the actively spreading back-arc: the Mariana Trough. The opening of this back-arc 

basin is related to intra-arc rifting due to tectonic forces associated with the NW subduction of 

the Pacific plate and the rotation and spreading within the Philippine Sea plate (Stern et al., 
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2003). The back-arc converges in the south and north with the magmatic arc front (see Figure 

1). The maximum back-arc basin width is 100 km in the center (Pearce et al., 2005). The 

magmatic activity in the back-arc results from adiabatic decompression melting due to 

seafloor extension combined with fluid mediated melting (Kelley et al., 2010). The back-arc 

basalt compositions are either MORB-type or arc-type basalts, depending on the proportion of 

fluids coming from the subducted slab that have been introduced into the otherwise highly 

depleted sub-arc mantle underneath (Gribble et al., 1996; Pearce et al., 2005; Savov et al., 

2005, 2007; Stolper and Newman, 1994; Taylor and Martinez, 2003; Volpe et al., 1987; 

Woodhead et al., 1993).   

 

 Twelve fresh basaltic to basaltic-andesite samples from the Mariana central island arc 

volcanic province have been selected for this study (Figure 1). A more detailed description of 

these samples is found in Elliott et al. (1997), who report the major-, trace-element 

concentrations and Th, Sr, Pb and Nd isotopic compositions of the same samples. In addition, 

several studies regarding the stable isotope ratios of those same samples are available in the 

literature (Bouman et al., 2004; Eiler et al., 1997; Freymuth et al., 2015; Prytulak et al., 2013a, 

2013b; Savage et al., 2010; Williams et al., 2018).   

 

Ocean drilling program (ODP) sites 800, 801 and 802 were drilled during Leg 129 

seaward of the Mariana arc. The drilling aim was to sample the altered Pacific crust and its 

Jurassic-to-present sedimentary cover (Larson and Lancelot, 1992). The samples recovered 

from Site 801 currently represent the primary reference site for subducted inputs to the 

Mariana arc (Pigafetta basin and East Mariana basin located in Figure 1; see Plank (2013) 

and references therein for details). The sedimentary column at Site 801 documents the plate’s 

voyage northwestward across the Pacific (Karpof, 1992), initially accumulating red clays (Unit 

V) in the Jurassic, followed by radiolarites (Unit IV) when passing beneath the high 

productivity belt at low latitudes. The biosiliceous accumulations of Units IV and II are 

interrupted by intervals of volcaniclastic turbidite deposition (Unit III), due to underwater lava 

flow outpourings and flank collapses of nearby seamounts in the mid-Cretaceous (Salimullah, 

1992). The last 50-60 Ma of sediment deposition are condensed within the upper 50 meters of 
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the site 801 in Unit I, which is composed of pelagic red clay, recording periods when the site 

entered the barren central gyre of the Pacific, far from terrigeneous inputs and low in biologic 

productivity. Thus, most of the sedimentary section is composed of biosiliceous cherts and 

radiolarites and Cretaceous volcaniclastics, all selected to be studied here (8 samples from 

Site 801 and 2 additional volcaniclastics from Site 802 to the south). A detailed description 

and the stratigraphic section at Site 801 are given in Figure 2 and Table 1, together with the 

location of our samples. The samples analyzed here are representative of the entire range in 

Ce anomaly (Figure 2). 

 

 Basalts from the Mariana Trough (MTB) sometimes have trace elements and water 

contents similar to those of Mid-Ocean Ridge Basalts (MORB). The majority of them however 

is likely to be contaminated by fluids from the subducted Pacific slab. In this case samples are 

enriched in fluid mobile elements (Rb, Ba, K and Pb), and therefore have intermediate 

compositions between MORBs and arc lavas (Pearce et al., 2005). Our southern MTB 

samples were recovered during the Cook 7 expedition (R/V Melville-2001) from an area along 

the back-arc spreading axis that is ~4 km under sea level and where the distance between 

the spreading center ridge and the magmatic arc front decreases from 106 to 33 km (Figure 

1), providing the means to probe the relation between back-arc magmatism and the adjacent 

volcanic arc front. Three southern MTB samples have been analyzed for both REE contents 

and Ce-Nd isotopes.  

 

 Finally, three Pacific MORB samples (unaltered glasses) have been analyzed as 

proxy for the background upper mantle isotopic composition. The Searise-1 DR05 sample 

was dredged during the Searise-1 cruise in 1980 (2.28°N-102.78°W), the Cyana CY82 

sample is a submersible-collected sample from the Cyana expedition in 1982 (12.72°N-

103.91°W) and the Clipperton DR01 sample (dredge) is from the Clipperton cruise in 1981 

(12.75°N-103.93°W). Two additional Pacific MORB samples were previously analysed at the 

Laboratoire Magmas et Volcans (LMV) and published in Bellot et al. (2015). All these samples 

do not show any anomalous characteristics in terms of mantle heterogeneity (they all have 
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similar REE patterns and they do not show any DUPAL signature) nor do they indicate a deep 

mantle signature based on their Hf and Nd isotope ratios (Chauvel and Blichert-Toft, 2001). 

 

 

3. Analytical procedures 

 

REE concentrations of all Mariana samples (arc basalts and Mariana Trough basalts), of 

MORB sample Searise-1 DR05 and of 3 of the sediments (801B-12R, 802B-19 and 802B-

43R) were measured at LMV Clermont-Ferrand. All other REE data are from the literature 

(see Table 1). In order to determine the REE concentrations, 100 mg of each sample were 

digested in Savillex
©
 beakers in a 3:1 mixture of 48% HF and 65% HNO3 for 48 hours at 

75°C. Before evaporation, 200 l of HClO4 acid were added to expel the fluorides. For 

sedimentary samples, a preliminary degassing procedure using a 7M-HNO3:2M-HCl mixture 

was carried out in order to destroy the potentially carbonated and calcic components 

(Carpentier, 2007). After the dissolution, samples were dissolved in 6M HCl and a 5% aliquot 

was uptaken for the measurement of REE concentrations whereas the remaining 95% of the 

sample was used for Ce and Nd isotope measurements. For REE measurements samples 

were firstly dissolved in 7M HNO3 to obtain a dilution factor of ~250, and measurements on 

the Inductively Coupled Plasma Mass Spectrometer (ICP-MS) were performed with a final 

dilution factor of 3500 in 0.45M HNO3 – 0.05M HF. Two rock standards (Icelandic basalt BIR-

1 and Hawaii basalt BHVO-2) and one blank were dissolved using the same procedure. 

Measurements were performed using the LMV Agilent 7500 quadrupole mass-spectrometer. 

All calculations to transform peak signals into concentrations were performed offline. A blank, 

bulk rock standards and a synthetic solution (CMS) containing ~ 60 trace elements at 1 ppb 

were run every 4 Mariana samples throughout the entire sequence.  

 

The Ce chemical separation protocol, described in detail in Bellot et al. (2015), requires 

three steps: 1) isolation of the REE from the major elements which is carried out on AGW50-

X8 resin using 2.5M and 4M HCl acids; 2) the Ce and the Nd are separated on an AGW50-X8 

resin using 0.27M 2MLA (α-hydroxyisobutyric) acid; and finally 3) the Ce fraction is purified 
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from residual Nd on Ln-Spec resin using 0.2 M HCl acid. The Nd fraction collected on the 

second column is purified from Sm using a Ln-Spec resin and 0.25 M HCl (Pin and Santos 

Zaldueguilt, 1997). Cerium and Nd blanks were regularly measured by ICP-MS. The Nd 

blanks were in the range of 22-39 pg whereas Ce blanks were between 44 and 339 pg. Those 

values are negligible relative to the large quantity of Nd and Ce (> 1g) processed for each 

sample. 

 

Cerium and Nd isotopes were measured using a Thermo Scientific Triton Thermal-

Ionization Mass Spectrometer (TIMS) at the LMV in Clermont-Ferrand. Instrumental mass 

bias effects on Nd were corrected using an exponential law and 
146

Nd/
144

Nd=0.7219 

(Hamilton et al., 1983). Repeated measurements of the JNdi-1 Nd standard during the course 

of this study gave an average 
143

Nd/
144

Nd ratio of 0.512107±4 (2 standard deviation (2SD); n 

= 14) in agreement, within error, with the value published in Tanaka et al. (2000). The Ce 

isotope compositions were analyzed as oxide species using double Re filaments (Bellot et al., 

2015; Doucelance et al., 2014). The potential interferences of Ba, La, Pr and Nd were 

monitored during the TIMS measurements. In oxide forms they are always negligible. The 

purity of the Ce fraction after the chemistry was always checked by ICP-MS before isotope 

analysis. The signal measured by ICPMS in our samples for La, Pr and Nd was similar to the 

blank level showing that the Ce purification is faultless. Cerium isotope ratios were corrected 

for the mass bias using an exponential law and 
136

Ce/
142

Ce = 0.01688 (Makishima et al., 

1987). The 
138

Ce/
142

Ce analyses were carried out during 4 analytical sessions. The 
140

Ce 

tailing effect was quantified in each session because of its variability through time (Bellot et 

al., 2015). Here we note a tailing correction on the 
138

Ce/
142

Ce ratio that varies from 0.5 to 1.2 

-unit after mass bias correction. The Ce reference material solution AMES was measured at 

least once a day for Ce isotopes (between 5 and 19 times for each session; Supplementary 

file A). The drift of 49 ppm for the mean AMES 
138

Ce/
142

Ce ratio between the 4 sessions is 

attributed to ageing of the Faraday cup. The AMES mean 
138

Ce/
142

Ce ratios have been 

normalized to 0.0225746±9, a value obtained with the LMV TIMS for this standard during a 

previous analytical session in which chondrites were measured to define the Chondritic 

Uniform Reservoir (CHUR) reference value (Bellot et al., 2015). The epsilon value for this 
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standard solution is 4.13. The same AMES reference material analyzed by Willbold (2007) 

and Willig and Stracke (2017) gave 
138

Ce/
142

Ce ratios of 0.0225749±5 and 0.0225747±5 

respectively, in good agreement with our measurements. The external reproducibility (2SD) 

calculated from the repeated AMES measurements within one session is in the range of 0.39 

to 0.57 -unit (n=19 to 5; Supplementary file A). The Ce reference material solution JMC-304 

measured during session 1 gave a 
138

Ce/
142

Ce ratio of 0.0225704±11 (Ce= 2.22±0.51 (2SD); 

n=3, Supplementary file A). The Hawaii basalt standard BHVO-2 was measured during 

session 2 and its 
138

Ce/
142

Ce is 0.0225643±3 (Ce= -0.49±0.13). 

 

 

4. Results 

4.1. Cerium anomalies in Mariana arc  

 

REE concentrations measured in Mariana lavas, as well as in Mariana Trough Basalts, 

sediments and Pacific MORBs are presented in Table 1. REE concentrations in sediments 

are from literature (Vervoort et al., 2011) except three sedimentary samples (801B-12R, 

802A-19R and 802A-43R) that have been analyzed here (Table 1). USGS BHVO-2 (Hawaii 

basalt) reference material was used to calibrate the signal considering the compilation given 

in the GeoReM online database of Chauvel et al. (2011). Results obtained for the USGS BIR-

1 (Icelandic basalt) standard are in agreement with certified values, with a difference of less 

than 5% in REE, and the external reproducibility (2SD) estimated from 4 measurements is 

between 1% for Nd and 4% for Eu. In order to calculate the Ce anomaly, two methods of 

calculation have been compared (Supplementary file B): 1) using the concentrations 

calculated with the BHVO-2 standard as calibrator; 2) by calibrating the signal relative to the 

CMS solution. They give consistent results with differences always smaller than 0.02 on the 

cerium anomaly. Results obtained with the first calculation method are used in the discussion. 

The Ce/Ce* (CeN / (LaN
0.5 

x PrN
0.5

)) values calculated for the two USGS rock standards BIR-1 

and BHVO-2 using the second method of calibration are equal to 0.961±0.006 (2SD, n=4) 

and 1.005±0.006 (2SD, n=4), respectively, which corresponds to a reproducibility better than 

1%. Moreover, our BIR-1 results are in excellent agreement with the values of 0.957±0.027 
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(2SD, n=6) published by Chauvel et al. (2011). A compilation of BIR-1 measurements is 

reported in Pourmand et al. (2012) and the Ce anomaly in this rock standard is comprised 

between 0.93 and 0.99 (average value of 0.96±0.04, 2SD, n=11). BIR-1 and BHVO-2 Ce 

anomalies are also consistent with the Ce/Ce* values calculated from certified concentrations: 

0.97 and 1.01 for BIR-1 and BHVO-2, respectively. Our trace element data for Mariana arc 

samples are in excellent agreement within 2% with values published by Elliott et al. (1997) 

(Supplement file C). The Ce anomalies in Mariana arc lavas are all negative, ranging from 

0.90 to 0.97. There is a 1% offset to higher Ce/Ce* in the values determined here in 

comparison to previous published values, perhaps due to Ca perchlorate interference on the 

light REE (Longerich, 1993) or slight differences in the calibration values for BHVO-2. 

Sediments show a larger range in Ce/Ce* than lavas. They vary from 0.59 in sample 801A-8R 

to 1.06 in sample 802A-19R.  

 

 

4.2. Ce and Nd isotopes  

 

The measured 
138

Ce/
142

Ce and 
143

Nd/
144

Nd ratios for Mariana arc samples, Mariana 

Trough Basalts, Mariana trench sediments and the selected Pacific MORBs are presented in 

Table 2. They are currently expressed in the epsilon notation (see Table 2 for values and 

calculations). The Mariana arc samples have negative ɛCe ranging from -0.84 (GUG-6) to -

0.45 (URA-7). The ɛNd values of the same samples range from 6.01 (GUG-3) to 8.07 (GUG-

9). The MORB samples have ɛCe from -1.65 to -0.77 and ɛNd between 9.69 and 10.56, with 

mean values of -1.08 and 9.99 for ɛCe and ɛNd, respectively. The isotope data we report here 

is in good agreement with previous measurements of Ce isotopes in MORBs, whose mean 

ɛCe is -0.90 and mean ɛNd is 9.73 (Bellot et al., 2015; Doucelance et al., 2014; Makishima and 

Masuda, 1994). The three MTB samples yield heterogeneous Ce and Nd isotopic 

compositions. Sample D68-2-1 has Ce and Nd isotopic compositions similar to that of MORB 

end-member (ɛCe= -1.13; ɛNd= 9.79). The two other back-arc basalts have compositions 
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similar to those of the basaltic Mariana arc lavas. Isotope results are consistent with the 

conclusions of Pearce (2005) based on trace-element measurements since D68-2-1 was the 

only analysed sample collected in a segment of the south Mariana Trough that was identified 

as a MORB-like domain, i.e. without contamination by slab fluids.   

 For the Mariana trench sediments, the isotopic ratios of volcaniclastic turbidites are quite 

homogeneous and range from -0.13 to 0.29 and from 0.97 to 5.17 for ɛCe and ɛNd, 

respectively. The Nd isotope compositions of the same samples were already measured for 

the 2 volcaniclastic samples 801B-5R and the 801B-8R (Vervoort et al., 2011). Our results 

are in agreement with these earlier results to within 30 ppm, a difference that can be 

attributed to powder heterogeneity. In comparison to volcaniclastics, the biosiliceous 

sediments have more variable Ce and Nd isotope ratios with ɛCe ranging from 0.30 to 1.15 

and ɛNd from -8.64 to -0.79. The large isotopic variations in the biosiliceous sediments reflect 

a broad lithological diversity. 

 

 

5. Discussion 

 

The lava samples analysed in this study have ɛNd and ɛCe that differ from those of MORB 

samples. In order to explain such variations, we develop mixing models between the local, 

depleted mantle and two distinct components derived from recycled sediments. In a second 

step, we detail other potential factors that could influence the rare earth element contents of 

the lavas and potentially generate Ce anomalies..  

 

5.1. Ce-Nd isotope constraints on the origin of Ce anomalies in Mariana lavas 

 

Mariana arc samples show a co-variation in ɛNd vs. Ce/Ce* diagram (Figure 3A). The co-

variation is less well defined in the ɛCe vs. Ce/Ce* plot (Figure 3B) because the total variation 

in Ce isotope composition is small. The Sm-Nd systematics confirms that the Ce anomalies 
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are mostly source-related, in agreement with the conclusions of Elliott et al. (1997). 

Biosiliceous and volcaniclastic trench sediments possess distinct 
138

Ce/
142

Ce and 
143

Nd/
144

Nd 

isotope ratios (Table 2). Thus binary mixing models between the depleted mantle (mantle 

wedge) and the two types of sedimentary components (biosiliceous vs volcaniclastic) may 

help to better constrain the nature and the proportions of sediments involved in Mariana arc 

volcanism. Is a specific material responsible for the presence of the Ce anomalies and for the 

Ce and Nd isotopic compositions in the Mariana arc lavas? For model purpose, no age 

correction was applied to the sediments. The drilled samples are considered as 

representative of the subducted sediments involved in the source of the current volcanism at 

the Mariana arc. The Mariana arc- trench system is of intra-oceanic type and the pelagic 

background sedimentation is slow. Moreover the fore-arc topography and geophysical 

imaging reveal that all of the trench sediment is subducted. With these arguments we can 

assume that the same type of sedimentary material was indeed subducting in the past. 

 

 

 An important input parameter is the light REE (LREE) concentrations of the DMM end-

member. Several estimates have been published however we note significant differences in 

the proposed concentrations. For example the Ce concentration is 1.4 times higher in the 

DMM composition of Salters and Stracke (2004) when compared with that of Workman and 

Hart (2005) and these two DMM-models have Ce/Ce* of 1.05 and 0.91, respectively. The 

Mariana Trough Basalt D68-2-1 collected in a MORB-like domain segment (Pearce et al., 

2005) yields a REE pattern similar to N-MORB (Figure 4) and has no cerium anomaly 

(Ce/Ce*=1.00). Comparing the different elemental ratios (La/Ce, Ce/Nd, Nd/Pr) in DMM end-

members and the sample D68-2-1, we note that the La/Ce ratio shows the greatest difference 

(9% instead of 2% for Ce/Nd and Nd/Pr). When Ce/Ce* is calculated without considering La 

(Ce*=(Pr×(Pr/Nd)), Lawrence et al., 2006) the cerium anomaly in Salter and Stracke (2003) 

DMM disappears (Ce/Ce*=0.99). These observations suggest that the concentration in La in 

this end-member is too low. The La content in Salters and Stracke (2004) DMM is increased 

from 0.234 ppm to 0.265 ppm in order to reproduce the La/Ce ratio measured in the basalt 

D68-2-1 (equal to 0.331). With such a La content the Ce anomaly is removed and the value 
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fits perfectly within the MORB field in the La/Ce vs. La plot presented in Salters and Stracke 

(2004; see their Figure 2). There is no negative Ce anomaly in rocks sampling the depleted 

mantle in the literature, with rare exceptions that are commonly attributed to seafloor 

weathering and low temperature processes (e.g. Makishima and Masuda, 1994).  

 

Another important input parameter is the REE content of the sediment-derived component 

involved in the source of Mariana basalts. We used the estimated P-T conditions of Syracuse 

et al. (2010) to evaluate the behavior of Ce and Nd under the Mariana volcanic arc. For 

hydrated metapelites, these conditions correspond to a transition from aqueous fluids to 

hydrous melts (Hermann and Spandler, 2008). The hydrous melts are the result of partial 

melting of sediment in the presence of water. The partial melting of sediments leads to more 

efficient recycling of LREE when compared to the simple sediment dewatering, although 

experimental data compiled in Plank et al. (2009) show the strong effect of temperature on 

the solubility of the REE. Most of the experiments reveal that Ce is not fractionated in 

comparison to its neighboring elements (Martindale et al., 2013; Skora and Blundy, 2012). To 

our knowledge only the recent study of Tsay et al. (2017), which conducted experiments on 

the dehydration of an allanite-bearing eclogite at 2.5 GPa and 600-800°C, obtained aqueous 

fluids characterized by positive Ce anomalies. However the Ce anomalies on the fluid/(bulk) 

solid partition coefficients are not resolved when the analytical uncertainties are considered. 

Here results on high-P/high-T experiments on sedimentary materials are used to constrain the 

behavior of Ce and Nd, and in particular their partition coefficients in each of the two types of 

sedimentary materials: biosiliceous sediments from Johnson and Plank (1999) and in 

volcaniclastics ones from Martindale et al. (2013).  

 

 

5.1.1. Biosiliceous sediments 

 

The high-P/high-T experiments of Johnson and Plank (1999) used natural pelagic red clay 

from the eastern Tonga Trench (DSDP site 595). This type of sediment is common amongst 

the sediments from the Pacific ocean (Plank and Langmuir, 1998). It is also comparable to the 
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red clays of Unit I and to the non-biogenic fraction of Units II, IV and V at Site 801, east of the 

Mariana arc front (Figure 2). In the calculations, the concentrations measured in the 

biosiliceous samples (Vervoort et al., 2011; this study) are multiplied by the enrichment factor 

reported in Table 3. Sediments produced partial melts in these conditions, and not aqueous 

fluids. They are depleted in REE in comparison to the initial sediment. 

 

Figure 5A shows the binary mixing curves in ɛCe-ɛNd space between D68-2-1 and 

components derived from the biosiliceous sediments. The two samples 801A-17R and 801B-

33R (a porcellanite and a radiolarite, respectively) cover the entire εCe biosiliceous sediment 

range; thus their isotopic compositions are used to constrain those of the two enriched end-

members in the calculated mixing curves. Concentrations used in the model correspond to 

the average concentration of biosiliceous sediments. Both mixing curves pass through the 

Mariana arc samples within the error bars on the measurements. The incorporation of 2.5% to 

8% of melts extracted from biosiliceous sediments reproduces the 
138

Ce/
142

Ce and 

143
Nd/

144
Nd ratios of the Mariana arc samples. This model must also explain the Ce/Ce* 

values measured in the same samples. The calculated Ce/Ce* values are presented in Figure 

5B relative to the sedimentary proportions. For the proportion of sedimentary component 

determined using Ce-Nd isotopes (2.5% to 8%), the calculated Ce/Ce* values in the Mariana 

arc samples range from 0.91 to 0.84. These values are significantly lower than Ce/Ce* values 

(up to 0.90) measured in lavas (Figure. 5B). Results are similar when the mean Ce-Nd 

isotope composition is considered for the sedimentary end-member (see supplementary 

material D).  

 

 

5.1.2. Volcaniclastic sediments 

 

Our calculations are based on the results obtained experimentally by Martindale et al. 

(2013) on the volcaniclastic sediment 801B-8R3. The Ce, Pr and Nd concentrations of the 

fluids were calculated considering the partition coefficients in the 850°C-3GPa experiment 

(see Table 5 of Martindale et al. (2013) and our Table 3) and the concentration in this 
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volcaniclastic sample published in Vervoort et al. (2011). Because enrichment factors are 

higher than 1, melts are enriched in REE relative to the initial material. The two mixing lines 

shown in Figure 6A join the local depleted mantle (with an isotopic composition identical to 

that of D68-2-1) and two distinct enriched end-members which Ce and Nd isotopic ratios 

correspond to those of the two volcaniclastic sediments with the most extreme Ce isotope 

compositions (801B-8R3 and 801B-7R, respectively). Concentrations correspond to the mean 

value of all voclaniclastic samples. Both curves pass through the lava arc samples within the 

error bars on the Ce isotope measurements. To explain the 
138

Ce/
142

Ce and 
143

Nd/
144

Nd ratios 

of the Mariana arc lavas, 0.75% to 2.75% melt from volcaniclastic sediments is necessary. 

Such a contribution would produce arc magmas that are characterized by a Ce/Ce* of 0.97 to 

0.95 (Figure 6B). These values are in agreement with the majority of cerium anomalies 

measured in our samples. One of the four studied volcaniclastic samples (802-43R from site 

802) has a Ce/Ce* of 0.88, which is significantly lower than those measured in the other three 

samples (from 0.91 to 1.06). However, this very low Ce/Ce* value is unique among the 13 

measured volcaniclastic samples found in the literature, with a range of Ce/Ce* comprised 

between 0.88 to 1.06 (N = 13; Karpof, 1992; Vervoort et al., 2011; this study). The 

participation in small proportion of the component derived from volcaniclastic sediments 

satisfies both Ce-Nd isotope compositions and the Ce anomalies of the Mariana arc. Results 

are similar when the mean Ce-Nd isotope composition of volcanoclastics is considered for the 

sedimentary end-member (see supplementary material E).  

 

 

5.1.3. Comparison with previous estimates  

 

Fluids/melts from the most common sediments (biosiliceous and volcaniclastic) drilled off 

the Mariana Trench at ODP sites 801 and 802 must have directly participated in the arc 

magma genesis as evidenced by some key trace element abundances characteristic only to 

sediments (Elliott et al., 1997; Ishikawa and Tera, 1999; Plank and Langmuir, 1998b). Our 

calculations show that the melting of subducted volcaniclastics contributed smaller Ce 

anomalies than the biosiliceous ones and the sedimentary proportions calculated from Ce-Nd 
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isotope data are also smaller for voclaniclastics than for biosiliceous sediments (0.75-2.75% 

against 2.5 to 8%). The participation of sediments in the source of the Mariana arc lavas has 

been studied using a large range of geochemical tools, including trace elements and isotope 

systematics and all results converge towards a sedimentary proportion that does not exceed 

4% (
238

U-
230

Th, 
147

Sm-
143

Nd, 
176

Lu-
177

Hf, U-Th-Pb) (Avanzinelli et al., 2012; Elliott et al., 1997; 

Hole et al., 1984; Tollstrup and Gill, 2005; Vroon et al., 1995; White and Dupré, 1986; 

Woodhead, 1989). Our Ce-Nd results give sedimentary proportions that agree generally well 

with these previous estimates if the sedimentary component is derived from volcaniclastics 

whereas the sedimentary proportion can be up to 8% for biosiliceous sediments and then far 

above the previous estimates. Moreover with biosiliceous sediments we cannot reproduce 

both the Ce-Nd-isotope compositions and the cerium anomalies of the lavas. It would be 

interesting to calculate a bulk sediment Ce isotope composition for the ODP site 801 but this 

is currently impossible because 1) the number of samples analyzed in this study is too small; 

2) no samples from unit 1 of this site were analyzed, and 3) published measurements of 

138
Ce/

142
Ce ratios in sediments are very scarce and exist only for Lesser Antilles forearc 

sediments (Bellot et al., 2015). Unfortunately we did not identify any good chemical proxy for 

the Ce isotope composition of the Mariana Trench sedimentary column. 

 

We also show the importance of considering the compositions of the sediments on the 

seafloor near to the deep-sea trench. The very low sedimentary melt proportions of 0.4% for 

Mariana arc samples calculated in Hole et al. (1984) to explain their Ce anomalies is a direct 

reflection of the importance of the choice of mixing end-members. They use the PAWMS 

(Pacific Authigenic Weighted Mean Sediment) representing the mean concentrations for 

DSDP Leg 34, Hole 314, located on Nazca plate in the east Pacific Ocean. This material has 

a very large Ce anomaly (Ce/Ce* of 0.2) compared to sediments located seaward of the 

Mariana arc front. This observation illustrates the caveats of using average global 

compositions to quantify the sources contributing to subduction zone-related magmas, in 

agreement with  Woodhead et al. (2012). 
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5.2. Ce anomalies in worldwide magmatic arcs: can other processes generate cerium 

anomalies? 

 

The compilation of Ce/Ce* measured in arcs from the geochemical database GEOROC 

reveals that several subduction zones are characterized by volcanic rocks with negative Ce 

anomalies, i.e. Central America, the Cascades, Izu-Bonin and Mariana arcs (Figure 7). 

However, sediments drilled within the trench do not have systematically cerium anomalies 

(e.g. Cascades). Working on databases has the advantage of bringing out trends but here no 

data filtering has been applied. We are aware that cerium anomalies are small and only 

rigorous analytical works can reliably quantify these small variations. Also negative Ce 

anomalies can result from secondary processes when subaerial basalts are exposed to 

alteration in tropical environments. This has been found for basalts from French Polynesian 

islands (Cotten et al., 1995). In this case, the negative Ce anomalies in the basalts result from 

the precipitation of Y-REE rich phosphates concentrating all REE except Ce. Such 

precipitates remain rare and are not observed in our Mariana samples. The Mariana arc 

samples have quite similar REE abundances (Table 1) and their chondrite-normalized values 

fall between 10 and 100 (Log space) in comparison with 1000 as is the case in arc lavas with 

Y-REE rich phosphate precipitation. Also, the La/Nb, Nd/Zr or Sm/Hf ratios are all similar and 

not significantly elevated as would be expected with Y-REE rich phosphates (Cotten et al., 

1995). Lastly, the Mariana arc samples are all historic or young enough (<350ka) to have 

significant U-Th disequilibria, so they should not have experienced such extensive weathering 

(Elliott et al., 1997).  

The formation of cerium anomaly by magmatic processes such as partial melting and/or 

fractional crystallization has never been thoroughly examined. We test below the potential 

influence of magmatism on the Ce/Ce* values in the context of the formation of arc lavas. 

Since coupled Ce/Ce* and Ce data are now available in lavas of two different island arcs 

(Antilles and Mariana), our calculations have been applied to these particular cases. 

 

5.2.1. Batch melting 
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The models are based on the proposed slab geometry beneath volcanic arcs by Syracuse 

and Abers (2006). Beneath the Mariana volcanic arc front the slab depths vary from 172 to 

156 km (north-south). The pressure-temperature conditions at these depths are estimated to 

be 5-5.5 GPa and 780-820°C (model D80 in Syracuse et al., 2010). In the south part of the 

Lesser Antilles the slab depth is about 140 km corresponding to pressure-temperature 

conditions of 4-5 GPa and 780°C (model D80 in Syracuse et al., 2010). Under these 

conditions, melting occurs in the garnet stability field. Thus we have considered a garnet 

peridotite with the following modal abundance: 55% olivine, 11% clinopyroxene, 25% 

orthopyroxene and 9% garnet (Rollinson,1993). Because Mariana arc samples and most of 

those analysed for Lesser Antilles do not have a garnet signature (fractionation between 

heavy REE), we can also assume that melting continues into the spinel stability field, or that 

garnet is consumed. A second composition has been then modelled with the reduction of the 

garnet content from 9% to 6% and by adding 3% spinel. Mantle wedge metasomatism also 

needs to be integrated into the model. As a first approximation, we consider that the depleted 

sub-arc mantle was contaminated by 2% of melt extracted from volcaniclastic sediments 

fluids (case of Mariana) or 5% fluids coming from the partial melting of the GLOSS-II reservoir 

(case of Martinique Island following the proportion estimated in Bellot et al., 2015). The fluid 

composition is calculated by applying the bulk solid/fluid partition coefficients measured from 

the experiments carried out by Martindale et al. (2013) for Mariana and by Johnson and Plank 

(1999) for Lesser Antilles. We then assume cryptic metasomatism, in which the bulk 

chemistry of the mantle wedge is modified by metasomatism but without bulk mineralogical 

changes. It is likely that the fluid/melt circulation would have resulted in mineralogical 

reactions and the occurrence of hydrous minerals. These phases would have been consumed 

immediately by melting and would probably not play any significant role subsequently. In our 

model the LREE concentrations of the mantle source are those proposed by Salters and 

Stracke (2004) for the depleted mantle. The bulk partition coefficients (D) of the garnet-spinel 

peridotite are determined from KD values proposed by McKenzie and O’Nions (1991) for each 

basalt/mineral phase proportion.  We choose McKenzie and O’Nions KD values because their 

study is the only study given all KD necessary for our model. The change of Ce/Ce*, 

expressed in Ce/Ce* (normalized to the initial composition equal to 100% of partial melt) is 
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plotted against the degree of partial melting (%). Results presented in Figure 8A show that 

variation is always very small and lower than 0.021. The maximum Ce/Ce* variation is 

obtained for 2.5% melting. The spinel peridotite composition results in smaller variations than 

the garnet composition. The change in the sediment proportion (2 to 5%) and its composition 

(volcaniclastic vs GLOSS) does not modify the calculated curves. Partial melting generates 

small variation of the cerium anomaly and its potential effect has not been considered in the 

models presented in figures 5B and 6B. The cerium anomaly changes of 0.01 when 

considering the typical melting degree for arc lavas, i.e. ~10%. Thus the melting process 

increases the amplitude of the cerium anomaly and can explain the most extreme Ce/Ce* 

values of (0.90 to 0.92) measured in a few samples.  

 

 

5.2.2. Fractional crystallization 

 

Results of the fractional crystallization (FC) calculations are presented in figure 8B. The 

initial magma corresponds to 10% of partial melting of the previously metasomatized depleted 

mantle (see section 5.2.1 and figure 8A). The crystallizing mineral assemblage used here 

results from 1) the modelling of Dixon and Batiza (1979) for Mariana (see Table 5 of their 

paper); and 2) the propositions made in Labanieh et al. (2012) for andesites from Martinique 

lavas. The bulk LREE solid/melt partition coefficients between the minerals (olivine, cpx, opx, 

plagioclase, amphibole, garnet and/or magnetite) and the basaltic melt are calculated from 

the partition coefficients D
basalt/mineral 

of McKenzie and O’Nions (1991) except D
basalt/magnetite 

for 

LREE (Luhr and Carmichael, 1980). Because Pr was not measured in this last study, the 

partition coefficient for this element has been calculated by linear interpolation between La 

and Nd that are two elements existing only in 3+ valence state using the following equation: 

(1/3)*KDLa+(2/3)*KDNd. This calculation shows that FC does not control the cerium anomaly 

neither for the Mariana arc nor for Martinique samples with variation lower than 0.005 (Figure 

8B). The difference in the lava mineralogy for the two arc systems explains the variations 

observed in the figure 8B.. Several arguments show that FC does not control the trace 

element composition neither for the Mariana arc nor for Martinique samples. Firstly, most of 
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our rocks plot on a positive straight line on diagrams using the ratios of two incompatible 

elements such as Th/REE as a function of the concentration of the most incompatible element 

(Th), suggesting that variations in trace elements are mostly controlled by batch melting 

rather than FC (Figure 9). In addition, the Ce/Ce* and MgO contents of the arc samples do 

not co-vary. In these two locations, sample that seem to be more affected by FC do not have 

the lowest Ce/Ce* value. The influence of FC on the Ce anomalies is thus limited, especially 

for Mariana lavas. Turning to Martinique lavas, Labanieh et al. (2012) have examined in great 

detail the effect of the FC process on REE. They showed that amphibole and garnet are able 

to fractionate REE ratios (e.g. La/Sm) in some particular volcanic complexes of Martinique 

(Conil, Carbet, Pelée and Gros Ilet). Our calculations, however, show that FC does not 

significantly fractionate Ce relative to its neighboring elements and does not generate Ce 

anomaly in the lavas. Indeed these samples do not differ from the others in the figure 9B.  

 

 

5.2.3. The role of residual accessory mineral phases  

 

The role of residual accessory mineral phases present in subducted sediments has been 

previously highlighted, in particular to explain the correlation observed between 
176

Hf/
177

Hf 

ratios and Hf concentrations in the Izu-Bonin-Mariana arc system (Tollstrup and Gill, 2005). 

Thus, less than 2% of fluids coming from 25% of partial melting of subducted sediments are 

needed, when associated with 0.0025% of residual zircon, to result in the six-fold increase of 

the Nd/Hf ratio that is expected to explain the Hf anomalies measured in the Mariana arc 

lavas (Tollstrup and Gill, 2005). Combined 
238

U–
230

Th and 
235

U–
231

Pa measurements on 

Mariana lavas show that the main control on U-series in these samples is exerted by 

accessory phases (allanite, monazite and zircon) present during the recycling of the 

subducted material (Avanzinelli et al., 2012). Cerium is incompatible with respect to zircon 

formed in hydrous veins at eclogitic facies conditions (Rubatto and Hermann, 2003). Zircon 

retains Ce more efficiently than other REE, but its concentrations remain very low in 

comparison to those observed in magmatic zircons (~2 ppm in zircon veins formed by 

fluids/melts in subduction zones; Rubatto and Hermann, 2003). If zircon is present during 
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partial melting of the sediments, it might fractionate the HFSE more efficiently when 

compared to the LREE. The same is true for rutile, whose Ce partition coefficient (D
mineral/melt

) 

is <0.001 (Klemme et al., 2005). The presence of residual accessory mineral phases in sub-

arc conditions can explain the HFSE signatures (Avanzinelli et al., 2012; Martindale et al., 

2013), but their influence seems to be limited for the LREE and does not explain any cerium 

fractionation relative to its neighboring elements. Conversely, the dehydration of an allanite-

bearing eclogite seems to produce aqueous fluids characterized by positive cerium anomalies 

(Tsay et al., 2017), but these anomalies are poorly constrained relative to the analytical 

precision. Cerium anomaly (Ce/Ce*>1) increases with the temperature of the experiments. 

This effect cannot be related to a redox effect because experiments made at higher 

temperature are more reducing, as attested by the amplitude of the Eu anomaly, meaning that 

the cerium should be present in the valence 3
+
 i.e., like the other REE (Tsay et al., 2017). 

Active serpentinite mud volcanism in the shallow fore-arc region of the Mariana convergent 

margin presents a unique opportunity to characterize the slab-derived fluids. Here it has been 

shown that relative to the depleted mantle wedge, the fluid mobile elements which are 

characteristic of the subducted slabs (B, Cs, I, As, Sb; Snyder et al., 2004; Savov et al., 2005, 

2007) are often orders of magnitude more enriched in the serpentinite muds and fluids 

sampled from carbonate and brucite chimneys at the summits of these mud volcanoes. At the 

low temperature (<350°C) of the fore-arc regions, the LREE remain immobile as no significant 

decoupling between Ce, La and Pr has been identified (Savov et al., 2007, 2005). 

 

5.3.1. Effect of mantle redox conditions on Ce valence state 

 

The effect of the oxygen fugacity on the cerium valence state is well known in sub-surface 

conditions but experiments in mantle conditions are very scarce. The presence of Ce
4+

 in 

magmatic rocks has been first highlighted with the presence of positive cerium anomaly in 

zircons. In this mineral the CI-normalized REE pattern is often characterized by the coupled 

presence of positive cerium and negative europium anomalies. Cerium and Eu, unlike the 

other REE, do not exclusively form trivalent ions, existing also as Ce
4+

 and Eu
2+

. The 

partitioning between zircon and melt for these elements changes with the variations of the 
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oxygen fugacity (Burnham and Berry, 2012). The only other study presenting REE partition 

coefficients for different reducing conditions is for plagioclase in basaltic melt (Aigner-Torres 

et al., 2007). The melt in the later study lacks significant cerium anomaly despite the large 

range of the oxygen fugacity investigated in the experiments (fO2= IW, QFM, air). However, 

we note that the plagioclase/melt partition coefficient for cerium does not plot exactly on the 

3+ curve in the lattice strain model of Aigner-Torres et al. (2007) but slightly below (see their 

figure 5). The analytical precision of in-situ REE measurements representing a wide range of 

relevant experimental conditions does not allow the detection of the Ce anomalies. 

 

The oxidation state of Ce in silicate melt can be quantified using XANES technique 

(Burnham and Berry, 2014; Smythe and Brenan, 2015). Ce
4+

/ΣCe in natural melts is 

exceedingly small and seems to be recorded only in the mineral zircon that has a great 

potential as an oxy-barometer (Smythe and Brenan, 2016; Trail et al., 2011). Smythe and 

Brenan (2015) have determined a small fraction of Ce
4+

 under terrestrial magmatic conditions 

in a large range of ƒO2 for rhyolite to basalt compositions (FMQ varying from -4 to +8.4). 

Using an oxygen fugacity of 2 log units above FMQ as value for magmas in subduction zones 

(Kelley and Cottrell, 2009; Parkinson and Arculus, 1999), we estimate the Ce
4+/

Ce
3+

 ratio in a 

basaltic arc melt of about 0.0012. In addition, in presence of Fe in natural silicate melts, the 

enthalpy energy of oxidizing Fe (Fe
2+

  Fe
3+

) is lower than the one for Ce (Burnham and 

Berry, 2014; Schreiber et al., 1980) and the polymerization of the melt increases the redox 

state of Ce contrarily to the addition of H2O (Smythe and Brenan, 2015). In conclusion even if 

basaltic melts near subduction zones are more oxidized than magmas from divergent plate 

boundaries (Kelley and Cottrell, 2009), the redox conditions cannot generate Ce anomaly in 

arc lavas.  

 

The measurement of non-traditional stable isotopes has been developed with the aim of 

better characterizing the mantle redox conditions. Cations such as Cr, Fe, Ti, and V exhibit a 

range of valence states that depend on the stability of mineral phases and the partitioning 

behavior between mineral and melt (Papike et al., 2005). Mariana arc samples have been the 

subjects of several stable isotope studies, including Tl (Prytulak et al., 2013b), V (Prytulak et 
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al., 2017), Mo (Freymuth et al., 2015) and Fe (Williams et al., 2018). Although some of these 

analyses were conducted on the Mariana samples studied here, no clear correlation is 

observed between these isotopes and the Ce isotope ratios. A slight co-variation is observed 

between Mo and Ce isotopes (n=5). Measured variations in Mo and Ce are too small relative 

to the analytical errors to be clearly resolved (supplementary file F). Voegelin et al. (2014) 

showed the absence of fractionation of Mo isotopes (δ
98/95

Mo) during fractional crystallization 

in the specific case of Mariana arc magmas since all these samples present a narrow range in 

MgO concentrations. Molybdenum isotope range in Mariana arc lavas is explained by the 

participation of fluids from the lower subducted basaltic crust, where Mo isotopes would 

fractionate during dehydration, and/or by the presence of residual rutile from the sediment 

melts (Freymuth et al., 2015; Skora et al., 2017). However experimental studies realized so 

far do not report any Ce fractionation in the presence of residual rutile. 

 

 

5.3.2 Implications of Ce-Nd isotopes in arc magma environments 

 

The first coupled Ce-Nd isotope measurements on island volcanic rocks were reported for 

samples characterized by large negative cerium anomalies up to 0.73: 16 samples from two 

Solomon Islands (Shortland and New Georgia) and 3 samples from Bonin Islands (Shimizu et 

al., 1992). The compilation of all data available on samples collected in arc settings (lavas, 

sediments) and mid-ocean ridge samples is presented in figure 10. We note that lavas from 

Bonin and Solomon Islands have more radiogenic Ce values than those from Mariana and 

Martinique with comparable Nd. Since no sediment collected near Bonin and Solomon 

Islands has been analyzed, mixing curves cannot be calculated between depleted mantle and 

enriched source as done for Mariana and Lesser Antilles. Only one enriched end-member 

composed by sediments having very radiogenic 
138

Ce/
142

Ce ratios would explain the 

measured isotope ratios in Bonin and Solomon arc samples. Radiogenic 
138

Ce/
142

Ce ratios 

are acquired over time in reservoirs characterized by high La/Ce ratios and then usually 

having very low Ce contents and much lower Ce/Nd ratios than that of the depleted mantle. 

With these end-members, mixing calculations produce convex curves in the ɛCe vs. Nd 
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diagram that do not pass through the samples located in the upper-right quadrant. Mean 

sedimentary piles calculated for Izu-Bonin (ODP Leg 185 Site 1149) and Vanuatu (DSDP Leg 

30 Site 286) are both characterized by negative cerium anomalies (0.69 and 0.90, 

respectively) close to that of the sedimentary column sampled at the Mariana trench (0.73). 

The Nd measured in DSDP Leg 30 Site 286 sediments are very high compared to those 

measured in Mariana (+2 to +9 in Vervoort et al., 2011 and -2 to 10 in Peate et al., 1997). The 

participation of a large quantity of sediments in the magma source is also excluded from 

results on Hf, Nd, Sr and Pb isotopes measured in samples from Solomon Islands (Schuth et 

al., 2009).  In conclusion using the geochemical database of oceanic sediments collected in 

this part of the Pacific Ocean, the cerium isotopic composition of Bonin and Solomon arc 

samples remains enigmatic. Additionally, we have highlighted the need to use the “local” 

mantle as depleted end-member in our Ce-Nd isotope mixing models for Mariana samples 

(Mariana Through basalt instead of the mean MORB). The Ce variability in MORB is up to 

1.2, which is significant regarding the analytical precision of 0.4. To model Solomon samples, 

it may be necessary to consider the presence of the Ontong Java plateau and of the Indian 

mantle wedge trapped under Solomon Islands too. The local tectonic settings result in an 

anomalously high mantle temperature and probably lead to the production of adakitic melts 

(Schutl et al., 2009).  

 

Martinique island lavas are of particular interest to understand magma generation in the 

case of sediment incorporation into the mantle wedge because they all fit on hyperbolas 

compatible with simple two-component mixtures in isotope variation diagrams (Pb, Sr, Nd and 

Hf isotope ratios, see Labanieh et al., 2010). However, the cerium anomalies measured in the 

same samples do not correlate with Nd or Ce values (Figure 11), even if samples that appear 

to be significantly affected by fractional crystallization are discarded (see supplementary file 

G). Samples from Bonin and Solomon Islands studied by Shimizu et al. (1992) show no 

significant correlation in Nd-Ce/Ce* and Ce-Ce/Ce* diagrams (Figure 11), and, in a more 

general way, there is a lack of correlation between Nd- and Ce/Ce* in samples from the Izu-
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Bonin arc (Hochstaedter et al., 2001). This strongly suggests that the cerium anomaly is not 

always a good proxy of the sediment incorporation in the mantle wedge.   

 

 

6. Conclusion  

 

The measurement of 
138

Ce/
142

Ce and 
143

Nd/
144

Nd on 12 Mariana arc samples, 9 trench 

sediments from ODP sites 800 and 801, 3 Mariana Trough Basalts and 3 MORB samples 

provides new information regarding the LREE source of Mariana arc magmas and their 

negative Ce anomalies. Since the back-arc basalt sample D68-2-1 is representative of the 

local depleted mantle under the Mariana arc, it is used to model the depleted end-member in 

the binary mixing calculations. The Ce-Nd binary mixing models were calculated using two 

different enriched end-members: volcaniclastic sediments and biosiliceous sediments. Our 

models show that a small proportion of a sedimentary melt derived from volcaniclastic 

sediments (0.75% to 2.75%) must have been incorporated into the mantle source in order to 

explain both 
138

Ce/
142

Ce and 
143

Nd/
144

Nd ratios of the arc samples and their negative Ce 

anomalies (0.90 to 0.97). For biosiliceous samples, a too large proportion of a sedimentary 

melt is required (up to 8%) to explain the Ce-Nd isotope composition of the lavas. Moreover 

the incorporation of biosiliceous sediments generates too strong Ce anomalies. We highlight 

the importance of using local materials, i.e. depleted mantle from the back-arc basin and 

sediments from ODP sites 801 and 802, in the binary mixing calculations.  

  

Other « magmatic » processes than partial melting and fractional crystallization, that 

potentially affect Ce anomalies, have been also discussed: these are the influence of oxygen 

fugacity on the change of valence state of Ce, the presence of residual accessory mineral 

phases, or the involvement of aqueous fluids resulting from the dehydration of recycled 

material. The proportion of Ce
4+

 for these redox conditions is extremely low. The precisions 

on partition coefficient are not sufficient yet to attribute Ce anomaly variations in arc lavas to 

one of these processes and more experiments are needed at different redox conditions. Their 
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influence on Ce/Ce* are limited in the Mariana arc context, nevertheless they cannot be totally 

excluded for other arcs. 

 

Comparing the whole database of 
138

Ce/
142

Ce data available for arc lavas reveals a 

significant variability between arcs. Bonin and Solomon Island have Ce difficult to explain. A 

better characterization of the local materials involved in their source together with a better 

understanding of Ce, and more largely REE, behavior during magmatic processes, may help 

understanding measured values. Turning to Martinique lavas, their Ce isotope compositions 

can be explained by a binary mixing between depleted mantle and local sediments, but not 

their Ce anomalies. So, the link between negative Ce anomalies and sediment additions has 

to be made carefully and without globalizing the process to all subduction zones.    
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Figure captions 

 

Figure 1: Bathymetric map of the Mariana arc showing the location of the samples analyzed in 

this study. Blue triangles: arc volcanoes; red circles: Mariana Trough (backarc) basalts; and 

white squares: ODP drilling sediment sites from Leg 129 (800, 801 and 802). The basemap is 

from GeoMapApp (www.geomapapp.org). 

 

Figure 2: Stratigraphic log of site 801 from ODP Leg 129 and the associated Ce anomaly 

(Ce/Ce*) in function of depth (meters below sea level). Ce anomalies are calculated from data 

published in Karl et al. (1992) and Plank and Langmuir (1998) measured by INAA and 

ICPMS, respectively. The red arrows indicate the provenance of each studied sedimentary 

sample (Karl et al., 1992; Karpof, 1992; Salimullah, 1992). 

 

Figure 3: Ce/Ce* of studied lava samples from Mariana arc relative to (A) ɛNd and (B) ɛCe. 

Epsilon Ce values correspond to the weighted mean value when measurements have been 

duplicated. The error bar at the top of the diagram corresponds to the 2S.D. value determined 

on repeated standard measurements (40 ppm for Ce and 9 ppm for Nd). Deep blue triangle 

= Guguan; light blue triangle = Alamagan; orange triangle = Pagan; black triangle= Agrigan; 

grey triangle = Sagrigan; green triangle = Ascuncion; white triangle = Uracas.  

 

Figure 4: REE patterns of the three studied Mariana Trough basalts normalized to CI-

chondrite (McDonough and Sun, 1995). The N-MORB from Hofmann (1988) is shown for 

comparison (black line). Sample D68-2-1 is depleted in Light REE and follows the same 

pattern as N-MORB, whereas C7 and D3-2-1 are enriched in LREE.  

 

Figure 5: A) ɛCe vs ɛNd values for MTB (red diamonds), Pacific MORB (orange circles), 

Mariana arc samples (blue triangles) and biosiliceous sediments (green squares). The 2SD 

for ɛCe and ɛNd illustrates the external reproducibility on repeated measurements of AMES 

and JNdi-1 standards. The two curves correspond to binary mixing between the Mariana 
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Trough basalt D68-2-1 and components derived from biosiliceous sediments D68-801B33R 

and D68-801A17R that show the most extreme ɛCe values. The white stars indicate the 

sedimentary proportions needed to explain the Ce and Nd isotopic compositions of the 

volcanic arc samples. Similar results are obtained using a «mean» sedimentary component 

(supplementary information). B) Evolution of the modeled Ce/Ce* with respect to the 

sedimentary proportions determined using the binary mixing models in Figure 5A. The white 

dots corresponds to Ce/Ce* calculated for 2.5% to 8% of sedimentary products at the lava 

source. The modeled Ce anomalies can be compared with the Ce/Ce* range in the Mariana 

arc samples represented in the right part of the figure B. Input parameters of the models are 

given in Table 3. 

 

Figure 6 A) ɛCe vs ɛNd values for MTB (red diamonds), Pacific MORB (orange circles), 

Mariana arc samples (blue triangles) and volcaniclastic sediments (purple squares). The 2SD 

in ɛCe and ɛNd illustrates the external reproducibility on repeated measurements of AMES and 

JNdi-1 standards. The two curves correspond to binary mixing between the Mariana Trough 

basalt D68-2-1 and components derived from volcaniclastic sediments (samples 801B-8R3 

and 801B-7R which 
138

Ce/
142

Ce compositions are the two most extreme) as enriched end-

members. The white stars indicate the sedimentary proportions allowing to reproduce the Ce 

and Nd isotopic compositions of the arc lavas with melt products from volcaniclastic 

sediments in their source. Similar results are obtained using a «mean» sedimentary 

component (supplementary information). B) Evolution of the modeled Ce/Ce* with respect to 

the sedimentary proportions. The white dots correspond to Ce/Ce* calculated for 0.75% to 

2.75% of sedimentary products at the lava source. The modeled Ce anomalies can be 

compared with the Ce/Ce* range in the Mariana arc samples represented in the right part of 

the figure B. Input parameters of the models are given in Table 3. 

 

Figure 7: Dispersion of Ce anomalies (Ce/Ce*) in arc samples from many different subduction 

zones. All data are from the Georoc database (convergent margins data, http://georoc. mpch-

mainz. gwdg.de). Ce/Ce* are calculated using  Ce/Ce* = CeN / (LaN
0.5

 x PrN
0.5

). 
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Figure 8: Evolution of Ce/Ce* anomaly during (A) batch melting and (B) fractional 

crystallization.  The Ce/Ce* represents the Ce/Ce* of the melt subtracted to the Ce/Ce* of 

the initial solid/melt (100% of melting in A and 100% of liquid in B). To produce diagram A, we 

considered 2 modal compositions: a garnet peridotite (55% ol, 25% opx, 11% cpx, 9% grt, 

black line) and a spinel-garnet peridotite (55% ol, 25% opx, 11% cpx, 6% grt, 3% sp; grey 

line). We also used the sedimentary proportions involved in the magma genesis defined from 

Ce-Nd isotopes: 2% of melt extracted from volcaniclastic sediments (Mariana) and 5% fluids 

coming from the partial melting of the GLOSS-II reservoir (Martinique). The fluid composition 

was calculated by applying the bulk solid/fluid partition coefficients measured from the 

experiments carried out by Martindale et al. (2013) for Mariana and by Johnson and Plank 

(1999) for Lesser Antilles. Light REE concentrations of the mantle source are those proposed 

by Salters and Stracke (2004) for the depleted mantle. The bulk partition coefficients (D) of 

the garnet-spinel peridotite are KD values of McKenzie and O’Nions (1991). Ce/Ce* values 

are identical whatever the sediment proportions and the nature of the sediments showing that 

only the mineralogy of the mantle wedge changes the cerium anomaly of the produced melt. 

In diagram B, the blue line corresponds to the Mariana and the red field to Martinique.  The 

crystallizing mineral assemblage is 48.6% plagioclase, 35.9% clinopyroxene, 1.1% 

orthopyroxene, 7.3% olivine and 7.1% magnetite (Table 5 in Dixon and Batiza, 1979) for 

Mariana, whereas a range of compositions has been tested for Martinique andesites using the 

propositions made in Labanieh et al. (2012): 45-50% plagioclase, 30-45% hornblende, 7-10% 

orthopyroxene, 3-5% clinopyroxene, 0-5% garnet. The initial magmas are similar to those 

produced by 10% of partial melting in figure A. 

 

Figure 9: Th/Nd vs Nd for (A) Mariana lavas and (B) Martinique lavas. For the Mariana 

samples, Th and Nd concentrations are from Elliott et al. (1997) and from this study, 

respectively. Nd and Th concentrations for Martinique lavas are from Labanieh et al. (2012). 

The box represents a schematic C
H
/C

M
 versus C

H
 diagram, where C

H
 and C

M
 are the 

concentrations of a highly incompatible element and of a moderately incompatible one 

(Schiano et al., 2010). A fit forming a near-horizontal line indicates a fractional crystallization 
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process whereas a positive straight line fit indicates a partial melting process (Allègre and 

Minster, 1978; Feigenson et al., 1983).  

 

Figure 10: Compilation of ɛCe vs ɛNd data for samples from arc setting including lavas and 

sediments and mid-ocean ridge basalts. Salomon and Bonin island data are from Shimizu et 

al. (1992) and 
138

Ce/
142

Ce ratios are normalized using JMC-304 data (Bellot et al., 2015; 

Shimizu et al., 1992). Martinique lavas, sediments from DSDP site 144 and a few MORBs are 

from Bellot et al., (2015). MORB data from Makishima and Masuda (1994) have 
138

Ce/
142

Ce 

ratios normalized with BCR-1 and BCR-2. 

  

Figure 11: (A) ɛNd vs Ce/Ce* and (B) ɛCe vs Ce/Ce* for arc settings volcanic rocks. Data from 

this study and literatures values (Martinique in Bellot et al., 2015 and Labanieh et al., 2010, 

2012; Bonin and Salomon from Shimizu et al., 1992). The Ce/Ce* is determined by 

logarithmic interpolation of La and Pr.        

 

 

 

Table captions 

 

Table1: SiO2 (wt %) and Rare Earth Element concentrations (ppm) for Mariana lavas, 

sediments from ODP sites 801 and 802, Mariana Trough Basalts and Pacific MORB. All SiO2 

data are from literature (Bézos and Humler, 2005; Elliott et al., 1997; Karl et al., 1992; Karpof, 

1992; Karpoff et al., 1992; Pearce et al., 2005; Schiano et al., 1997; Vervoort et al., 2011). 

REE data were measured in this study by Inductively Coupled Plasma Mass Spectrometer 

(ICP-MS; quadrupole Agilent 7500) for the following samples: Mariana lavas, 4 of the 

sediments (802A-19R and 802A-43R, 801B-12R and 801B-7R), Mariana Trough Basalts and 

Searise 1 DR05 MORB. The analytical precision obtained on 4 repeated measurements of 

the BIR standard (2SD) varies for each element and is between 0.74% (Nd) to 4.06% (Eu). All 

the other REE data (sediments from sites 800 and 801, Cyana CY82 and Clipperton DR01 

MORB), in italic font, are from the literature. Sediments from ODP sites 801A and 801B are 
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from Vervoort et al. (2011); two of the Pacific MORB’s REE concentrations are from Gale et 

al. (2013).  

 

Table 2: Results of 
138

Ce/
142

Ce and 
143

Nd/
144

Nd isotopic ratios for Mariana arc samples, 

sediments from ODP 801 and 802, Mariana Trough Basalts and Pacific MORB. The number 

of the analytical session is given. Some samples have been measured two or three times 

during the same analytical session (except for D68-2-1 which was in two different sessions). 

In these cases, the weighted mean value of both run (or all) is considered. (BS) is for 

biosiliceous sediments and (Volc) for volcaniclastic turbidites. The internal errors are 2s.e (2 

times the standard deviation divided by √N where N is the number of cycles). The 
138

Ce/
142

Ce 

and 
143

Nd/
144

Nd ratios are also expressed in ε-notations normalized to CHUR values of 

0.0225654 (Bellot et al., 2015) and 0.512630 (Bouvier et al., 2008), respectively.  

ε= ((
138

Ce/
142

Cesample/
138

Ce/
142

CeCHUR-1)×10,000); ((
143

Nd/
144

Ndsample/
143

Nd/
144

NdCHUR-

1)×10,000); 

 

Table 3: Input parameters used to calculate the mixing curves presented in Figures 7, 8 and 

9. For the depleted end-member the concentrations are those of the DMM published by 

Salters and Stracke (2004) with a modified La concentration (from 0.234 to 0.265, see text). 

The concentrations of the two enriched end-members are those of the average sediments 

multiplied by the enrichment factors defined from experimental studies (Johnson and Plank 

(1999) for biosiliceous sediments, and from Martindale et al. (2013) for volcaniclastic ones. 

The ɛCe and ɛNd of each end-member are those measured in the samples. The ɛCe and ɛNd of 

the depleted end-member are from D68-2-1 Mariana Trough Basalt. Ce/Ce* corresponds to 

logarithmic calculations between La and Pr.  

a 
The enrichment factor is the ratio of element concentration in fluids over element 

concentration in the solid starting bulk: Cfluid/Cstarting bulk.   
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Table 1 

      Rare Earth Element concentrations in ppm 

Lavas SiO2 (wt %) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

Islands  samples name                               

Uracas 

URA5 53.6 5.60 12.4 1.77 8.60 2.64 0.97 3.26 0.57 3.77 0.83 2.47 0.36 2.47 0.38 

URA7 54.2 9.18 19.0 2.55 11.8 3.33 1.18 3.91 0.67 4.29 0.94 2.77 0.41 2.72 0.43 

Asuncion ASC3 54.5 5.46 12.9 1.97 9.95 3.19 1.15 3.89 0.69 4.40 0.95 2.82 0.43 2.87 0.44 

Agrigan AGR4a 50.5 7.78 16.3 2.35 10.9 3.01 1.06 3.21 0.54 3.26 0.67 1.97 0.29 1.92 0.29 

Pagan 

PAG3 51.6 5.36 12.5 1.89 9.40 2.87 1.04 3.44 0.59 3.72 0.79 2.35 0.34 2.30 0.35 

MM-92-10 54.5 11.2 24.9 3.68 17.5 5.08 1.65 5.61 0.93 5.91 1.25 3.64 0.53 3.58 0.55 

Alamagan 

ALAM2 55 6.27 14.4 2.12 10.3 3.20 0.99 3.72 0.65 4.16 0.90 2.67 0.41 2.71 0.42 

ALAM5 53.4 6.23 14.1 2.08 10.1 3.09 1.01 3.60 0.63 4.03 0.86 2.55 0.38 2.55 0.39 

Guguan 

GUG3 51.6 8.90 18.2 2.67 12.6 3.62 1.29 4.11 0.70 4.38 0.92 2.69 0.40 2.64 0.41 

GUG6 51.1 3.26 8.3 1.31 6.84 2.30 0.88 2.88 0.51 3.33 0.72 2.13 0.32 2.17 0.33 

GUG9 51.0 3.46 8.8 1.40 7.26 2.46 0.94 3.10 0.55 3.58 0.78 2.30 0.35 2.32 0.37 

Sarigan SAG1 53.4 7.44 16.5 2.37 11.3 3.34 1.14 3.77 0.64 4.11 0.88 2.58 0.38 2.57 0.39 

Sediments Depth (mbsl) Lithology                               

ODP Leg 129 Site 801A                                   

8R-1-1-3-II 69 Chert 97.9 21.8 26.2 5.37 18.2 3.80 0.91 4.09 0.62 3.57 0.72 1.95   1.73 0.26 
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17R-1-28-30-III 155 Porcellanite 80.4 17.0 30.1 4.08 14.1 2.83 0.74 2.73 0.42 2.20 0.41 1.11   1.00 0.15 

ODP Leg 129 Site 801B                                   

12R-1-64-70-II 292 Porcellanite 77.4 10.7 22.4 2.88 12.4 2.85 0.87 3.58 0.56 3.68 0.78 2.26   2.08 0.32 

5R-01W-40-42-III 232 Volc. Turbidite 67.8 16.4 32.0 4.44 18.4 3.82 1.10 3.60 0.59 2.86 0.50 1.29   1.04 0.14 

7R-01W-35-37-III 251 Volc. Turbidite 50.9 20.0 38.5 5.15 20.9 4.11 1.18 3.64 0.61 3.06 0.56 1.47   1.29 0.19 

8R3-115-125-III 257 Volc. Turbidite 57.2 19.7 41.4 5.54 21.6 4.52 1.42 4.27 0.66 3.39 0.62 1.59   1.32 0.19 

25R-1-49-53-IV 406 Radiolarite 86.1 11.8 19.3 2.95 9.96 2.04 0.45 1.94 0.31 1.71 0.34 0.95   0.97 0.15 

33R-1-143-150-IV 444 Radiolarite 74.0 21.0 32.7 4.96 18.8 3.76 1.35 3.29 0.49 2.65 0.49 1.34   1.29 0.20 

ODP Leg 129 Site 802A   nannofossils+ 

Volc. Glass 

                              

19R-1-27-29- II 159.4 45 20.8 50.8 6.52 29.0 7.15 2.37 7.42 1.11 6.33 1.16 2.98 0.38 2.33 0.32 

43R-03W-33-35-V 385.43 Volc. Turbidite   23.8 45.6 6.53 27.2 5.81 1.78 5.42 0.76 4.34 0.79 2.05 0.27 1.65 0.21 

Mariana Trough Basalts Segment                                

C7-DREDGE-3 SSP   9.98 18.7 2.58 11.7 3.13 1.06 3.54 0.55 3.48 0.73 2.12 0.31 2.08 0.31 

D3-2-1 SSP 50.4 9.11 17.5 2.60 11.8 3.12 1.07 3.49 0.54 3.50 0.73 2.11 0.31 2.08 0.31 

D68-2-1  SMT-16 50.8 3.28 9.91 1.74 9.30 3.14 1.18 4.24 0.71 4.77 1.01 2.94 0.42 2.74 0.40 

Pacific MORB Latitude Longitude                               

Searise 1 DR05  02°28'N 102°30'W 50.7 4.43 13.6 2.52 13.9 4.84 1.65 6.90 1.17 8.07 1.72 5.02 0.73 4.82 0.71 

Cyana CY82 12°43'N 103°92'W   8.94 22.8 3.33 15.8 4.23 1.56 4.99 0.91 5.77 1.22 3.44   3.24 0.49 

Clipperton DR01 12°45'N 103°56'W 46.7 4.20 11.8 1.98 10.5 3.37 1.22 4.37 0.79 5.24 1.12 3.27   3.06 0.45 
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Table 2 

  Ce Analytical 
138

Ce/
142

Ce 2 s.e. ɛCe 2 s.e. 
138

Ce/
142

Ce ɛCe 
143

Nd/
144

Nd 2 s.e. ɛNd 2 s.e. 

  session         average average         

Lavas                       

URA-5 
1 0.02256410 0.00000030 -0.57 0.13 

0.02256422 -0.52 0.513010 0.000003 7.40 0.06 

1 0.02256579 0.00000112 0.17 0.50 

URA-7 
1 0.02256440 0.00000027 -0.44 0.12 

0.02256438 -0.45 0.512980 0.000003 6.82 0.05 

1 0.02256435 0.00000036 -0.47 0.16 

ASC-3 
1 0.02256457 0.00000028 -0.37 0.12 

0.02256424 -0.52 0.513035 0.000002 7.90 0.05 

1 0.02256357 0.00000039 -0.81 0.17 

AGR-4a 1 0.02256434 0.00000030 -0.47 0.13     0.512983 0.000003 6.89 0.06 

PAG-3 
1 0.02256408 0.00000025 -0.59 0.11 

0.02256395 -0.64 0.513017 0.000003 7.55 0.05 

1 0.02256383 0.00000025 -0.70 0.11 

MM92-10 1 0.02256438 0.00000022 -0.45 0.10     0.513011 0.000003 7.43 0.06 

ALAM-2 
1 0.02256316 0.00000032 -0.99 0.14 

0.02256365 -0.78 0.513021 0.000003 7.63 0.05 

1 0.02256408 0.00000030 -0.59 0.13 

ALAM-5 
1 0.02256457 0.00000028 -0.37 0.12 

0.02256422 -0.52 0.513001 0.000003 7.24 0.05 

1 0.02256391 0.00000026 -0.66 0.11 

GUG-3 1 0.02256359 0.00000036 -0.80 0.16 0.02256436 -0.46 0.512938 0.000003 6.01 0.05 
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1 0.02256475 0.00000026 -0.29 0.11 

GUG-6 
1 0.02256299 0.00000028 -1.07 0.12 

0.02256351 -0.84 0.513041 0.000003 8.02 0.05 

1 0.02256411 0.00000030 -0.57 0.13 

GUG-9 
1 0.02256368 0.00000028 -0.76 0.13 

0.02256399 -0.62 0.513044 0.000003 8.07 0.05 

1 0.02256430 0.00000028 -0.49 0.12 

SAG-1 1 0.02256420 0.00000024 -0.53 0.11     0.512966 0.000003 6.55 0.05 

Sediments                       

801A-8R (BS) 2 0.02256743 0.00000042 0.90 0.19     0.512283 0.000003 -6.77 0.06 

801A-17R (BS) 
2 0.02256665 0.00000042 0.55 0.18 

0.02256608 0.30 0.512429 0.000003 -3.93 0.07 

2 0.02256551 0.00000041 0.05 0.18 

801B-12R (BS) 2 0.02256645 0.00000039 0.47 0.17     0.512590 0.000004 -0.79 0.07 

801B-5R (Volc) 4 0.02256580 0.00000026 0.18 0.11     0.512718 0.000003 1.72 0.05 

801B-7R (Volc) 4 0.02256511 0.00000032 -0.13 0.14     0.512718 0.000003 1.71 0.05 

801B-8R3 (Volc) 4 0.02256605 0.00000073 0.29 0.32     0.512680 0.000003 0.97 0.06 

801B-25R (BS) 2 0.02256792 0.00000035 1.12 0.15     0.512187 0.000003 -8.64 0.07 

801B-33R (BS) 
2 0.02256809 0.00000028 1.19 0.12 

0.02256800 1.15 0.512241 0.000003 -7.60 0.06 2 0.02256716 0.00000042 0.78 0.19 

  2 0.02256831 0.00000029 1.29 0.13 

802A-19R (Volc) 4 0.02256521 0.00000027 -0.08 0.12     0.512895 0.000003 5.17 0.06 
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802A-43R (Volc) 4 0.02256567 0.00000030 0.12 0.13     0.512704 0.000003 1.44 0.06 

Back-arc basalts (MTB)                       

C7-Dredge-3 
3 0.02256513 0.00000029 -0.12 0.13 

0.02256491 -0.22 0.512942 0.000002 6.08 0.05 

3 0.02256461 0.00000034 -0.35 0.15 

D3-2-1 
3 0.02256532 0.00000035 -0.03 0.15 

0.02256476 -0.28 0.512954 0.000002 6.33 0.04 

3 0.02256421 0.00000034 -0.53 0.15 

D68-2-1 
2 0.02256375 0.00000036 -0.73 0.16 

0.02256315 -1.00 0.513132 0.000003 9.79 0.06 

3 0.02256195 0.00000052 -1.53 0.23 

Pacific MORB                       

Searise 1 DR05 3 0.02256365 0.00000068 -0.77 0.30     0.513171 0.000003 10.56 0.05 

Cyana CY82 3 0.02256168 0.00000095 -1.65 0.42     0.513127 0.000002 9.69 0.05 

Clipperton DR01 3 0.02256358 0.00000034 -0.81 0.15     0.513128 0.000003 9.71 0.05 
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Table 3 

  La Ce Pr Nd   
experimental 

conditions 
  

Enrichment factor 
a 
              0.4 0.3 0.3 0.2 

Johnson & 

Plank (1999) 
2GPa-800°C 

  

Enrichment factor 
a
 

1.4 1.4 1.3 1.1 

Martindale 

et al. (2013) 
3GPa-850°C 

  

  
[La] ppm [Ce] ppm [Pr] ppm 

[Nd] 

ppm Ce/Ce* Eps Ce Eps Nd 

Depleted end-member  0.265 0.773 0.131 0.713 1.00 -1.00 9.79 

BS sediment  (801B-

33R) derived end-

member  16.4 26.1 4.00 14.7 0.78 1.15 -7.60 

BS sediment (801A-

17R) derived end-

member 16.4 26.1 4.00 14.7 0.88 0.30 -3.93 

VC sediment (801B- 20.0 39.4 5.40 22.0 0.93 -0.13 1.71 
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7R) derived end-

member 

VC sediment (801B-

8R3) derived end-

member 20.0 39.4 5.40 22.0 0.97 0.29 0.97 
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