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Abstract

Machine learning approaches form the basis of “artificial intelligence” and have been increasingly applied in health

services settings. It has been shown that such approaches may produce more accurate predictions in some contexts,

compared to conventional statistical approaches, and may also reduce the costs of decision-making through

automation.  Nevertheless, there are both general limitations to developing and implementing machine learning

approaches that must be borne in mind. To date, relatively little research has been published on the potential for

machine learning to support personnel selection. Moreover, there are particular challenges and issues that need to be

considered if such methods are to be used to support decision-making in medical selection scenarios. This article

describes some of these potential advantages and challenges and presents an illustrative example, based on real-

world data, related to the selection of medical undergraduates.

Keywords: machine learning; artificial intelligence; personnel selection; medical selection; logistic regression;

XGBoost

Introduction

There has been much publicity about the possibilities for ‘artificial intelligence’ to change our lives. Opinions have

often been polarised with, on one hand, some promoting the idea that artificial intelligence, in the context of

advancing robotics, will free mankind from the drudgery of all manual labour, ushering in a utopia of leisure and

pleasure. On the other hand the late cosmologist, Stephen Hawking, famously stated that ‘the development of full

artificial intelligence could spell the end of the human race’. Machine learning, the basis of artificial intelligence,

occurs when a system learns from novel information presented to it in order to complete a particular task. Such

learning is often classified into "supervised" and "unsupervised". In unsupervised learning the task is usually to

cluster or classify observations without reference to a particular ‘target’ or outcome. An example of such an

approach would be ‘shopping basket analyses’ which attempt to predict which retail items tend to be brought

together by customers. In contrast, in supervised learning the machine is fed a series of examples in order to allow it

to learn how to link predictors (or ‘features’) to a specific outcome (or ‘target’). Ideally such learning should
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generalise so that when the system is shown an unfamiliar dataset the machine will be able to accurately predict the

new (unseen) outcomes. Most of the recent examples of machine learning in healthcare settings have been based on

such an approach. For example, the ability of a system developed by DeepMind (formerly part of Google) to

automate the diagnosis of eye disease from medical images (De Fauw et al., 2018). In theory, such systems only

need to be as accurate as human doctors in order to justify their implementation, as they will free up medical staff

time, providing cost savings. However, in practice it may be that misdiagnosis by a machine is much less acceptable

than by a human clinician. This may be a component of ‘algorithm aversion’ (Dietvorst, 2016), whereby machines

are viewed more negatively for making the same mistakes as people. Indeed, fallibility is often considered a key part

of being human, with Seneca the Younger famously quoted as stating that errare humanum est [‘to err is human’].

This may be one of the reasons that, in practice, the suggestions of decision support tools are often overridden by

clinicians (Roshanov et al., 2013). Despite the hype surrounding artificial intelligence there are still relatively few

examples of the approach being fully implemented as part of routine clinical services, though there are calls to make

an understanding of the principles of artificial intelligence a core requirement of medical education, in preparation

for its widespread utilisation (Wartman and Combs, 2018). One possible hindrance to the use of such algorithms in

practice, when used to make diagnostic or treatment decisions, is that they are effectively medical devices. As such

they are subject to stringent regulations in most jurisdictions and considerable resources are required in order to

satisfy these so that they can be legally used in practice.

The quality of the medical workforce often determines the quality of clinical outcomes and patient experience.

Thus, staff selection methods could also be considered a health technology. Outside of medicine, machine learning

algorithms are already being used in personnel selection decisions. However, possibly due to commercial sensitivity,

relatively little has been published to date on the potential application of artificial intelligence when recruiting and

appointing staff. As might be expected, Google, via their ‘People Analytics’ department, have started using machine

learning to inform their personnel selection decisions, as well as to improve retention rates (Shweta, Kritika and

Anupama, 2018). Machine learning may also offer possible solutions to specific staff selection issues; for example,

by circumventing the need for expert scoring keys for situational judgement tests via simply predicting outcomes

(such as future supervisor appraisals) from a candidate’s raw test response patterns (Guenole, Weekley and Ro,

2016). Machine learning has also been applied to the scoring of postgraduate assessments in medical education,

though validation studies were often lacking (Dias, Gupta and Yule, 2018). Moreover, what is noticeably absent

from the scientific literature is robust empirical evidence that artificial intelligence leads to the selection of a more

effective and productive workforce, compared to conventional methods.

The potential strengths and limitations of machine learning

The term ‘machine learning’ applies to a broad range of methods, though many share similar mathematical

underpinnings to conventional statistical approaches. Tradiotional statistical methods usually aim to produce

explanatory models. That is, the proportion of the variance in a particular outcome variable that can be explained by

the values of one or more predictors. Such explanatory models help us understand the relationship between the

predictors and outcomes, and ideally support theories of causation that can be further tested. An example may be

modelling the relationship between the scores on different subscales of an aptitude test and subsequent academic

performance in medical school. The findings of such studies may help us comprehend the link between different

facets of cognitive functioning and the various aspects of undergraduate academic performance. In contrast the

focus of machine learning is prediction, rather than explanation. Indeed, machine learning algorithms have

previously been described as pursuing a predictive task "…with all the relentlessness of a T-101 terminator pursuing

Sarah Connor through a Los Angeles police station…" (Tiffin and Paton, 2018). Compared to conventional statistics

machine learning can take a more flexible approach to modelling the relationship between predictors and outcomes

and can often better capture complex, non-linear relationships. Moreover, via the ‘brute force’ that modern
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computing can offer, a machine can iteratively try thousands, or even millions, of permutations of a model in order

to derive the most accurate prediction of the target from the ‘features’ (predictors). Indeed, ‘ensemble methods’ may

be used to build numerous models then combine the predictions from each in a way which improves accuracy when

faced with a novel dataset. This approach could be visualised as the models in the ensemble represented by piranhas

in a shoal, each nibbling a different part of an animal (the prediction problem) in order to strip the carcass as

efficiently as possible. Thus, it is unsurprising that, in terms of outright prediction, machine learning often

outperforms conventional statistical approaches.

However, such accuracy comes with a number of associated costs. Firstly, machine learning algorithms are so

effective at linking predictors to outcomes that there is a risk of ‘overfitting’. ‘Overfitting’ occurs when a model is

inadvertently fitted to the noise (or error) rather than the underlying signal. Such an overfitting model seems to

describe and fit the ‘training data’ from which it was derived, almost perfectly. However, when the model is applied

to a separate, fresh dataset it demonstrates little predictive ability. A good analogy from tailoring would be having a

bespoke suit made for a particular individual that provides a perfect fit. However, the clothes, when worn by anyone

else, would be embarrassingly ill fitting. Consequently, considerable efforts have been made to counter this issue

using various methods. Secondly, in general, the more complex (and often most effective) machine learning

approaches do not give rise to interpretable models. That is, they are able to accurately predict an outcome from a

set of predictors, even from data that they have never encountered before, but it is not possible to understand how

they got there! It is for this reason that machine learning models are sometimes described as ‘black boxes’ with no

one knowing what goes on inside. This may be a particular issue in personnel selection. A candidate may

understandably want to know the reason that they were unsuccessful at a job application. If the decision was

substantially or wholly based on the recommendation of a machine learning algorithm the organisation may well not

know themselves! Being unable to justify such a high stakes decision could actually breach employment legislation

in a number of jurisdictions. Moreover, ethically, it is not always clear where the responsibility for the performance

and behaviour of such algorithms lie as they are constructed and implemented by numerous actors including

designers, end-users and developers of both the hardware and software required. This issue has been termed

‘distributed agency’ that may need to be addressed by novel moral and legal frameworks (Taddeo and Floridi, 2018). 

   

Machine learning models are only as good as the data on which they are trained. Thus a suitable quantity and quality

of information relating to potential predictors (features) and outcomes must be available. Deficiencies with either

can lead to several notable problems in practice. Firstly, obtaining a ‘hard’ (objective) outcome to train an algorithm

against can be challenging in personnel selection. For instance, ratings of work-based performance are only available

in those candidates selected. Also, measuring this construct usually relies on relatively subjective approaches, such

as supervisor ratings. At worst the resulting machine learning algorithms may actually exaggerate the human biases

that they were intended to overcome. Also, if a particular outcome is relatively rare (e.g. disciplinary proceedings)

then a machine may achieve a good ability to predict its absence (i.e. ruling the event out) but not its likely

occurrence. This is often an artefact of the optimisation process, by which accuracy is maximised during algorithm

training- it is relatively easy to achieve high accuracy merely by predicting the absence of a rare outcome in most or

every case. For instance, imagine a situation whereby one had to predict future disciplinary issues in a set of medical

students, which occurred in 2% of the sample over five years. By predicting an absence of disciplinary problems in

every case one would achieve 98% accuracy without effort. There are ways to mitigate against this effect (see

motivating example, later). Secondly, the group of individuals from which data are drawn for training may not be

representative of wider populations, leading to poor generalisability and potential bias. Well publicised examples of

such issues include ethnic (racial) bias in algorithms predicting the likely location of crimes and the risk of re-

offending in prisoners as well as the poor performance of some facial recognition software for non-Caucasians

(Cossins, 2018). As these models are often ‘black boxes’ it is often not clear under what circumstances they may be
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invalid, or lose predictive ability, through changing trends. This could particularly affect staff selection algorithms as

changes to the structure and standards of educational qualifications could render new data ‘out of sample’. One way

of addressing such issues may be to repeat validation exercises periodically to ensure that such models remained

acceptably accurate over time and settings. It may be, as in healthcare, a blended approach is required, where

machines are used to support human decisions, rather than over-ride them. Thus, it may also be possible to combine

data analytics with more traditional approaches, such as interviews. Thus, machines may be able to help select

candidates for interview and support the focussing of the interview on the most relevant topics. At least one

company currently promotes such hybrid approaches (Clearfit, 2018).

In order to illustrate some of the potential pros and cons of machine learning applied to medical selection we present

a motivating example. 

Machine learning and medical selection- an illustrative example: Predicting academic

performance in the pre-clinical years

One of the desirable qualities in medical school applicants is academic ability, which helps ensure that the candidate

will be able to cope with the intellectual demands of their undergraduate and postgraduate studies. In the UK, and

elsewhere, most medical students who have to leave the course academic reasons do so in the first two years of

study, with relatively little attrition after this point. Moreover, medical schools tend to be keen to avoid having to

host resit exams, as these absorb relatively large quantities of resource for a relatively small number of initially

unsuccessful students. Thus, when confronted by two apparently similar candidates it could be useful to know, from

the routine information available on both, what the likely probability is that they will pass both year one and year

two without the need for any resits, or indeed without needing to leave the course for academic reasons. Such an

algorithm could support making a decision in such a high-stakes situation.  However, this is extremely challenging

prediction problem. Firstly, in the UK, and often elsewhere, failure at end of year exams is a relatively uncommon

outcome. This makes modelling relatively sparse events challenging (see earlier). Secondly, medical school

applicants are relatively homogenous with high predicted, or achieved, school grades and cognitive functioning, as

estimated via commonly used aptitude tests. This homogeneity is even more marked in those who have successfully

entered medical school. Thus, with such little variance amongst individuals we are dealing with a relatively

"information poor environment". This makes prediction even more challenging. Finally, it is well known that

medical schools may have varying academic standards (Devine, Harborne and McManus, 2015)  but a selection team

wants to know what the odds of an applicant failing their particular course is. Thus, any model must take into

account this variation by medical school. Using data used in a previously published study which employed

conventional statistical modelling (Mwandigha et al., 2018) we aim to show how machine learning can provide some

advantage in such challenging prediction scenarios, showcasing some of the ‘tricks’ that can be employed by these

methods.  

Data

The data used was routinely arising information recorded as part of UK medical selection processes. A dataset

consisted of a subset of previously analysed information on UK medical applicants. In this case we took a subset of

6108 medical entrants who had information relating to the academic outcomes from both year one and year two of

their undergraduate studies (i.e. the preclinical years). That is, whether the student had passed both years at first

sitting, required a resit or had to resit the whole year of study. For the purposes of this analysis the outcome was

dichotomised into ‘passed both years at first attempt’ or ‘required at least one resit’.

Data on the students’ previous academic achievement at school, in terms of both GCSE and Advanced (A) level
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examinations were available for students from England, as was the overall secondary (high) school performance of

the educational institution attended at the time of application. Sociodemographic information was also available on

reported ethnicity, socioeconomic status and type of school previously attended. UK Clinical Aptitude Test

(UKCAT) performance at first attempt was also available. The data were managed in a similar way to a previous

study (Mwandigha et al., 2018), with some minor modifications to the data ‘pre-processing’ used to accommodate the

machine learning process. Also incorporated into the models were the average UKCAT scores achieved by the

candidate’s peers at that particular medical school in that year. Thus, this was incorporated into the modelling as a

medical school-level variable, in an attempt to adjust for some of the variation for academic standards across

universities.

The Machine Learning method: Extreme Gradient Boosting

We used a machine learning approach and compared it with a traditional, stepwise logistic regression model. The

machine learning method we used is known as ‘Extreme Gradient Boosting’ as implemented in the XGBoost R

package (Chen and Guestrin, 2016). The method was selected as it is known to work well even with small and

medium-sized datasets (i.e. several hundred to several thousand observations). Extreme gradient boosting combines

a number of methodological approaches to prediction; the use of decision trees; ‘ensembling’- where numerous

slightly differing models are created, and the results averaged or voted on, and; ‘boosting’ where the algorithm

successively focuses on the observations where the outcome is increasingly difficult to predict. By combining all

three approaches, overall, extreme gradient boosting tends to outperform algorithms which only use one or two of

these methods. This is evidenced by its common use in winning entries to machine learning ‘Kaggle’ competitions,

where data scientists vie with each other to produce the most predictive algorithms for certain datasets (Kaggle

Forum, 2016).

Model building

It is usual practice to divide datasets into training and test datasets when developing machine learning algorithms,

although numerous approaches to dividing up data exist, depending on the scenario and availability of data.  This is

so that a model can be developed on the first (training) dataset and validated on the separate, ‘held back’ test dataset.

Almost invariably models developed on the training set predict the outcome almost perfectly but when tested on the

‘heldback’ dataset demonstrate poorer, though hopefully still acceptable accuracy. The model building process is

shown in figure 1. Note that, in this case, because the outcome of interest (exam failure) was relatively uncommon,

test and training datasets were created by randomly dividing the data in two, though candidates who had failed at

least one year had an equal probability of being in either test or training dataset. To help the algorithm train to

predict the less common outcome (exam failure) we used the SMOTE package in R to create ‘synthetic students’,

based on the real ones who had failed an exam at first sitting, to balance the outcomes in the training data set.

Missing observations were filled in using a single imputation using the Amelia package in R. There was also a

‘tuning’ phase for the machine learning, where the basic model settings were altered (e.g. the number of decision

trees ‘grown’ each time) to optimise its predictive performance in the training dataset. By randomly splitting the

data, selecting predictor variables to include and imputing missing values and so on, we obviously introduced

elements of chance into the results from each modelling run. Therefore the process of model building for both for

the logistic regression and the machine learning algorithm was repeated 1000 times so that the overall results could

be averaged and any variation quantified.

Figure 1: Flow diagram illustrating the modelling building process for both the machine learning (‘extreme gradient

boosting’ [XGBOOST’]) and traditional (logistic regression) methods.
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Results

The potential of an assessment diagnostic process as a screening test is indicated by the ‘area under the curve’ (AUC)

of the Receiver Operator Characteristic (ROC) curves, that ideally should be greater than 0.5 (on average no better

than chance) and as close to 1 as possible (i.e. perfect prediction). ROC curves for the traditional, logistic regression

model-based prediction and the machine learning predictions are shown in figure 2. These show the ability of the

models to predict which students are likely to pass the first two years of medical school, for differing hypothetical

cut-scores. These ‘scores’ are actually estimated probabilities, from the models, for an entrant passing their exams at

first sitting. Other important indices for appraising the performance of a predictive or screening test are Positive

Predictive Value (PPV- the proportion of individuals that ‘screen positive’ that are ‘true cases’), Negative Predictive

Value (NPV- the proportion of individuals that ‘screen negative’ that are ‘true non-cases’), sensitivity (the ability to

detect ‘true cases’) and specificity (the ability of a test to rule out ‘caseness’). In this situation we define a ‘case’ as a

student who passes their exams at first attempt.

Figure 2. The Receiver Operator Characteristic (ROC) Curves for the predictions for passing the first two years of
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medical school at first sitting for the logistic regression (LR) and machine learning (XGB) models.

 

The mean of these values for both modelling approaches are shown in table 1. As can be seen in the table, the AUC

for the machine learning approach was significantly greater than that for the logistic regression, highlighting the

superior predictive ability. Aside from this there were a number of striking differences in performance between the

logistic regression and the machine learning approach. Firstly, the sensitivity of the logistic regression model was

higher than that for the machine learning algorithm. In effect what this meant was that the logistic regression was

able to almost perfectly predict which entrance were likely to pass both end of year exams at first sitting (mean

sensitivity 99.7%). In this regard the machine learning approach was somewhat inferior with a mean sensitivity of

84%. However, recall, earlier in this article we highlighted that predicting the most common outcome is a relatively

easy task in that most times you will be correct! The trade-off for this high-sensitivity, in the case of the logistic

regression model, is a very low specificity (less than 1%) in that this approach had almost no ability to detect entrants

likely to fail at least one of their first two years of undergraduate study at first sitting. In contrast, the machine

learning algorithm had a modest, though appreciable, specificity at 32%. In effect this meant that the model was able

to predict roughly one third of those students likely to encounter academic difficulties in their first two years. The

superior predictive performance of the machine learning algorithm is also reflected in higher PPV and NPVs. That

is, of those students that are predicted to pass both the clinical years without difficulty the machine learning

algorithm was correct 84% of the time, on average, compared to 81% in the case of the logistic regression model.

Similarly, of those entrants predicted to fail at least one year at first attempt, the machine learning algorithm was

correct around third of the time (33%) whilst this value was slightly lower at 29% for the logistic regression

approach (though recall, in this latter model, very low absolute numbers of students in this category were predicted).

In order to appreciate what this might mean in practice the average values, related to the predictive ability of the

models, were translated into absolute numbers of candidates. Thus we can show how many candidates were correctly

or incorrectly identified in the test (validation) dataset, as being likely to fail at least one year in the first two years of
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medical school. These are presented in the usual format of a two by two contingency table. In this case the values

were rounded to one decimal place as they represent the averaged numbers across the thousand runs of each model.

   

Table 1. The accuracy of the two modelling approaches (averaged over 1000 runs) when

predicting which medical school entrants will pass the first two years of medical school with

no academic failures. The indices were significantly different between models (on Kruskal-

Wallis testing) at the p<0.0001> level.

Abbreviations: AUC, Area Under the Curve; PPV, Positive Predictive Value; NPV, Negative Predictive Value

Model Mean AUC 
(SD)

Mean PPV
(SD)

Mean NPV
(SD)

Mean
Sensitivity
(SD)

Mean
Specificity
(SD)

Logistic
Regression
 

0.619 (0.01) 0.810 (0.005) 0.293 (0.184) 0.997 (0.002) 0.005 (0.004)

XGBoost 0.659 (0.011) 0.840 (0.009) 0.326 (0.021) 0.842 (0.04) 0.320 (0.07)

 

Table 2. Approximate values, calculated from results from 1000 runs, of the number of

students in the test (validation) dataset predicted to have passed the first two years of

medical school at first sittings, according to the two modelling approaches used (traditional

vs machine learning). Note- correct predictions are in bold.

Logistic Regression Predicted Passed Predicted Failed

Actual Passed 2494 8

Actual Failed 5867 3

 3081 11

Machine Learning Predicted Passed Predicted Failed

Actual Passed 2107 395

Actual Failed 401 189

 2508 593

 

As can be seen in table 2, the average accuracy observed for the logistic regression model was approximately 81%.

However, this was achieved by almost exclusively predicting entrants that would pass both pre-clinical years without

difficulty. The model had almost no ability whatsoever to predict which candidates were likely to fail at least one

year. In contrast, the models derived through the machine learning approach, on average achieved an overall mean

accuracy of only roughly 74%. However, this latter modelling approach did demonstrate an ability to predict

candidates at risk of failure: out of approximately 590 students in each test data sample who had failed at least one

the preclinical year the machine learning algorithm was able to detect just under 200 of them, on average (i.e.

roughly one third).

The machine learning models were not interpretable as such. However they did produce an indication of the relative

importance of each input ‘feature’ (predictor) when predicting the outcome. We noted that student A-level and

GCSE performance (i.e. high school grades) were usually the most potent predictors of success, along with the
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average UKCAT score achieved by peers in a student’s medical school cohort. However, somewhat concerningly,

ethnicity also frequently made it into the top five predictors.  

Discussion

In this article we have discussed some of the advantages and potential limitations of using a machine learning

(‘predictive’) approach compared to a traditional, statistical (‘explanatory’) modelling one. Our findings are in

keeping with previous literature comparing logistic regression to machine learning approaches when attempting to

predict relatively uncommon outcomes (Walsh, Ribeiro and Franklin, 2018). That is, machine learning tends to, on

average, demonstrate superior predictive ability compared to equivalent classical statistical approaches. At first

glance, the overall improved ability of our machine learning algorithm over the logistic regression appears modest

(i.e. an AUC of 0.66 vs 0.62). However, when predicting uncommon or rare events this could mean the difference

between a predictive approach which is useless in practice, and one which has some utility. Despite the practical

challenges our predictive modelling attempts faced, machine learning was able to identify correctly, in an unseen test

dataset, which medical school entrants were at increased risk of failing at least one preclinical year. Nevertheless,

this increased predictive ability came at a price. Compared to a conventional statistical approach, model

development and training was time consuming and relatively computationally intensive. If machine learning is to be

implemented it needs to able to deliver a ‘return on investment’. That is, demonstrate a positive impact on real-world

problems that cannot be achieved by simpler methods. Moreover, although the relative importance of each predictor

variable was reported, the actual modelling process was too complex to be interpretable. This increases the risk that,

were changes in the population tested to occur, rendering the model invalid, this may not be immediately apparent to

end-users (i.e. selectors). The only way to address this would be to periodically re-validate the model on more recent

test datasets, where both predictors and outcomes were available. 

In order to place our findings in a selection context it is worthwhile to conduct a brief thought experiment; consider a

scenario where an admissions tutor had two relatively similar candidates that they were about to make an offer of

study to. If the routinely collected data on both candidates were fed through the algorithm then the tutor would have

the machine learning prediction at hand, to help support decision-making. Thinking back to the negative and positive

predictive value of the machine learning model (as outlined in tables 1 and 2), if the algorithm suggested that the

candidate was unlikely to fail an exam in the first two years then, in practice, the risk of this outcome would be, on

average, roughly 15%. If, on the other hand, the algorithm predicted at least one failed year at first attempt then the

risk would be approximately 33% (i.e. more than double of the former applicant). Given the high competition ratios

normally encountered in medical school applications an admissions tutor may wish to take this into account if they

had a plentiful supply of good quality candidates to select from. That is to say, they may wish not to make an offer to

the candidate who has more than twice the risk of failing one of the first two years in medical school of another

applicant. In healthcare settings, the suggestions made by automated decision support tools are often over ridden by

human clinicians, at times acting on their own intuitions (Roshanov et al., 2013). It is not known whether this would

be the case with analogous ‘selection-support’ tools.

In terms of strengths of this illustrative study, we had a relatively large dataset on which to train a machine learning

algorithms. We also took, as far as was appropriate, a similar approach to model building and evaluation with the

classical approach, using the logistic regression, in order to effect a fair comparison. In terms of limitations, there

was a significant quantity of missing data for some of the predictor variables, which was dealt with through

imputation, as well as iteration, in order to quantify the uncertainty that this introduced into the results. In the real

world missing variables and information are very common, but it is not clear that, if the dataset were more complete,

whether this would further advantage one modelling approach over the other. There was also information that was

missing from a dataset that would normally be readily available to selectors, such as ratings from interviews.
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Our selected example, though hopefully useful in showcasing the principles behind machine learning, was somewhat

contrived. That is, in medical selection, there are clearly other important attributes that are evaluated above and

beyond academic ability. It is well known that the manner in which a selection test is implemented affects the

predictive validity (Albanese, Farrell and Dottl, 2005). Therefore, even if usefully predictive algorithms were

implemented into medical selection routinely, their ultimate impact on the demographics of the medical workforce

would be partly determined by how they were used. As highlighted earlier, the use of such algorithms may have

unintended consequences. In this case it is easy to foresee how an emphasis on academic ability may come at the

price of rejecting other candidates, who have perhaps other qualities that they could bring to other aspects of

medical education or clinical practice. Indeed, perhaps the greatest challenge in a medical selection scenario would

be finding a suitable outcome target to train against. The lack of consensus over what constitutes a ‘good doctor’ has

previously been referred to as ‘the criterion problem’ (Cleland et al., 2012). Even if there were agreement over these

qualities then there are still the challenge of measuring these. Previous work in organisational psychology, including

that related to medicine, has often relied on supervisor ratings as an outcome that can be used to validate selection

measures (Patterson et al., 2017). However, this presents a number of challenges. Firstly, supervisor ratings,

performance and actual clinical practice for that matter, would only be available after many years subsequent to the

initial selection of medical school entrants. If a machine learning algorithm were to be used for new medical school

applicants then the world may have changed since the original training data was used to create a machine learning

algorithm. Thus the model may no longer be valid, or at least, not as accurate. Secondly, supervisor ratings would

inevitably have an element of subjectivity in them and can be prone to bias (Lefkowitz and Battista, 1995). It is

known that machine learning algorithms, if trained on ratings based on human judgement, can actually exaggerate

the very human biases that they intended to mitigate against (as illustrated in some of our initial examples provided).

Thirdly, it is recognised that supervisor or peer ratings tend to be only able to discriminate between extreme

characteristics, though ranking candidates may address this issue to some extent (Goffin et al., 1996). This, however,

may not be an unsurmountable problem in practice if the role of a machine learning algorithm was to predict those

in extreme groups.

It was of concern that ethnicity regularly featured in the top five predictors during model runs. This hints that such

an algorithmic approach could, as highlighted in the examples given in the introduction, result in ethnic bias during

selection. One way of mitigating this, at least to some extent, would be to remove ethnicity as a variable in the

training data. If a machine learning approach did indeed enhance selection then this should ultimately be evidenced

by a more effective, yet acceptably diverse, medical workforce in areas using such systems.

Conclusion

Certainly it seems that machine learning and artificial intelligence are here to stay and will increasingly become part

of our home and working lives. If this is to be the case then it is important that end-users are aware of both the

strengths and limitations of this approach, as well as the unintended consequences that can result when carelessly

implemented. In the case of medical selection there may be indeed be a role for machine learning to help support the

decisions of selectors, faced with challenging choices between relatively homogenous, high performing candidates.

However, if these methods are to result in an enhanced medical workforce then efforts should be made to develop

datasets which includes suitable outcomes to train these models with. In the absence of these, the use of artificial

intelligence in this setting runs the risk of exaggerating the very biases that machines were intended to eliminate.

Take Home Messages
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On average, machine learning approaches tend to demonstrate superior predictive ability compared to

equivalent conventional statistical approaches

Prediction using machine learning could help support medical selectors decide between relatively

homogenous, high performing candidates

However, machine learning models have a number of key weaknesses and are only as good as the datasets

they are trained on

Machine algorithms wouldn't automatically accommodate changing trends, and therefore may become less

valid without a user being aware of this

If carelessly implemented machine learning algorithms can mimic or even exaggerate human biases
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