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abstract: Decisions regarding immigration and emigration are

crucial to understanding group dynamics in social animals, but dis-

persal is rarely treated in models of optimal behavior. We developed

a model of evolutionarily stable dispersal and eviction strategies for

a cooperative mammal, the meerkat Suricata suricatta. Using rank

and group size as state variables, we determined state-specific prob-

abilities that subordinate females would disperse and contrasted these

with probabilities of eviction by the dominant female, based on the

long-term fitness consequences of these behaviors but incorporating

the potential for error. We examined whether long-term fitness con-

siderations explain group size regulation in meerkats; whether long-

term fitness considerations can lead to conflict between dominant

and subordinate female group members; and under what circum-

stances those conflicts were likely to lead to stability, dispersal, or

eviction. Our results indicated that long-term fitness considerations

can explain group size regulation in meerkats. Group size distribu-

tions expected from predicted dispersal and eviction strategies

matched empirical distributions most closely when emigrant survival

was approximately that determined from the field study. Long-term

fitness considerations may lead to conflicts between dominant and
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subordinate female meerkats, and eviction is the most likely result

of these conflicts. Our model is computationally intensive but pro-

vides a general framework for incorporating future changes in the

size of multimember cooperative breeding groups.

Keywords: cooperative breeding, ESS model, reproductive skew, social

queuing.

Among social species, decisions regarding leaving and join-

ing social groups are crucial to understanding both group

dynamics and within-group interactions. Determining the

basis of these decisions has important implications for

both our interpretation of social evolution and our un-

derstanding of, for example, the partitioning of repro-

duction between group members (the degree of repro-

ductive skew). However, optimal decisions regarding

joining and leaving groups are rarely examined in models

of actual populations, prompting calls for models that fo-

cus on specific systems (Clutton-Brock 1998a; Johnstone

2000; Magrath and Heinsohn 2000).

Determining optimal dispersal decisions is complex,

owing to the dynamic nature of social groups, which may

confound attempts to assess the long-term consequences

of decisions. The issue is further complicated by the in-

terdependence of the behaviors of different group mem-

bers. This interdependence requires a game-theoretic ap-

proach that assesses the optimal strategy of an animal in

a given state (e.g., of age, rank, or physical condition) in

relation to the optimal behaviors of conspecifics (Maynard

Smith 1982). Given the computational requirements of

such an approach, it is perhaps unsurprising that most

theoretical models of optimal behavior within groups focus

on the smallest possible groups (of only two members;

e.g., Johnstone and Cant 1999; Kokko and Johnstone

1999), treat subordinates as generally identical (e.g., Reeve

and Emlen 2000), or treat the decisions of subordinates

as independent (e.g., Johnstone et al. 1999). Determining

optimal behaviors in complex social settings is also open

to the criticism that animals cannot possibly be aware of

the precise decisions that their conspecifics will make or
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of the exact state of their environment and the opportu-

nities available to them.

One recent development has substantially alleviated

both the problem of computational intensity and that of

the assumption of omniscience. Specifically, McNamara et

al. (1997) have developed a method that permits optimal

behaviors to be determined while incorporating the po-

tential for error. This not only ensures a unique solution

for game-theoretic optimization, increasing the chances of

determining a solution with less computational effort, but

it is also more realistic. Animals will not always make the

right decision, and the approach of McNamara et al.

(1997) allows for this. Critically, however, the probability

that an animal will make a wrong decision decreases with

the cost of that decision, thus ensuring that the greater

the selective pressure for correct decision making, the less

often model solutions will suggest that animals will err.

In this article, we use empirical data to parameterize a

model of evolutionarily stable strategies (ESS; Maynard

Smith 1982) for dispersal and eviction among social mam-

mals that we assume can disperse only once in their life.

We follow earlier syntheses that assess the stability of group

membership (Higashi and Yamamura 1993) by consid-

ering the evolutionary interests of more than one party.

Specifically, we consider how the interests of both domi-

nants and subordinates are affected by subordinate de-

partures. The interests of these parties are likely to differ

because relatedness between actors and their offspring is

unlikely to be the same as the relatedness between actors

and the offspring of others. Our approach is applicable to

multimember groups and also considers the future inter-

ests of individuals.

The model is constructed with reference to the life his-

tory of the meerkat, a desert-adapted, social mongoose

living in groups containing two to more than 30 members

(e.g., Clutton-Brock et al. 1999a; Russell et al. 2002). At

present, less is known about the reproductive success of

males than of females of this species, and, consequently,

we focus on the processes underlying female membership

of groups. We use the model to address three major ques-

tions. Can long-term fitness considerations explain the

emigration behavior of female meerkats and, thus, the

regulation of group size? Do long-term fitness consider-

ations lead to conflict between dominant and subordinate

meerkats? What is the most likely nature of conflict over

group membership, and what are the implications of this

for our understanding of reproductive skew?

Methods

Study Species

The study species is described in detail elsewhere (e.g., van

Staaden 1994), but here we present a brief description of

some aspects relevant to this study. Meerkats are small,

social mongooses, rarely exceeding 800 g in weight. They

form social, matrilineal groups of from two to more than

30 individuals, typically ranging over an area of 2–5 km2.

In each group, one male and one female are socially dom-

inant and are the parents of most of the litters born

(Clutton-Brock et al. 2001a; Griffin et al. 2003). Subor-

dinate females may attempt to breed in their natal group,

although their offspring are often killed by the dominant

female (Clutton-Brock et al. 1998; Russell et al. 2003a).

Males never gain reproduction in their natal group but

may do so by roving for short periods of time in search

of subordinate females from other groups (Griffin et al.

2003). Breeding occurs primarily during the months of

September to March, but births have been recorded in

most months of the year (Russell et al. 2003a). There is

no evidence of pronounced seasonal mortality (Clutton-

Brock et al. 1999b). Pups remain below ground for much

of their first month of life but can be counted between 2

and 3 weeks of age during temporary emergence (Broth-

erton et al. 2001; Russell et al. 2003a). Litter failure is rare

for dominant females but common for subordinates

(Clutton-Brock et al. 1998; Russell et al. 2003a). During

their first year of life, females seldom breed or disperse,

and males seldom disperse or go prospecting for females;

instead, most individuals concentrate on helping (Clutton-

Brock et al. 2002). Among females, immigration into other

groups does not occur, and successful emigration results

in the formation of a new group.

For the data used to parameterize our model, meerkats

were studied on uncultivated ranchland near Vanzylsrus

(25�8�S, 20�49�E) in the South African Kalahari. Details

of the habitat and climate during the study period are

provided elsewhere (Clutton-Brock et al. 1999b; Russell et

al. 2002). Up to 28 groups were identified during the study

period (1993–2001), but for the life-history data presented

below, only data from the 14 most intensively studied

groups were used. These data comprised over 240,000

meerkat days. Where necessary, means are presented with

one standard error.

The Model

Currently, female reproductive success is better under-

stood than that of males, and, hence, the model focuses

on the behavior of females. We consider the decision faced

by a subordinate female of rank x in group size y of

whether to disperse and, similarly, the decision faced by

the dominant regarding whether to evict that subordinate.

Three behavioral assumptions are inherent in the model

design, and we detail these before describing the model

structure and, finally, the process of model parameteri-

zation.
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Table 1: Notation used in the model description

Parameter Description

C Number of pathways by which an individual may make a stated transition

d Decision error parameter; see text and McNamara et al. (1997) for further details

Dwd(x, y) Inclusive fitness of an (x, y) individual’s decision to disperse

Dwe(x, y) Inclusive fitness of a dominant’s decision to evict an (x, y) individual

l Damping parameter; see text for further details

N(D) Mean number of dispersers per time step

N(E) Mean number of individuals evicted per time step

P(a) Probability with which a group of given size (yint) following deaths and dispersals will be

augmented by the maturation of a young females

P(n r n′) Probability of a transition from a state variable with value n to value n′

PD(x, y) Probability with which an individual in state (x, y) will disperse

PE(x, y) Probability with which a dominant will evict an individual in state (x, y)

PN(x, y) Probability of an individual in state (x, y) being present in a new group after one time step

PR(x, y) Probability of an individual in state (x, y) still being present in her group after one time step

R(i, x) Coefficient of relatedness between individuals i and x

S(d) Probability of an emigrant (either a disperser or an evicted animal) surviving to be present

in a new group after one time step

S(y) Survival of an individual in a group of y adult females, over one time step

T Total number of time steps over which residual fitness of decisions was forecast

x Initial rank of a focal individual

x ′ Destination rank of a focal individual

y Initial group size of a focal individual

yint Group size following all deaths and dispersals at the start of a time step but before

augmentation by maturing young

y ′ Destination group size of a focal individual

Model Assumptions

Linear female dominance hierarchy. Dominant tenures are

long (mean, years; range, 80 days to 5.7 years;2.0 � 0.4

; the true mean may be even longer, but our datan p 22

include some tenures where dominants were already in

place at the start of the study). For the 14 core groups,

however, 22 new instances of dominance were observed

within groups of known age compositions. In six cases,

only one adult female was present, and this female became

the dominant; in three cases, only two adult females of

equal age were present, and one went on to become the

dominant. However, in the remaining 13 cases, adult fe-

males of varying ages were present. In 12 of these 13 cases,

the oldest (or one of the oldest, where more than one

animal of the age of the oldest subordinate was present)

went on to become the dominant. Thus, it seems likely

that age is a good predictor of attaining dominance in the

event of a breeding vacancy.

New female dominants arise from within the group. This

is also consistent with the above data on 22 changes of

dominance. In each case, the replacement came from

within the group.

Females do not immigrate into established groups. Of 47

females that are known to have emigrated from the core

groups, none has subsequently been recorded in any pre-

viously established group.

Model Derivation

The model uses an iterative, game-theoretic approach to

determine the ESS for dispersal by female meerkats in any

(x, y) state (i.e., of a given rank in a given group size).

These strategies (expressed as a probability of dispersal,

PD[x, y], ) are compared to the ESS for0 ≤ P [x, y] ≤ 1D

dominant females to evict subordinate female group mem-

bers in any given (x, y) state, PE(x, y) ( ).0 ≤ P [x, y] ≤ 1E

Notation used in the model description is defined in table

1.

Future reproductive success may influence the dispersal

decisions of social animals that queue to inherit domi-

nance (Kokko and Johnstone 1999). Consequently, our

model assesses the consequences of dispersal (and evic-

tion) decisions by forecasting forward over T time steps

to determine the residual fitness of a decision made at the

start of the entire period ( ). The basic time step usedt p 0

is a 3-month period (hereafter referred to as a “quarter”),

as this is the approximate minimum interbirth interval

(Russell et al. 2003a). A simple algorithm for the model

is given in the appendix in the online edition of the Amer-
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ican Naturalist, but here we detail some of the underlying

theory. Our description is based on determining ESS values

for PD(x, y) but is applicable to determining eviction prob-

abilities also, except where noted. We assume that all

deaths and departures take place at the start of the time

step.

We begin by determining the between-state transition

probabilities for a single time step, according to an indi-

vidual’s behavior at the start of that time step. Transitions

were calculated in three different ways, depending on the

actor’s state and behavior. Specifically, transitions were cal-

culated for individuals that remained in their natal group,

individuals that remained in a group that they had helped

to found, and individuals that emigrated to help found a

new group (e.g., fig. 1). Here, we outline the process of

calculating transitions for the first of these scenarios. Major

differences involved in calculating transitions for the sec-

ond and third scenarios are noted where appropriate and

are described in more detail in the appendix.

The probability of any transition de-′ ′(x, y) r (x , y )

pends on three components. These are as follows: P(x r

, the probability with which a new rank (x ′,′ ′x ) 1 ≤ x ≤

) is attained; , the probability that a new groupx P(y r y )int

size (yint, ) is attained following all′ ′x ≤ y ≤ y � x � xint

deaths and dispersals; and P(a), the probability that the

group is augmented by the maturation of a female young

during the time step, such that the final group size is

.′y p y � aint

The first two of these components are dependent on

the probability with which each group member is present

in the group at the next time step. For a given individual

in state (x, y), this probability is

P (x, y) p S(y) # [1 � P (x, y)], (1)R D

where PR(x, y) is the probability that she remains in the

group, S(y) is her probability of survival over the time

step as a function of group size, and PD(x, y) is the state-

specific probability that she will disperse during any time

step. Where transitions were calculated for an individual

that dispersed, we used PN(x, y), the probability with which

an individual would be present in a newly formed group,

in place of PR(x, y):

P (x, y) p S(d) # P (x, y), (2)N D

where S(d) is the probability of surviving emigration. Note

that in this case, because dominant females never disperse,

the destination ranks and group sizes were bounded as

and , respectively.′ ′1 ≤ x ≤ x � 1 1 ≤ y ≤ y � 1

Typically, for any or transition,′(x) r (x ) (y) r (y )int

there are multiple combinations of individual fates by

which the transition can be made. In general, the number

of combinations by which an individual of rank x can

attain rank x ′ is given by

( )x � 1 !
′C(x r x ) p . (3)

′ ′( ) ( )x � x ! x � 1 !

To calculate transition probabilities, we used a readily

available algorithm (available from the Combinatorial Ob-

ject Server: http://www.theory.csc.uvic.ca/∼cos/) to gen-

erate unique combinations of individual fates in binary

code. Thus, for an transition, the al-′(x p 5) r (x p 3)

gorithm would produce six binary strings representing the

fates of the four higher-ranked individuals in terms of

whether they remained in the group ( ) or ceased tob p 1i

be in the group ( ). These binary representations ofb p 0i

the fates of higher-ranked individuals allowed the prob-

ability of attaining rank x ′ to be calculated as

′P(x r x ) p

x�1 x�1

P (x, y) P (i, y) [1 � P (i, y)] . (4)� � �R R R{ }′ ip1Fb p1 ip1Fb p0C(xrx ) i i

Given equation (4), the probability of the (x, y) r

transition was given by′(x , y )int

′P(x, y r x , y ) pint

y y

′P(x r x ) P (i, y) [1 � P (i, y)] .� � �R R{ }ipx�1Fb p1 ipx�1Fb p0C(yry ) i iint

(5)

Finally, there is a probability, P(a), that the group will

be augmented by a female offspring present in the group,

which reach maturity during the time step. Note that

0 ≤ P(a) ≤ 1, P(a) p 1. (6)�
a

To approximate the distribution of P(a), we used the ex-

pected distribution of numbers of female offspring raised

to maturity, given that the group’s size was yint. This prob-

ability distribution was determined by Monte-Carlo sim-

ulations of all component probabilities (production of

emergent litters, survival, and sex ratio) as illustrated in

the appendix (fig. A1). Where , the final prob-′a p y � yint

ability of an transition was given by′ ′(x, y) r (x , y )
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′y

′ ′ ′P(x, y r x , y ) p P(x, y r x , y ) # P(a).� int
′y pxint

(7)

The probabilities of transitions for individual time steps

were then recursed over the T time steps in order to de-

termine the probability, P(x ′, y ′, t), with which an indi-

vidual would be in any (x ′, y ′) state, t time steps in the

future. Note that for , transition probabilities for in-t 1 0

dividuals were solely dependent on their state at t and

were not affected by their behavior at , except wheret p 0

this influenced values of P(x ′, y ′, t).

Using values of P(x ′, y ′, t) and estimates of the fitness

(young raised to independence) of dominants and sub-

ordinates in groups of different sizes, the total expected

fitness, , of individuals in each state was calculated ac-ŵ

cording to whether they remained in the group, , orŵ(r)

dispersed from the group, , at . Similarly, theŵ(d) t p 0

fitness of all other group members could be calculated

according to whether the focal individual stayed or dis-

persed. For an individual in the focal state, the inclusive

fitness of a decision to leave the group, Dwd(x, y), was

then calculated as

y

ˆ ˆ[ ]Dw (x, y) p R(i, x) w (d) � w (r) , (8)�d i i
ip1

where R(i, x) is the relatedness of an individual in state

(i, y) to the focal state and the expected fitnesses, ŵ (d)i

and , are the expected direct fitnesses of individualsŵ (r)i

in state (i, y) if an individual in the focal state disperses

or remains in the group, respectively. The inclusive fitness

of a dominant’s decision to evict a subordinate of rank x,

Dwe(x, y), was calculated by a small modification of equa-

tion (8),

y

ˆ ˆ[ ]Dw (x, y) p R(i, 1) w (d) � w (r) , (9)�e i i
ip1

where R(i, 1) is the relatedness of an individual in state

(i, y) to the dominant.

Dominant individuals never disperse, and hence, their

probability of dispersal, PD(1, y), was always set at 0. For

all other states, PD(x, y) was given an initial value of 0.5.

Using these initial probabilities, the inclusive fitness of the

decision to disperse by individuals in each state was cal-

culated. For states with negative inclusive fitness, PD(x, y)

was reduced, while for those with positive inclusive fitness,

PD(x, y) was increased. Specifically, the new value of PD(x,

y) was calculated by two steps. First, following McNamara

et al. (1997), the value of PD(x, y) that represents the “best

response,” B(x, y), to all other current strategies in the

population was calculated as

1
B(x, y) p . (10)

Dw (x, y)/dd1 � e

This approach allows for some level of error in the decision

making of individuals and has two key properties: it is

likely to be more realistic, and it increases the potential

for convergence to an ESS. The amount of error permitted

by equation (10) is controlled by the parameter d (0 ≤

). As , B(x, y) approaches the value it wouldd ≤ 1 d r 0

take if error was not included in the calculation. For sim-

ple, two-player games, values of can greatly increased ! 0.1

the probability of convergence to an ESS (McNamara et

al. 1997). For our model, however, which simultaneously

aimed to reach convergence for the strategies of over 150

different states, it is both realistic and computationally

beneficial to use a higher value of d. Preliminary simu-

lations indicated that a value of led to most sce-d p 0.2

narios converging to a solution within 500 iterations, and

we therefore used this value throughout.

The second step in calculating the new value of PD(x,

y) was to adjust it toward the best response. We used the

formula

[ ]P (x, y) p P (x, y) � l B(x, y) � P (x, y) , (11)D D D

in which the parameter l is used to damp the adjustments,

avoiding the danger of nonconvergent oscillations. We

used a value of .l p 0.1

The model was reiterated until convergence was reached

and the values of PD(x, y) so obtained were taken to be

the ESS solution. The iterative approach was then repeated

to find the equilibrium values of PE(x, y) for each state,

using the slight modification detailed in equation (9).

To facilitate comparisons of the model output with field

data, we also ran simple stochastic simulations to deter-

mine expected group size distributions as a function of

S(d). For these, groups of from two to four adult females

were generated, and changes in group size were assessed

on a quarterly basis. Each quarter, every individual had a

state-specific probability of no longer being present in the

group, , given by1 � P (x, y)R

1 � P (x, y) p max [P (x, y), P (x, y)]R D E

� {1 � max [P (x, y), P (x, y)]} # [1 � S(y)]. (12)D E

Whether each individual left the group was then deter-

mined stochastically. Groups were then augmented by

drawing a number of additional individuals randomly

from the expected distribution of numbers of offspring



Figure 1: Sample (x ′, y ′) destination probability distributions after one time step for a female of initial state (5, 7) remaining in group (a), dispersing

to form a new group (b), or remaining in a group that she helped to found (c). Destination ranks, x ′: , diagonals,1 p stippled 2 p downward

, diagonals, . Survival over one time step in a group with seven females, . The survival of dispersers3 p filled 4 p upward 5 p unfilled S(7) p 0.952

to be part of a new group, . In the example shown, the probability of dispersal for dominants is 0, but for all other individuals,S(d) p 0.3

. Notice that in a, the group may grow (as a result of augmentation by maturing young) or shrink (as a result of the death or dispersalP (x, y) p 0.5D

of other individuals). The rank attained may vary from 1 to x. In b, by contrast, the destination group size will never exceed because they � 1

former dominant will not disperse and no augmentation by maturing young is possible during the first time step. In c, the focal female’s rank is

unlikely to be greatly elevated because higher-ranked individuals will not disperse again. The group may be augmented by maturing young.
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raised to maturity, given that the group’s size was that

achieved after all adult mortalities and dispersals. Group

sizes were recorded each quarter for 30 time steps. This

process was reiterated one million times for each of the

sets of PD(x, y) and PE(x, y) associated with each probability

of emigrant survival S(d).

Model Parameterization

Data on survival, fecundity, and emigration behavior of

meerkats have been extensively analyzed and are presented

elsewhere (e.g., Clutton-Brock et al. 1999a, 1999b, 2001b;

Russell et al. 2002, 2003a). We analyzed the current data

set specifically to provide the parameters necessary for our

dispersal model. In particular, we examined eviction and

dispersal success, survival, fecundity, relatedness, and

group composition. Where the term is used below, “group

size” excludes pups of less than 90 days old.

Animals were assumed to have died if they disappeared

before 6 months of age, if a carcass was found, or if they

disappeared suddenly despite showing no dispersive ten-

dencies (such as foraging away from the rest of the group)

over previous days. That females are often temporarily

evicted from their group while the dominant female is

pregnant (Clutton-Brock et al. 1998) and that males com-

monly go prospecting (Doolan and Macdonald 1996)

makes accurate identification of permanent emigration

difficult. Dispersal was recorded if animals were observed

alone or with another group, outside the range of their

original group, and if they did not return to the source

group. By this definition, most female disappearances

could be attributed either to dispersal or to mortality. For

males, this was less clear-cut, due to their tendency to

remain with different groups for prolonged periods.

Eviction and survival of emigrants. During the study pe-

riod, 134 clear instances of subordinate female eviction

from the 14 core groups were recorded. The frequency

with which this occurred (in relation to group size) is

shown in figure 2a. Of the 134 evicted females, 87 returned

at a later date, indicating that eviction was only a tem-

porary measure (Clutton-Brock et al. 1998). The remain-

ing 47 females emigrated in 17 separate events. Of these,

the number of females per event varied from one to six

( ). Six of these 17 emigration events (35%) aremode p 4

known to have resulted in the successful founding of new

groups. Only three dispersers (out of the 47) are known

to have died before founding a new group, but a further

27 individuals disappeared abruptly and were never seen

again in or around the study area; these data accord well

with more intensive observations of radio-collared dis-

persers (Young 2003). Long-distance dispersal cannot be

ruled out for these individuals although survival over long

distances and through unfamiliar ground is likely to be

low. Furthermore, surviving dispersal is no guarantee that

individuals will be successful in forming new groups. In

caged trials, only two of five (40%) potential groups re-

mained together when animals were removed and placed

in vacant ranges. Consequently, while it is possible that

some of the unaccounted individuals were successful, it is

unlikely that the probability of surviving dispersal is much

greater than the confirmed probability of 35%.

Survival. Daily survival rates were calculated using a

standard Mayfield analysis (Mayfield 1975) for all indi-

viduals from emergence to 6 months, for all individuals

of over 6 months, and for females only over 6 months

(this was necessitated by the model structure). Survival

rates were also analyzed for each group during each 3-

month period and were related to the group size at the

start of the period. Daily survival rates were as follows:

0.9983 for animals of both sexes from emergence to 6

months, 0.9995 for all individuals over 6 months old, and

0.9994 for females only over 6 months old. These equate

to a mortality rate between emergence and 6 months of

approximately 24% and annual mortalities for animals

over 6 months old of 17% (both sexes combined) or 20%

(females only). If all unaccounted disappearances were as-

sumed to be mortality, then the combined annual mor-

tality of animals over 6 months old would be 25%. Re-

lationships between survival rates and group sizes are

shown in figure 2b–2d.

Fecundity. For fecundity analysis, frequency of litter pro-

duction and litter size may be affected in different ways

(Russell et al. 2003a). Females are constrained by a min-

imum interbirth interval and typically produce no more

than one litter in any 3-month period. We divided the

study period into 27 periods of 3 months’ duration. For

each female exceeding 1 year old present in a given group

for over two-thirds of a 3-month period, the average group

size during that period was recorded, together with a bi-

nary score, according to whether she produced an emer-

gent litter (1) or not (0). The effects of group, female

identity, female age, group size, and female dominance

status on the probability of producing an emergent litter

in any 3-month period were assessed using a generalized

linear mixed model (GENSTAT 5, release 4.1, Rothamsted

Experimental Station, Harpenden), with female and group

identities entered as random factors (Schall 1991). To as-

sess variables affecting the size of emergent litters, we used

a residual maximum likelihood model in GENSTAT, again

with female and group identities fitted as random terms.

We investigated whether litter sizes at emergence were in-

fluenced by female age, status, group size, and number of

reproductively mature females averaged over the 2 weeks

before emergence.

We identified 524 unique combinations of female,

group, and period, during which 130 emergent litters were
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produced. Neither individual nor group identities consti-

tuted significant random terms, and hence, a binary lo-

gistic regression was performed. This indicated that female

status and group size both had significant effects on the

probability of a litter emerging in any 3-month period but

that these effects were not always straightforward. Per-

capita probabilities of producing an emergent litter were

higher for dominants than subordinates and increased

with group size for dominants but decreased with group

size for subordinates (fig. 2e). Only female status showed

a significant effect on the size of emergent litters (domi-

nants, ; subordinates,mean p 3.95 � 0.15 mean p

; , ). The parameters de-22.90 � 0.23 x p 15.34 p ! .0011

rived for survival from emergence to 1 year old, as well

as fecundity, were combined to predict female fitness (in

terms of young raised to adulthood) in relation to group

size. Relationships between annual direct fitness and group

size for both dominant and subordinate females were well

described by fourth-order polynomials (fig. 2f ).

Group composition. During the study period, groups var-

ied in size from two to 34 individuals, excluding pups of

less than 90 days old. We assessed group membership on

a day-by-day basis to determine the number of females

per group of more than 90 days of age. Numbers of females

per group varied from one to 16, and the mean was

(standard deviation). The number of females as5.9 � 3.0

a proportion of group size was assessed as an index of

group composition, using groups containing at least two

females (i.e., those of interest for the purpose of modeling

emigration decisions). The number of females as a pro-

portion of group size was not significantly different from

0.5 (mean female ; one-proportion p 0.485 � 0.009

sample t-test, not significant). For simplicity, therefore, the

model was based on adult female group size with the as-

sumption that total adult group size would be approxi-

mately twice as large.

Relatedness. Relatedness between dyads within groups

was assessed on the basis of known pedigrees. More than

1,000 unique dyads were identified from the data, and

relatedness could be determined in 793 cases where the

origin and parentage of both individuals could be assigned

with confidence. None of these dyads consisted of unre-

lated individuals, and the majority (65%) were full sibs or

mother-daughter dyads ( ). Next most commonr p 0.5

(26% of dyads) were those with (e.g., half-sibs,r p 0.25

grandmother-granddaughter, or cousins). Overall, relat-

edness was higher between dominants and subordinates

(mean , ) than between subordinate pairsr p 0.47 n p 109

(mean , ).r p 0.39 n p 684

Results

When any set of model parameters led to a convergent

solution, the output was a series of state-specific dispersal

or eviction probabilities (depending on whether the in-

terests of subordinates or dominants were considered).

When group sizes of up to 18 adult females were consid-

ered, over 150 state-specific probabilities were generated.

Interpretation of such a large number of probabilities is

complex. However, from the state-specific probabilities, we

derived the total probability with which one, two, or more

individuals would disperse (or be evicted) as a function

of group size. This, in turn, permitted the average number

of emigrants (either dispersers, N[D], or evictees, N[E])

to be determined, also as a function of group size. An

example of this process is shown in figure 3.

Average numbers of dispersers (or individuals evicted)

per quarter as a function of group size was a useful re-

lationship by which to compare the results of different

parameter combinations. In particular, we used this output

to conduct a sensitivity analysis of the model predictions

to the total number of time steps considered, T (fig. 4a).

As might be expected, individuals were more likely to dis-

perse (and thus shorten their wait for dominant status)

when shorter time periods were considered. However, this

willingness to disperse reduced by smaller increments as

the total time considered was increased. Increases in the

total time considered above 100 time steps (equivalent to

25 years) produced very little change in the model pre-

dictions, and thus, we used as the standard periodT p 100

over which to forecast the consequences of an action. Sim-

ilarly, we assessed the sensitivity of model predictions to

the maximum group size considered in the model. Model

output appeared to be very robust to this parameter (e.g.,

fig. 4b, 4c). The maximum group size observed during the

field study was 16 adult females, but for flexibility in the

model, we allowed for the possibility that groups could

slightly exceed this size. All further results were based on

assessments using a maximum group size of 18 adult

females.

Predicted state-specific dispersal and eviction probabil-

ities, together with predictions of mean numbers of dis-

persers and evicted individuals, were combined to develop

a representation of expected dispersal and eviction be-

haviors, as a function of both group size, y, and survival

of emigrants, S(d). Specifically, the parameter space de-

scribed by these factors was categorized into regions of

five different behavior types: (1) stability: ,N(E) ! 0.5

; (2) eviction only: for allN(D) ! 0.5 P (x, y) 1 P (x, y)E D

; (3) primarily eviction: , butx 1 1 N(E) 1 N(D) P (x, y) 1E

is not true for all ; (4) primarily dispersal:P (x, y) x 1 1D

, but is not true for allN(D) 1 N(E) P (x, y) 1 P (x, y)D E

; and (5) dispersal only: for allx 1 1 P (x, y) 1 P (x, y)D E

.x 1 1

Regions of parameter space characterized by these five

different patterns of behavior are shown in figure 5.

Groups are expected to be highly stable, with few depar-
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Figure 2: Relationships between life-history parameters and group size derived from the field data. a, Eviction rate (females evicted per quarter of

monitoring). Daily survival rate, s, for (b) emergence to 6 months old, (c) over 6 months (sexes combined), and (d) over 6 months (females only).

Solid lines indicate best fit functions; dashed lines indicate 95% confidence intervals. Functions were chosen to maximize R2 goodness of fit, ensuring

all coefficients were significant (functions are, for b, , , ; for c,2 2s p 0.995027 � 0.000358k � 0.000008k R p 0.4465 p p .0003 s p 0.999663 �

, , ; for d, , , ). e, Probability of producing an emergent litter in2 20.001612/k R p 0.2818 p p .0018 s p 0.999535 � 0.001063/k R p 0.1283 p p .0441

any 3-month period for dominants (solid line) and subordinates (dashed line). Probabilities were predicted using binary logistic regression, with

significant effects of female status, group size, and the interaction between these terms. The regression function was significant ( ,2x p 190.65 p !3

) and is given by , where R is female rank (restricted to 1, dominant; or 2, all others) and k is total group(1.594R�0.138k�0.097Rk�1.389).001 p p 1/[1 � e ]

size. f, Equivalent quarterly direct fitness of dominants (filled circles) and subordinates (unfilled circles) in relation to group size, incorporating

probability of producing litters, litter size, and survival of young to adulthood.

tures, from between four and six adult females, depending

on the likely survival of dispersers. This corresponds to

total adult group sizes of from eight to 12 individuals,

below which subordinate females would seldom be ex-

pected to disperse or be evicted. In general, figure 5 in-

dicates that eviction is likely to be more common than

dispersal throughout the broad range of parameter space,

with the largest behavioral region that in which evictions

outnumber dispersal. Only when the expected survival of

emigrants is high is it likely that individuals would disperse

voluntarily with any regularity. Furthermore, situations

where the dominant female would favor retaining sub-

ordinates but the subordinates would be more likely to

disperse are restricted to the single case in the top left

corner of figure 5 (where group size , and emigranty p 2

survival ). Interpreting the likely patterns ofS[d] p 0.9

behavior within the five regions distinguished in figure 5

is complex and depends on the nature of control within

the group and, in particular, the physical costs of eviction

to the dominant female. We return to this issue in the

“Discussion.”

Finally, we also used simple simulations to generate ex-

pected group size distributions, given the probabilities of

dispersal and eviction determined by our ESS model. Mean

and standard deviations of group size (in terms of number

of females) were determined as a function of the survival

of emigrants and were compared to those derived from

the empirical data (fig. 6).

Discussion

Our model uses empirical data to determine ESS proba-

bilities of dispersal for subordinate female meerkats and

ESS probabilities of their eviction by dominant females.

As might be expected for a detailed analysis of complex

social behaviors, the results themselves are complex. Nev-

ertheless, the model indicates that a number of general

patterns of behavior might be expected among female

meerkats. In particular, four findings are of interest both

in the context of meerkat behavior and, more generally,

to our understanding of aspects of group living and social

behavior. These include that long-term fitness benefits can

explain observed group sizes of meerkats, that eviction

seems far more prevalent than dispersal as a mechanism

for regulating group size, that situations where dominants

might benefit from providing staying incentives to sub-

ordinates are unlikely to arise, and that conflict and evic-

tion may arise even in situations where some subordinates

might benefit from dispersal.

An assessment of group size based on only 14 focal

groups must be treated with some caution, as mean group

size may be susceptible to the size of individual groups

that have been monitored for the longest periods. Nev-

ertheless, the sizes of groups monitored during the em-

pirical study do provide some guide to expected levels of

emigration. In particular, figure 6 shows that group size

distributions suggested by ESS emigration levels corre-

spond most closely with those seen in the empirical study

when the survival of emigrants is between 0.3 and 0.4.

This is encouraging, given that the confirmed survival rate

of emigrants from the empirical study is approximately

0.35, and suggests that meerkat group sizes can be ex-

plained by decisions made on the basis of long-term fitness

considerations.

Eviction is a common phenomenon in social species

and has been documented, for example, in hyenas (Crocuta

crocuta; Holekamp et al. 1993), banded mongooses (Mun-

gos mungo; Cant et al. 2001), house mice (Mus domesticus;

Gerlach 1996), Arabian babblers (Turdoides squamiceps;

Zahavi 1991), and splendid fairy wrens (Malurus cyaneus;

Mulder 1995). A variety of explanations may underlie the

eviction of subordinates, but our model suggests that for

meerkats at least, group size regulation by the dominant

in order to maximize her inclusive fitness may well un-

derlie this behavior. Our results suggest that throughout

the broad range of parameter space, and particularly for

situations where survival of emigrants is relatively low

(≤0.4), eviction is likely to be the dominant behavior reg-

ulating group size (fig. 6). This finding corresponds well

with behavioral data from the field study. While subor-

dinate males cannot gain direct reproductive success in

their own group and always disperse voluntarily, subor-

dinate females are able to breed and inherit dominance in



Figure 3: Sample model output when the number of time steps and the survival of dispersers . A convergent solution wasT p 100 S(d) p 0.3

reached after 223 iterations. a, Probabilities with which females of given rank in a given group size will be evicted by the dominant during any time

step. Each line represents a group size (evident from the terminal point on the line). Notice that eviction probabilities for each rank generally

increase as group size increases. b, Probabilities with which a given number of subordinates will be evicted by the dominant during any time step,

as a function of group size. Numbers evicted, N(E): , gray fill, hatching, gray fill, hatching,1 p unfilled 2 p light 3 p horizontal 4 p dark 5 p vertical

fill, hatching, 8 or . Notice that as group sizes become larger, the probability with which multiple individuals6 p black 7 p diagonal more p stippled

will be evicted increases. c, Average number of individuals evicted per time step, as a function of group size. Notice that in this scenario, eviction

is likely to be extremely rare (less than 0.5 individuals per quarter on average) from groups of less than six adult females (corresponding to a group

size of 12 adults).



Figure 4: a, Sensitivity of model output to total numbers of time steps, T, over which the consequences of a decision was forecast. The lines indicate

mean numbers of dispersers per quarter as a function of group size. Lines are (from left to right) , , , , ,T p 20 T p 40 T p 60 T p 80 T p 100

. Notice that dispersal becomes less common as T increases but that the differences between model outputs for successive increases of TT p 120

become smaller. For this analysis, survival of dispersers . b, Sensitivity of model output to the maximum group size (Ymax) permittedS(d) p 0.3

within the model. The data are mean numbers of dispersers per quarter as a function of group size when : open circles, ; openS(d) p 0.3 Y p 17max

triangles, ; filled circles, . c, Example of state-specific dispersal probabilities when Ymax was varied. The data are dispersal probabilitiesY p 18 Y p 19max max

of subordinate ranks when group size and survival of dispersers : gray bars, ; unfilled bars, ; black bars,y p 9 S(d) p 0.3 Y p 17 Y p 18max max

.Y p 19max
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Figure 5: Regions of parameter space corresponding to the five behavioral types described in the main text. Notice that stability becomes less and

dispersal becomes more likely as the survival of departing animals increases. Maximum group size , and total number of time stepsY p 18max

.T p 100

their natal group, and observations suggest that they dis-

perse only when evicted.

The occurrence of eviction at relatively low group sizes

(less than 10 individuals) has, in the past, seemed sur-

prising, especially given the higher survival of young in

larger groups (more than 20 individuals). Evictions can

often be explained as a short-term mechanism, aimed at

preventing subordinate females from breeding (at the ex-

pense of resources for the dominant’s own offspring) and

avoiding infanticide (Clutton-Brock et al. 1998; Young

2003). However, our results also suggest that when the

dominant may make errors, evictions from even relatively

small groups may sometimes occur (e.g., fig. 3c) for rea-

sons other than these short-term considerations.

Groups of social animals range from egalitarian, with

low levels of reproductive skew (e.g., lions, Panthera leo;

Packer et al. 2001), to despotic, with high reproductive

skew (e.g., Damaraland molerats, Cryptomys damarensis;

Bennett et al. 1996). A multitude of theoretical models has

been published, seeking to explain this variation between

species in terms of ecological, social, and genetic factors.

One class of these models is typified by the optimal skew

model of Reeve and Ratnieks (1993). The optimal skew

approach suggests that where larger group size is beneficial

to dominants, subordinate reproduction may be tolerated

in order to encourage subordinates to remain in the group.

This idea led to considerable controversy between the

competing theories of such “concessions” as explanations

of subordinate reproduction versus the more parsimoni-

ous explanation that dominants simply lack complete con-

trol over the breeding behavior of subordinates (e.g.,

Clutton-Brock 1998a, 1998b; Emlen et al. 1998). Owing

to the dearth of suitable data, empirical tests of this con-

troversy are rare, and interpreting the merits of competing

models has proven difficult (Johnstone 2000). Our model

suggests that for meerkats at least, situations in which

dominant animals would benefit from ceding additional

reproduction to subordinates in order to persuade them

to stay are extremely unlikely (fig. 5). Rather, the small

amounts of subordinate reproduction that occur are likely

to result for one of the following reasons: (1) because a

small amount of subordinate reproduction does not limit

reproduction by dominants or is cheaper for dominants

than producing more of their own young (Cant and John-

stone 1999); given the extent of dominant investment in

harassment of potential competing breeders within the
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Figure 6: Group size distributions (mean, filled circles; standard deviation [SD], error bars) predicted by simple simulations of group size variation

based on the evolutionarily stable strategies values of PD(x, y) and PE(x, y). Group sizes seen in the empirical study are indicated by mean (solid

line) � 1 SD (dashed lines) for the approximate value of emigrant survival, S(d), indicated by the field data.

group and infanticide of competing litters (Clutton-Brock

et al. 1998), this explanation is unlikely to apply under

most circumstances. (2) because the dominant does not

have full control over subordinate reproduction, either

because eviction is costly to the dominant and, therefore,

subordinates can afford to “steal” some reproduction with-

out making their eviction worthwhile (Johnstone and Cant

1999) or because securing all reproduction in the group

requires more effort than dominants are willing to expend

(Clutton-Brock 1998a; Reeve et al. 1998).

We have noted that some aspects of our results are more

difficult to interpret. In particular, these include regions

of parameter space in which both evictions and dispersal

are possible (although one or the other is likely to be more

common in numerical terms). In these areas, whether

some individuals would be evicted (reducing the proba-

bility that remaining individuals would disperse) or dis-

perse voluntarily (reducing others’ probabilities of evic-

tion) would depend on the nature of control within the

group and the extent to which subordinates are aware of

likely evictions by their dominant.

It would be dangerous to read too much into the in-

dividual probabilities of dispersal and eviction predicted

by our model. Specific patterns of dispersal and eviction

would likely be sensitive to group composition and pat-

terns of relatedness. Moreover, there are currently too few

data to determine whether the survival of emigrant meer-

kats varies with their age or rank. That no female of less

than 1 year has been observed to emigrate, however, sug-

gests that for these individuals the probability of surviving

emigration is likely close to 0. Similarly, we might expect

that the probability of older animals (that have eluded

predation for longer) surviving emigration might be ex-

pected to be higher than that for younger animals. The

relationship between number of emigrants and success is

also unknown at present. Low-ranking subordinates may

accept subordination in a newly formed group if by mov-

ing, they increase their rank and, thus, their prospects for

territory inheritance (although the costs of helping in a

small, newly formed group will be high; Russell et al.

2003b). If the relationship between number of dispersers

and probability of success were known, it would be useful

to incorporate this into the model. Data currently being

analyzed may well permit such developments (A. J. Young

and T. H. Clutton-Brock, unpublished data).

Finally, our model is designed to assess decisions made
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on the basis of mean expectations of fitness, measured as

the number of young raised to independence. Two alter-

native formulations are possible, which may well affect the

model results. First, it may be preferable to use state-

dependent reproductive values (Houston and McNamara

1999) instead of young raised to independence. State-

dependent reproductive values allow for future changes in

population size and the consequent changes in the value

of having offspring now as opposed to later. Due to a lack

of data on density-dependent constraints on population

trajectories, we modeled opportunities for dispersers as a

constant, with the result that expected population size will

not affect the value of offspring under our model for-

mulation. State-dependent reproductive values also take

account of the state into which offspring are born. For

example, females may be more likely to disperse if by doing

so, their offspring are likely to be born into a smaller group

(and therefore be of higher rank) than if they remain in

their current group. This formulation would greatly in-

crease the computational complexity of the model. Fur-

thermore, given both the potential for error in decision

making and the speed at which group sizes can increase,

it seems unlikely that this change would greatly affect the

model results. As a result, we chose to use the simpler

formulation of young raised to independence as a proxy

for fitness. A second alternative formulation (related to

the previous point) arises because environmental sto-

chasticity can introduce major changes in selection pres-

sures that make analyses of mean trajectories misleading.

Consequently, individuals may adapt their behavior to var-

iability in the environment (Benton and Grant 1996),

worst-case scenarios (Orzack and Tuljapurkar 2001), or

some other form of average. Our model is adaptable to

alternative formulations such as these, and it would be

interesting to determine their consequences for group size

regulation and intragroup conflict.

ESS models to determine optimal strategies simulta-

neously for large numbers of interdependent states are

rarely attempted due to the intensive computation re-

quired. Our model provides a framework by which ESSs

can be derived for individuals in multimember groups of

social species, taking account of the long-term conse-

quences of decisions. The assumption of decision error is

likely to be more realistic than perfect optimization and

increases the stochasticity to which group sizes are subject,

above that expected from stochastic birth and death events.

This suggests a broader distribution of possible group sizes

than would be expected under conditions of perfect op-

timization and helps to explain the variety of group sizes

observed in reality. ESS dispersal and eviction probabilities

determined by our model produce group size distributions

in line with those seen in the empirical study, especially

when emigrant survival is approximately that recorded in

the field. This suggests that long-term fitness consider-

ations may well explain group size regulation in meerkats.

Our model also suggests that regulation is most likely to

depend on eviction of subordinates by dominants, adding

support to our interpretation of observed behaviors.
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