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a b s t r a c t

The proteomes of the highly efficient extracellular polymeric
substances (EPS)-producer cyanobacterium Cyanothece sp. CCY
0110, grown in medium supplemented with an essential metal
(Cu2þ) or a non-essential metal (Cd2þ),were compared using
iTRAQ technology. The data were obtained within a larger study
that evaluated the overall effects of different heavy metals on
growth/survival, EPS production and ultrastructure of this cyano-
bacterium [1]. To allow a broader understanding of the strategies
triggered to coupe with toxic effects of the metals, Cyanothece0s
proteomes were evaluated after chronic and acute exposure to
Cu2þ and Cd2þ in two independent 8-plex iTRAQ studies. For the
chronic exposure 0.1 mg/l of Cu2þ or 5 mg/l of Cd2þ were used for
10 and 20 days, while in the acute experiments the cells were
exposed to 10� these concentrations for 24 h. 202 and 268
proteins were identified and quantified for studies 1 (Cu2þ) and 2

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/dib

Data in Brief

http://dx.doi.org/10.1016/j.dib.2015.04.015
2352-3409/& 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.jprot.2015.03.004
n Corresponding author at: IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823,

4150-180 Porto, Portugal. Tel.: þ351 226074900; fax: þ351 226099157.
E-mail addresses: pmtamagn@ibmc.up.pt (S.B. Pereira), pmtamagn@ibmc.up.pt (P. Tamagnini).
1 Both authors contributed equally to this work.

Data in Brief 4 (2015) 152–158

www.elsevier.com/locate/dib
www.elsevier.com/locate/dib
http://dx.doi.org/10.1016/j.dib.2015.04.015
http://dx.doi.org/10.1016/j.dib.2015.04.015
http://dx.doi.org/10.1016/j.dib.2015.04.015
http://dx.doi.org/10.1016/j.jprot.2015.03.004
http://dx.doi.org/10.1016/j.jprot.2015.03.004
http://dx.doi.org/10.1016/j.jprot.2015.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2015.04.015&domain=pdf
mailto:pmtamagn@ibmc.up.pt
mailto:pmtamagn@ibmc.up.pt
http://dx.doi.org/10.1016/j.dib.2015.04.015


(Cd2þ), respectively. The majority of the proteins with significant
fold changes were associated with photosynthesis, CO2 fixation
and carbohydrate metabolism, translation, and nitrogen and
amino acid metabolism.

& 2015 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area Biology
More specific
subject area

Cyanobacterial proteomics

Type of data Figures, excel files
How data was
acquired

iTRAQ labelling (AB SCIEX™);
Ultimate 3000 HPLC (Thermo Scientific) with an PolyHydroxyethyl™ A column (PolyLC);
QStar XL Hybrid ESI Quadrupole Time-of Flight Mass Spectrometer (ESI-qQ-TOF-MS/MS; AB SCIEX™)
coupled to an Ultimate 3000 HPLC (Dionex) with an AcclaimR PepMap100 C18 column (Thermo
Scientific);
Analyst QS 1.1.1 (AB SCIEX™) coupled to mascot.dll embedded script (V1.6); Phenyx v2.6 (GeneBio S.
A.) and UniProt database comprising all Cyanothece sp. CCY 0110 protein sequences (6413 entries,
March 2014).

Data format Filtered, analysed
Experimental factors Protein samples were denatured with SDS, reduced with TCEP, alkylated with MMTS and digested

with trypsin and labelled with iTRAQ reagents according to manufacturer's procedures.
Experimental
features

After iTRAQ labelling and combining of samples, high-resolution hydrophilic interaction
chromatography (HILIC) fractionation was performed. Fractions were cleaned using C18
UltraMicroSpin Columns (The Nest Group Inc.) according to the manufacturer's guidelines before
reverse phase liquid chromatography (RPLC)–MS/MS analysis. Raw data was searched on MASCOT
for protein identification. Protein quantifications were carried out computing the geometric means
of the reporters' intensities using an in house data analysis pipeline. Proteins were organised into
functional groups according Gene Ontology information available in Uniprot.

Data source location Porto, Portugal and Sheffield, United Kingdom
Data accessibility Analysed data sets directly provided in this article

Value of the data

� Effects of heavy metals on the strong EPS-producer Cyanothece sp. CCY 0110.
� Differential proteomes in medium/medium supplemented with heavy metals.
� Specific effects related to time of exposure and/or concentration of the metal.
� Short- and long-term strategies to coupe with metal toxic effects.

1. Data

The proteomes of Cyanothece sp. CCY 0110 grown in medium or medium supplemented with Cu2þ

or Cd2þ were compared using two independent 8-plex iTRAQ studies (Fig. 1). For the chronic exposure,
sub-lethal concentrations of 0.1 mg/l of Cu2þ or 5 mg/l of Cd2þ were used for 10 and 20 days, while in
the acute experiment the cells were exposed to 10� these concentrations for 24 h. In total, 202 (98
with two or more peptides) and 268 (130 with two or more peptides) proteins were identified and
quantified for iTRAQ study 1 – Cu2þ and iTRAQ study 2 – Cd2þ , respectively. The complete lists of
peptides and proteins identified in iTRAQ studies 1 and 2 are provided in Supplementary Tables 1 and 2
respectively, and protein quantifications are provided in Supplementary Table 3.

To identify groups of proteins (clusters) with similar variation patterns, hierarchical cluster
analyses were performed. The strength of the analyses was improved by taking into account the ratios
obtained for metal-exposed conditions compared to control, as well as those resulting from the
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comparison of different metal-exposed conditions (Fig. 1). This approach minimises the effects of
over- or underestimated ratios and increases confidence. For each iTRAQ study, six statistically
supported protein clusters (A–F) were formed (Figs. 2 and 3). Regarding study 1, 80% of proteins was
included in cluster A1 (no significant change in any of the conditions tested), cluster B1 (no significant
change in 10 and 20 days chronic exposure, and higher abundance in acute exposure) and cluster C1
(no significant change in 10 and 20 days chronic exposure, and lower abundance in acute exposure)
(Fig. 2). Overall, the acute exposure of Cu2þ was the condition that promoted more quantitative
proteome changes – 19%. Concerning study 2, 87% of the proteins were found in cluster A2 (no change
in any of the conditions) and cluster B2 (lower abundance in 10 and 20 days chronic exposure) (Fig. 3).
In contrast with what was observed for Cu2þ , in study 2 the 10 and 20 days chronic exposure were the
conditions that caused more differential protein expression, 12% and 13% respectively.

To gain insight into the biological significance of the changes observed, the proteins were grouped
according to their annotated function and the Gene Ontology information [1]. The majority of the
proteins with known functions were associated with photosynthesis, CO2 fixation and carbohydrate
metabolism, translation, and nitrogen and amino acid metabolism.

Fig. 1. Graphical representation of the iTRAQ workflow and analyses preformed.
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Fig. 2. Hierarchical cluster analysis of the proteins quantified in iTRAQ study 1 (Cu2þ exposure). Six (A1-F1) clusters of proteins
were defined according to the variation of their relative levels in Cyanothece cells grown in ASNIII buffered medium
supplemented with 0.1 mg/l of Cu2þ (for 10 or 20 days, chronic exposure) or 1 mg/l of Cu2þ (24 h, acute exposure). Clusters
were calculated using all ratios to minimise over- or underestimations. Data were converted into ordinal/ranked variables and
clustered using the “centroid linkage” method and the “squared Euclidean distance” measure.

Fig. 3. Hierarchical cluster analysis of the proteins quantified in iTRAQ study 2 (Cd2þ exposure). Six (A2–F2) clusters of proteins
were defined according to the variation of their relative levels in Cyanothece cells grown in ASNIII buffered medium
supplemented with 5 mg/l of Cd2þ (for 10 or 20 days, chronic exposure) or 50 mg/l of Cd2þ (24 h, acute exposure). Clusters
were calculated using all ratios to minimise over- or underestimations. Data were converted into ordinal/ranked variables and
clustered using the “centroid linkage” method and the “squared Euclidean distance” measure.
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Overall, the results obtained suggest that during Cu2þchronic exposure the cells adjust their
metabolism to invest the spare energy in the activation of metal detoxification mechanisms. In
contrast, the toxic effects of Cd2þaccumulate over time suggesting that cells might not have the same
capacity to deal with this non-essential metal.

2. Experimental design, materials and methods

2.1. Organism and culture conditions

The unicellular cyanobacterium Cyanothece sp. CCY 0110 (Culture Collection of Yerseke, The
Netherlands) was grown in 100 ml Erlenmeyer flasks containing ASNIII medium [2] (control) or in
medium supplemented with 0.1 or 1 mg/l of copper (Cu2þ , stock solution 10,000 mg/l in 1% HNO3,
Sigma-Aldrich Co., MO, USA), or 5 or 50 mg/l of cadmium (Cd2þ , stock solution 10,000 mg/l in 5%
HNO3, Sigma-Aldrich). All cultures were buffered with 1 M MOPS (pH 7.0), grown at 30 1C under a
12 h light (50 mE/m2/s)/12 h dark regimen and with magnetic stirring (150 rpm).

2.2. iTRAQ experimental design

The experiments comprised two biological replicates for each 8-plex iTRAQ independent
experiment. Two iTRAQ studies were performed (Fig. 1), namely the comparison of the proteomes
of Cyanothece grown in the absence or presence of copper (iTRAQ study 1) or cadmium (iTRAQ study
2). The biological replicates used as control were common to the two studies. Both studies comprised
four phenotypes of cells grown:

(C1, C2) in ASNIII buffered medium for 10 days (control).
(Cu1, Cu2 and Cd1, Cd2) in medium supplemented with either 0.1 mg/l of Cu2þ or 5 mg/l of Cd2þ

for 10 days (chronic exposure).
(Cu3, Cu4 and Cd3, Cd4) in medium supplemented with either 0.1 mg/l of Cu2þ or 5 mg/l of Cd2þ

for 20 days (chronic exposure).
(Cu5, Cu6 and Cd5, Cd6) in medium supplemented with either 1 mg/l Cu2þ or 50 mg/l Cd2þ for 24 h
(acute exposure).

2.3. Protein extraction and quantification

The cells were harvested by centrifugation (3850 g for 15 min at room temperature), washed with
buffer (50 mM Tris, pH 7.4, 100 mM EDTA, pH 8.0, and 25% (w/v) sucrose) and re-suspended in
phosphate buffer (50 mM K2HPO4, 50 mM KH2PO4, pH 6.8). The proteins were extracted using the
FastPrepR-24 cell disruptor, output 6.5 m/s, 5 cycles of 30 s (MP Biomedicals, LCC, CA, USA) and glass
beads (425–600 mm, Sigma-Aldrich) for mechanical cell disruption, followed by centrifugation at
16,000 g for 15 min at 4 1C. The supernatant containing the soluble proteins was recovered and stored
at �80 1C. The protein concentration was measured using the BCA™ Protein Assay Kit (Pierce
Biotechnology, Inc., IL, USA) and iMark Microplate Absorbance Reader (Bio-Rad Laboratories),
according to the manufacturer's instructions.

2.4. Protein sample processing and peptide labelling with isobaric tags for relative and absolute
quantification (iTRAQ) peptide labelling reagents

Proteins were precipitated by adding 6 volumes of ice-cold acetone to 150 μg of the protein extract,
re-suspended in 20 ml of TEAB (triethylammonium bicarbonate, 1 M, pH 8.5) and denaturated by
adding 1 ml of 2% SDS. Cysteines were reduced with 2 ml of tris(2-carboxyethyl)phosphine (TCEP,
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50 mM) and alkylated with 1 ml MMTS (s-methyl methanethiosulfonate, 200 mM). Subsequently, the
proteins were digested with trypsin as previously described (Pereira 2011). The quality and amount of
proteins and the efficiency of the trypsin digestion were controlled by analysing 20 mg of protein
extract in a 10% acrylamide gels. The iTRAQ labelling of the digests, and the combining of the labelled
digests into one sample mixture was performed using the manufacturer's protocols (iTRAQs Reagents
– 8-plex, AB SCIEX™, Framingham, MA, USA). iTRAQ labelling efficiency was 95.1% for iTRAQ study 1
(Cu2þ) and 95.9% for iTRAQ study 2 (Cd2þ). Combined samples were concentrated by vacuum
(Eppendorf, Hamburg, Germany).

2.5. High-resolution hydrophilic interaction chromatography (HILIC) fractionation

Samples were resuspended in HILIC buffer A (10 mM NH4HCO2, 80% ACN, pH 3.0) and fractionated
by HILIC using a PolyHydroxyethyl™ A column (PolyLC, Columbia, MD, USA) with 5 μm particle size,
20 cm length�2.1 mm diameter and 200 Å pore size on a Ultimate 3000 HPLC (Thermo Scientific,
formerly Dionex, Amsterdam, The Netherlands) controlled by Chromeleon Software, version 6.5
(Thermo Scientific). A set of binary gradient buffers was used for liquid chromatography: buffer A (see
above) and buffer B (10 mM NH4HCO2, 5% ACN, pH 4.0). The binary gradient began with 0% B for
10 min, followed by a linear ramp from 0 to 60% B for 30 min, an extended ramp from 60 to 100% B for
5 min, a further isocratic wash 100% B for 10 min, and column re-equilibration at 0% B for 1 min, in a
total of 66 min. Injection volume was set at 20 μl with a constant chromatographic flow rate of 0.5 ml/
min. Fractions were collected using a Foxy Jr. Fraction Collector (Dionex, Sunnyvale, CA, USA) in 30 s
intervals across 60 min, while the chromatogram was monitored at a wavelength of 280 nm. The
fractions were cleaned using C18 UltraMicroSpin Columns (The Nest Group Inc., Southborough, MA,
USA) according to the manufacturer's guidelines, prior to vacuum centrifugation (Eppendorf).

2.6. Reverse phase liquid chromatography (RPLC)–MS analysis

RPLC analysis was performed using an AcclaimR PepMap100 C18 column (Thermo Scientific) with
3 μm particle size of 15 cm length�75 mm diameter and 100 Å pore size on a Ultimate 3000 HPLC
(Dionex), and the MS analysis was performed using QStar XL Hybrid ESI Quadrupole Time-of Flight
Mass Spectrometer, ESI-qQ-TOF-MS/MS (AB SCIEX™; MDS-SCIEX, Concord, Ontario, Canada). Samples
were resuspended in RPLC buffer C (3% ACN and 0.1% TFA), injected and captured onto a 0.3�5 mm
pre-analytical trap cartridge (5 μm C18 columns) (Thermo Scientific). Peptides were subsequently
eluted using an automated gradient with a flow rate of 03 ml/min. Online nLC was achieved using a
150 min binary gradient with RPLC buffer A (0.1% formic acid and 3% ACN), and RPLC buffer B (0.1%
formic acid and 97% ACN). A programmed gradient started with a 20 min linear ramp from 0% to 3%
buffer B, 95 min ramp from 3% to 35% buffer B, a 30 s rapid ramp up to 90% buffer B, 6.5 min isocratic
wash 90% buffer B, 30 s rapid ramp down to 3% buffer B, followed by 27.5 min isocratic wash 3% buffer
B. Data acquisition in the mass spectrometer was set to acquire in the positive ion mode, with the
precursor ion scan performed within a range of 330–2000m/z and a selected mass detector range of
400–1250m/z, on a predefined accumulation time of 1 s (Analyst QS Software, AB SCIEX™). During the
TOF-MS scan, two dynamically selected precursors with a þ2 or þ3 charge state were isolated for CID
fragmentation. Samples were reanalyzed on a second LC–MS injection with identical parameters to
increase sample coverage [3].

2.7. MS data analysis

Peak list conversion was performed using the mascot.dll embedded script (V1.6) coupled with
Analyst QS 1.1.1 (AB SCIEX™) with MS/MS group summations and the iTRAQ region deisotoping
removed. Protein identification and quantification was carried out in Phenyx v2.6 (GeneBio S.A.,
Geneva, Switzerland), using a database comprising all Cyanothece sp. CCY 0110 protein sequences
obtained from UniProt (6413 entries retrieved, March 2014). General search parameters allowed for
MS and MS/MS tolerance up to 0.1 Da and one missed cleavage. Fixed protein modifications included
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iTRAQ lysine and iTRAQ N-terminus (þ304 Da) and methyl-thiol of cysteins (þ46 Da), and the
oxidation of methionine (þ16 Da) was defined as variable modification. Acceptance threshold for
peptide identification was set at peptide length Z6, z-score Z5 and p-value r1 e-4. False discovery
rate (FDR) was calculated using a decoy database automatically created by reversing the sequences
from the target database, and only proteins satisfying a 1% FDR and identified with at least two
peptides unique were considered for further quantitative analysis. iTRAQ labelling efficiency was
calculated using peptide data where iTRAQ lysine and iTRAQ N-terminus (þ304 Da) modifications
were set as variable instead of fixed, and was 95.1% and 95.9% for the copper and cadmium data sets
respectively. Since iTRAQ ratios and determination of proteins altered between samples, it was carried
out an in house data analysis pipeline [4] by which protein quantifications were obtained by
computing the geometric means of the reporters' intensities. Median correction was subsequently
applied to every reporter in order to compensate for systematic errors. These factors, estimated at the
protein level, are used in subsequent analysis. The reporters' intensities, in each individual MS/MS
scan, were then themselves median corrected using the same factors. Since two replicates are
available for each condition, a change is reported only if it is significant regardless of which replicate is
chosen to perform the t test comparison. Proteins were subsequently organised into functional groups
according to their Gene Ontology information available in Uniprot (http://www.uniprot.org/).

2.8. Statistical analysis

To investigate the groups of proteins with similar variation of its relative levels in the different
phenotypes, a hierarchical cluster analysis was performed. For that, protein ratios were transformed
into ordinal/ranked variables according to their values, namely: 0 – significant fold change o1, 1 – no
significant fold change, 2 – significant fold change 41 and clustered using the “Centroid Linkage”
method and the “Squared Euclidean Distance” measure. The cluster analysis was performed using the
IBMs SPSSs Statistics 20.0 (IBM, Armonk, NY, USA).
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