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If the UK wishes to decarbonize its heat supply, increased implementation of district

heating is needed. Currently, district heating implementation is low, accounting for only

2% of the total UK heat supply. Low district heating implementation is mainly due to

the high network installation costs, particularly in rural areas with low heat demand

density. Current academic models of district heating are complicated, time consuming

and require validation with primary network data. This paper aims to report on the

building of a simple model that can, quickly and easily, assess the economic and

environmental feasibility of any new district heating network. A primary aim of the model

is to be simple enough for non-technical individuals to use. The focus of the paper is

on the modeling of the local heat demand, investigating the applicability of the same

modeling technique to case studies with differing population densities. Results showed

that case study areas with smaller population densities had higher proportion of domestic

customers, therefore the modeling process will need to be modified to ensure that

domestic customers are not included in future heat demand assessments. Case study

areas with smaller population densities had significantly longer pipe networks, which will

affect later techno-economic modeling. Monte Carlo simulations highlighted errors in the

data collection process, which was changed to improve the accuracy of counting and

measuring the building sizes.
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GRAPHICAL ABSTRACT | An example of the node, subnode structure used in the model.
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INTRODUCTION

The EU aims to, by 2020, reduce CO2 emissions to 20% of the
1990 levels (European Parliament, 2012). Compared to the UK
1990 emission levels of 794.2 MtCO2e, current UK emissions
have been decreasing, down to 467.9 MtCO2e in 2016; however
further work must be done to meet the EU targets (BEIS, 2018).
In order to meet the EU targets, emissions related to the heating
of buildings need to be reduced to almost zero [Department of
Energy and Climate Change (DECC), 2013]. Reducing building
heating emissions to near zero would be best achieved through
electrifying heating or decarbonizing the heat supply. Electrifying
heating is likely to increase the strain on the national grid beyond
its current maximum capacity, requiring extensive and expensive
restructuring (Wilson et al., 2013). Decarbonizing the heat supply
could be achieved by switching building heating from natural gas
to district heating.

District heating is a method of providing thermal energy to a
number of customers from a centralized heat source (or sources)
through the pumping of a heat transfer fluid around a pipe
network. District heating is based around a network comprised
of: thermal energy generating unit(s), the pipe network, and
customer substations (Frederiksen and Werner, 2013). District
heating can act as a flexible and secure source of heat that
can use local and environmental energy sources, which would
not be utilized otherwise. Energy sources include: waste heat
from industry, waste incineration, combined heat and power and
renewables (Sipilä, 2011). The level of decarbonization achieved
by district heating is highly dependent on the heat supply used;
the best levels of decarbonization occur if the fuel used is green
or carbon neutral. Despite the decarbonization benefits and due
to the high costs of network installation, particularly in rural
areas, district heating may not be economically viable in every
case. A model that could be used to assess the economic and
environmental feasibility of any new network that could be
implemented quickly and easily by a non-technical staff member
at a local authority would be useful. The creation of such a
model would allow local authorities to assess the feasibility
of more potential networks, increasing the uptake of district
heating.

This paper explores the initial stages of such a model,
focusing on modeling the hourly variation in the local area
heat demand, using Darley Dale in Derbyshire, UK as a case
study. Darley Dale has a population of 5,400 (ONS, 2014) and
a yearly heat demand of 50,000 MWh (BEIS, 2018). Darley
Dale, alongside an urban town and an urban city is used to
highlight the differences in modeling heat demands in areas
of different population densities to see if the same modeling
process can be used for all varieties of population density.
Monte Carlo simulations are used to assess the assumptions
necessitated by the simple nature of the heat demand model,
investigating if the initially proposed methodology is adequate
for use. HJ Enthoven, a lead acid battery recycling plant,
provides primary data for the paper. HJ Enthoven only
operate an industrial site and not a district heating network
and were unable to provide primary district heating network
data.

Rural District Heating
In the UK, a rural area is classified as an area with a population
of fewer than 10,000 people (ONS, 2011a). Due to the low
population, rural areas tend to have both lower population
densities and lower heat demand densities; therefore rural district
heating networks have low revenues compared to the network
installation costs (Nilsson et al., 2008). The government has
defined the annual heat demand density needed for district
heating to be profitable as 26,000 MWh/km2 [Department of
Energy and Climate Change (DECC), 2009]. The UK CHP
development map shows that large proportions of the rural
areas of the UK have annual heat demand densities of <20,000
MWh/km2 (BEIS, 2018), less than the threshold for profitable
district heating. However, district heating can still be viable in
areas of low heat demand density, particularly in locations with
an already existing heat supply (Frederiksen and Werner, 2013).

The potential for new rural district heating networks should
even be considered in countries, such as Sweden, where the
urban heat market is almost saturated with district heating.
Rural district heating has only been implemented to a large
extent in Iceland and Denmark (Reidhav and Werner, 2008);
however, even in Iceland and Denmark, rural district heating
is not very common (Nilsson et al., 2008). In the UK, roughly
9 million people or 17% of the population, live in rural areas
[(Department for Communities and Local Government (DCLG),
2014)] meaning that the annual rural domestic heat market is
∼0.3 PJ/yr (BEIS, 2017a,b). From the UK CHP development
map, urban areas typically have annual heat loads of 10,000–
200,000 MWh/km2 whereas rural areas tend to have heat loads
<10,000 MWh/km2 (BEIS, 2018).

District Heating Modeling
Many types of district heating models exist, with a differing
range of goals and uses. Selecting the model most suitable for
use in a particular case and application requires a thorough
understanding of the range of models that exist, along with
each models’ uses and limitations. District heating models can
consider anything from the entire network structure to an
individual customer. In this paper only models of entire district
heating networks will be considered.

District heating models can be either statistical or physical.
Statistical models are time series or neural network based, are
easy to build and understand but require primary measurements
for validation (Wojdyga, 2014). The requirement of primary
network data make statistical models unsuitable for use, due to
the lack of primary data provided from industry.

Physical models consider the entire structure of a district
heating network, which makes them easy to modify but complex
and computationally intensive. Instead of primary measurement
validation, physical models only require simple network data
inputs such as the network topology, pipe and insulation
specifications and the pump characteristics (Larsen et al., 2002;
Wang et al., 2016).

Physical models need to be simplified to reduce the computing
power required, simplification is achieved through the node
method, otherwise called the process of aggregation. The
node method substitutes the existing loop and tree structure
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of a network with lines and short branches, reducing the
network complexity and computational intensity. The simplified
models are generated using steady state flow conditions.
During aggregation, important physical properties such as water
volumes, time delays and mass flows are preserved (Palsson et al.,
1999; Jie et al., 2012). Aggregation can be achieved using one
of two techniques: the German or the Danish methods. The
German and the Danish methods enable the network complexity
to be reduced from 44 pipes to 10 or 3, respectively. Both
methods preserve all physical parameters bar: the heat losses
for the German method and the pressure distribution for the
Danish method (Larsen et al., 2004). The node method does
not maintain an entire network structure, which would make
network modifications difficult, therefore the node method is
unsuitable for use.

Another method that can be used to simplify district
heating networks is studying the relevant influences that the
differing factors have on the overall heat demand. Studying the
factors identifies influential factors that must be conserved and
insignificant factors that can be omitted. The most influential
factors on the heat demand are the outdoor temperature and the
customer behavior (Dotzauer, 2002); therefore district heating
models exist that only consider the outdoor temperature and
customer behavior. As insignificant factors have been omitted,
temperature, and behavior models can have as few as four to
seven design equations, making them simple and requiring only
small amounts of computational power to operate (Werner,
1984; Dotzauer, 2002). Other researchers have suggested that
temperature and behavior models are oversimplified which will
introduce error into the work (Heller, 2000) as the temperature
component itself must be split into four different factors (Heller,
2002). Due to the possible oversimplification and consequent
errors, splitting the overall heat demand into components is
unsuitable for use.

Short term heat demand can be modeled deterministically or
predictively using time series. Deterministic models use complex
simulations to predict the physical behavior of the buildings
in the study. The complex deterministic simulations require
simulation software as shown in Table 1.

Deterministic models generate accurate results but require
extensive data inputs and have high computational costs. The
non-technical staff member who this paper is aimed at is unlikely

TABLE 1 | Simulation software used in the modeling of district heating.

Software References

EnergyPlus Talebi et al., 2017

TRNSYS Heller, 2002; Raab et al., 2005; Talebi

et al., 2017

MODEST Holmgren and Gebremedhin, 2004

TERMIS Gabrielaitiene et al., 2007

DHEMOS Johansson, 2010

Simulink Lim et al., 2015

eQUEST Talebi et al., 2017

to have access or be able to operate engineering specific software,
therefore deterministic modeling is unsuitable for use.

Predictive models use equations to fit curves to the demand
profiles (Talebi et al., 2016). Predictive modeling can be achieved
using ARMA models, Kalman filters or artificial intelligence
models. ARMA models smooth expected real world data to
that of a predicted demand (Amjady, 2001). Kalman filters
estimate the value of the next time step based on the value being
experienced currently. For each estimation, the current difference
between the expected and real value is used to determine which
one of several filters will be chosen (Palsson, 1993; Talebi et al.,
2016). Artificial intelligence models cover a range of options:
artificial neural networks (ANN), fuzzy neural networks (FNN),
and support vector machines (SVM) (Talebi et al., 2016). ANN
are the only examples of the machines that consider social
parameters and consequently can have the highest levels of
accuracy (Zhang et al., 1998). ANN require validation through
real network data, allowing the model to train and develop,
thereby improving the model accuracy (Keçebaş et al., 2012).
ANN can over-fit the problem as well as having large data
requirements. Some research suggests that SVM give the best
results (Park et al., 2010), but SVM are limited in practical use
by the data required; which must be highly precise (Chen et al.,
2004). All of the predictive options are computationally intensive
and highly specific, making the modeling type too complex for a
non-technical individual to use and making predictive modeling
unsuitable for use.

It is possible to model a district heating network using
historical data, where the district heatingmodel is validated using
the historical operating records of an existing network (Noussan
et al., 2014). Once validated, the model is used to predict
future network performance using the predicted temperature and
weather. Historical models use a concept called a heating degree
day which is the difference between the outdoor temperature
and a reference temperature, at which point a buildings heating
system is turned on (Raine et al., 2014; Raine, 2016). The heat
demand of a building is directly proportional to the heating
degree day (Pirouti, 2013; Talebi et al., 2016). In the UK, the
reference temperature is usually set as 15.5◦C (Carbon Trust,
2012). Historical degree day values can be accessed for a time
period of several years (Met Office, 2015), although weather
conditions can vary significantly year to year requiring heating
degree day models to be validated for future performances
(Noussan et al., 2017). Due to readily available degree day
records, the heating degree day method is suitable for use.

Another historical modeling type uses customer meter
readings to model a district heating network. Meter reading
modeling types use the water temperature, flow rate or gas
bills to model the overall network heat demand (Wang et al.,
2013; Fang and Lahdelma, 2014; Spoladore et al., 2016). The
results of customer meter reading studies vary significantly when
the customer heating system changes from being electrical to
hydronic, making customer meter reading modeling inaccurate
in areas with a large building heterogeneity (Kipping and
Trømborg, 2017). Due to the small time step and the large
number of buildings in the studies, customer meter reading
models are data and computationally intensive (Talebi et al.,
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2016). The data and computational intensity makes customer
meter reading modeling unsuitable for use.

To reduce the number of buildings being individually
modeled in the work and consequently reduce the complexity
of the model, a district heating network can be modeled using
the archetype building method. The archetype method works by
grouping all buildings into a series of categories and representing
each category with an archetype building. The accuracy of
archetype modeling is heavily dependent on the number of
archetype categories used and the accuracy of each individual
archetype model. Individual archetype models are regression
based, finding a typical demand profile for that building category
(Talebi et al., 2016). Examples of archetype models have been run
across a range of public buildings, including schools finding that
around 50% of buildings in each category show similar results
to that of the archetype building (Gaitani et al., 2010; Lara et al.,
2015). The low data and computational needs of the archetype
building method makes it suitable for use.

Current district heating models have limitations, which
impact district heating implementation (Talebi et al., 2016). A
heterogeneous building stock is difficult to accurately model
using a single modeling type. Many models only estimate the
total yearly energy demand instead of an hourly, or more
accurate demand profile. The size of the heat source or the
network costs can be determined using estimations of yearly
energy demand however, determining the hourly supply and
demand requires a different strategy. Many of the models when
used in practice, have errors of up to 20%, with extreme cases
having errors up to 60% (Nouvel et al., 2013; Fonseca and
Schlueter, 2015). Finally, many of the models are highly data
intensive, affecting cost and applicability. The research into
district heating modeling shows the importance of creating a
model that can work on a heterogeneous building stock and can
estimate an hourly demand profile with low errors and low data
intensity.

METHODOLOGY

The overall aim of this paper was to produce a heat demand
model that was simple enough for a non-technical individual to
use. The model quantified the hourly variation in the local area
heat demand using a node structure that was easy to modify.
The model was built using the heating degree day and archetype
building methods.

The initial stage of the modeling work was to follow a
geographical information systems (GIS) technique to build an
energy map of the area. The energy map looked at both
commercial and domestic buildings and identified the areas
of high heat demand density and customers with a large heat
demand. The commercial energy mapping was based on a
technique used by Parsons Brinckerhoff (Parsons Brinckerhoff,
2011), using CIBSE energy benchmarks TM46 [Chartered
Institution of Building Services, Engineers (CIBSE), 2008], the
Energy Information Administration (EIA) commercial buildings
energy consumption study (EIA, 2016), Google Maps, and
Google Street View. The CIBSE energy benchmarks TM46 gave

the annual energy use of archetype buildings in kWh/m2. The
EIA energy consumption study split the typical energy use of
archetype buildings into individual uses. CIBSE and EIA studies
combined were used to give the annual thermal energy use for
heating in kWh/m2 of archetype building categories. Google
Maps and Google Street View were used to identify every possible
heat user in the local area alongside the location, use and total
measured floor area. The use of Google Maps introduced error;
the error was acceptable as the energy maps only estimated and
did not quantify the energy demand. Domestic energy mapping
was carried out though converting population density into energy
density (Finney et al., 2012; BEIS, 2016). The domestic energy
mapping required assumptions of an average of 2.37 people per
dwelling, that the average UK domestic heat usage is 20.5 MWh
per home per annum (Finney et al., 2012) and that the 2011 UK
census data was still accurate (ONS, 2011b).

The energy maps were used to give an estimation of the
yearly heat demand in the local area but did not model the
heat demand on an hourly basis and were not accurate. The
hourly heat demand modeling was done based on an industrial,
archetype building model, which was centered around heat
demand curves generated Arup (Arup, 2007). The industrial
model used the heating degree day and archetype building
methods and produced hourly heat demand curves for seven
archetype building types. The heat demand curves showed how
the hourly thermal load per unit area of a buildings total floor
space (kW/m2) changed over a day. For each building type
twelve curves were generated, each one representing a typical
day of heat demand variation for each of the 12 months.
The industrial model grouped every building into one of the
following categories: retail, commercial, food and drink, hotels,
residential, non-residential institutions and assembly and leisure.
The monthly degree day values were determined using daily
temperature data from a local weather station throughout the
course of each year, as shown in Equations (1, 2):

Tdd =

∑tmax
t=0 xt

tmax
(1)

Where

xt =

{

Tref ,t − Tt , if Tref ,t > Tt

0, if Tref ,t < Tt
(2)

The monthly degree day value (Tdd) (
◦C/h) was based on the

sum of the hourly differences between the reference temperature
(Tref ,t) (

◦C) and the external temperature (Tt) (
◦C), provided the

reference temperature was greater than the external temperature,
divided by the number of hours in the month (tmax) (hour).
The monthly degree day values were used to make monthly
temperature dependent factors (TDF), as shown in Equation (3).

TDF =

Tdd

Tdd (max)
(3)

The monthly TDF was the ratio between the monthly degree day
value and the maximum monthly degree day value (Tdd (max))
(◦C/h).
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The industrial model gave curves of hourly heat demand per
unit area of total floor space for each archetype building type for
each of the 12 months. The aim of this paper was to generate
curves of hourly thermal load, representing every building within
a set area, for each of the four heating seasons. As a result,
significant adaption had to bemade to the industrial method. The
12monthly curves were averaged into four heating season curves.
The four seasons ran from 20th March to 20th June, 21st June
to 21st September, 22nd September to 21st December and 22nd
December to 19th March. The curves of hourly thermal load for
each building type were calculated as shown in Equation (4).

Q = QAreaA (4)

The hourly heat demand (Q) (MW) was a function of the
hourly heat demand per building area (QArea) (MW/m2)
and the total building floor area (A) (m2). The individual
archetype building heat demands were compiled to make a total
hourly building heat demand within a set area as shown in
Equation (5).

QSquare =

∑N

i=1
Qi (5)

The total hourly building heat demand within a square of 100
m2 (QSquare) (MW) was a sum of all of the individual hourly
building heat demands (Qi) (MW) for the N buildings within that
area.

The paper calculated the total hourly building heat demand
within a modeled area. The modeled area was split into a node,
subnode structure. The structure was based around a heat source,
splitting the modeled area into nodes, then subnodes and finally
squares of 100 m2 size, as shown in Graphical Abstract. The
pipelines connecting the nodes to heat source were assumed to
travel in the shortest possible straight line distance from the heat
source to the center of each square of 100 m2 via the center of the
node and subnode. An assumption was made that no distance
of pipe is needed to connect the buildings located inside the
squares of 100 m2 to the pipe connection at the center of the
square.

For each square, the total number of buildings in each
archetype building category was counted and used to calculate
the total floor area of that building category as shown in Equation
(6). Equation (6) was based on an assumed area for each building
type in the study.

A = AA, Tot = AA, AssumedNA (6)

The total area of building category A (AA,Tot) (m2) was
proportional to the assumed area of buildings of that category
(AA,Assumed) (m

2) and the number of buildings of that category
(NA).

In rural areas the distances between the heat source and
customers could be over 1 km (Finney et al., 2011). The large
distancesmeant that themodel must consider the time delays and
heat losses that occurred in the pipes. Time delays were based on
an assumption of 2 m/s water velocity (Olsen, 2014). The time
taken for the heat demand of a square to meet the heat source

was dependent on the velocity in the pipes and the pipe length as
shown in Equation (7).

t =
L

v
(7)

The time taken for the water to travel down a pipe (t) (s) was
proportional to the pipe length (L) (m) divided by the water
velocity (v) (m/s).

Heat losses were calculated per meter of pipe length, as shown
in Equation (8).

QL =

2πkL(Ti − To)

ln
(

Do
Di

) (8)

The heat loss (QL) (MW) was proportional to the thermal
conductivity (k) (W/m.◦C), pipe length and temperature
difference across the pipe walls (Ti – To) (◦C). Heat loss
was inversely proportional to the natural log of the outer
pipe diameter (Do) (m) over the inner pipe diameter
(Di) (m).

The heat demands experienced in the center of each subnode,
node and at the heat source were calculated, as shown in
Equations (9–11).

QSubnode,n =

∑N

i=1
QSquare,iQl,i (9)

QNode,n =

∑N

i=1
QSubnode,iQl,i (10)

QSource =

∑N

i=1
QNode,iQl,i (11)

The heat demand experienced in the center of each subnode,
node or the heat source (QSubnode, QNode) (MW) was a sum of all
the heat demands of the components (QSquare,QSubnode, orQNode)
(MW) and the heat losses experienced in the pipes (Ql) (MW)
for the N components within that area. Where n represents the
possibly different “Subnodes” or “Nodes.”

The model generates hourly curves of the heat demand
experienced by the heat source for each of the seasons. The
model was simple to understand, did not require large amounts
of computing power and was quick to run. The node, subnode
structure enabled easy modification through the addition or
removal of nodes, subnodes, or squares. An example of a
modification of the model is through a maximum allowable heat
loss in each pipe. A maximum allowable heat loss as a percentage
of the total heat demand in each pipe could be set. Any pipe that
exceeded the maximum allowable heat loss was deleted. Deleting
pipes instantly removed any nodes, subnodes or squares with
heat losses that exceeded the set value and were unsuitable for
use in the district heating network.

A disadvantage of the model was the number of assumptions
used, including: that each building in a category was of the same
set size, each building in a category had a heat demand curve as
described by the industrial model and each pipe length traveled in
the straight line distance from the customer to the heat source via
the center of the subnode and node. The effect of the inaccuracies
on the results was assessed using Monte Carlo simulations in the
Goldsim software package (Goldsim, 2011).
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COMPARING RURAL TO URBAN DISTRICT
HEATING NETWORKS

One of primary the goals of the paper was to investigate if the
same generic modeling process could be used in areas of different
population densities, such as rural and urban or towns and
cities or if the model would need modification from population
density to population density. To investigate the effects of the
different population densities, three case studies were modeled: a
rural location, a heavily populated urban location and a sparsely
populated urban location. As the comparison was between areas
of different population densities, not different areas in the world
the same weather data was used for all three. The weather data
came from a weather station in the Derbyshire Dales, located at
53◦15′41.0′′N 1◦44′03.5′′W (Met Office, 2015).

Case Study 1 (Rural Location)—Darley
Dale, England
The first case study was based around HJ Enthoven, a lead-
acid battery recycling plant located in Darley Dale, England. HJ
Enthoven is the largest producer of recycled lead in Europe,
producing 80,000 tons of lead and propylene annually from
over 150,000 tons of lead-acid batteries (ECOBAT, 2017). HJ
Enthoven is based near the towns of Darley Dale (population
5,400), Matlock (9,400), Rowsley (500), Bakewell (4,000),
Youlgreave (1,000), and Cromford (1,400) (ONS, 2014). The
Darley Dale case study was used as an example of a rural area
with a small population density where the heat source is located
outside of the rural township.

Case Study 2 (Heavily Populated Urban
Location)—Sheffield, England
The second case study was based around Veolia Sheffield, a
municipal solid waste incineration plant. The plant is capable
of producing up to 19 MW of electricity and 60 MW of heat,
combusting 225,000 tons of waste per annum (Veolia, 2014).
Sheffield is the fifth biggest city in the UK with a population of
530,000 (ONS, 2009). The Sheffield case study was used as an
example of a heavily populated urban area.

Case Study 3 (Sparsely Populated Urban
Location)—Hayange, France
The third case study was based around a British Steel plant
located in Hayange, France. The plant manufactures steel rail
sections, special profiles, and wire rod, employing over 400
people (British Steel, 2017). Hayange is a town in France with
a population of 15,000 (Hayange, 2017). The Hayange case study
was used as an example of a sparsely populated urban area.

RESULTS

The model was run for the three case study areas, generating
hourly curves of heat demand for each of the four heating
seasons, as shown in Figure 1. The maximum allowable heat
loss in the first case study was set at 40% to match the
local heat supply. The maximum allowable heat losses in the
other two case studies were set to ensure that all of the three

FIGURE 1 | (A) The hourly heat demand profiles generated using case study

1, Darley Dale, England, with a maximum allowable heat loss in the pipes of

40%. (B) The hourly heat demand profiles generated using case study 2,

Sheffield, England, with a maximum allowable heat loss in the pipes of 7%. (C)

The hourly heat demand profiles generated using case study 3, Hayange,

France, with a maximum allowable heat loss in the pipes of 45%.

case studies had as close as possible to the same maximum
hourly heat demand. Controlling the maximum hourly heat
demand through maximum allowable heat losses is unavoidably
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TABLE 2 | Buildings used in each case study model.

Building type Quantity

Case study 1:

Darley Dale

Case study 2:

Sheffield

Case study 3:

Hayange

House (detached) 340 2 54

House (semi-detached) 344 – 8

House (terraced) 227 15 100

Block of flats 4 1 2

Supermarket 3 – 1

Shops (miscellaneous) 69 – 24

Office 5 4 7

Warehouse 9 58 26

Shopping center 1 – –

Church 3 – 1

Medical center 1 – –

Village hall 1 – –

Manor house 1 – –

School 1 – –

Library 1 – –

Pub 1 – –

Restaurant – – 2

imprecise, meaning that case study 2 has a higher peak heat
demand than case studies 1 and 3. The lack of precision is
acceptable as the paper is more interested in the shapes of the
curves produced than the peak heat demands.

Figure 1 shows the heat demand profiles of the three different
case studies, showing the differently shaped curves generated
using the same modeling technique. The differently shaped
curves are because the different case studies have a different
spread of building types. Figures 1A,C represent the rural case
study (case study 1) and the urban case study with a small
population density (case study 3). Both of the figures show
maxima in the morning and evening, and minima in the middle
of the day and at night. The position of the maxima and minima
show that the buildings in case studies 1 and 3 are occupied
during the morning and the evening, similar to the occupation
characteristics of domestic buildings. Figures 1A,C prove that
case studies 1 and 3 are comprised of a large number of domestic
buildings; as shown in Table 2. Case studies 1 and 3 have high
heat losses in the pipes, 40 and 45%, respectively, which is
due to the long pipe lengths connecting areas of small heat
demand. A district heating network with a large proportion of
domestic customers would require a different investment type
when compared to a network with more commercial customers.
Domestic customers require as much and sometimes more
support and information than commercial customers, generating
less profit per unit sale (Lygnerud and Peltola-Ojala, 2010). A
district heating network with a high proportion of domestic
customers would struggle to make a viable business case.

As the aim of paper was investigate if the same modeling
technique could be used in different areas of population density,
all buildings in the case study areas were included, even
domestic buildings. Figures 1A,C prove that, when following this
modeling process, large numbers of domestic customers were

included for areas of small population density. The modeling
technique, particularly the stage where the buildings in each area
of 100 m2 were counted, will need to be modified to ensure
that only larger domestic buildings, such as a block of flats, are
included. Blocks of flats, as well as housing associations, are
often regarded as anchor loads for a new district heating network
(Hawkey, 2009).

Anchor loads are heat customers with large, stable and
constant heat demands that are key to a network’s success
(Hawkey et al., 2013). The development of a district heating
network often begins by identifying anchor loads to guarantee the
infrastructure costs of the network can be covered through heat
sales (Davies and Woods, 2009; Hawkey, 2009). Anchor loads
help to reassure investors that may consider district heating to be
a risky investment [Department of Energy and Climate Change
(DECC), 2009].

Figure 1B represents the urban area with a large population
density (case study 2). The figure has a maxima in the middle of
the day and a minima for the rest of the time. The positions of the
maxima and minima in case study 2 are similar to the occupation
profiles produced by commercial properties, proving that case
study 2 is largely comprised of commercial buildings; as shown
in Table 2. Case study 2 has low heat losses, 7%, as the network
has short pipe lengths that connect squares of large heat demand.

Table 2 shows that the case study with the large population
density (case study 2) is comprised of a small number of
large commercial buildings, which can act as anchor loads. The
case studies with the smaller population densities (case studies
1 and 3) are comprised of many small domestic buildings.
Urban areas with large population densities tend to have many
large commercial buildings that are located near to possible
heat sources. Areas with smaller population densities tend to
have fewer large commercial buildings that are more dispersed.
Figure 2 shows the geographical spreads of the three case studies,
showing the location of the heat sources and the customers. The
maps in Figure 2 are generated using QGIS software.

Figure 2B shows that the customers in the densely populated
case study (case study 2) are located close to the heat source.
Case study 2 has a scale four times smaller than in case studies
1 or 3; as shown in Figures 2A,C. Figure 2B shows that possible
heat customers can be located in any direction from the heat
source in an area of large population density. Figures 2A,C show
that the possible heat customers in the sparsely populated case
studies (case studies 1 and 3) can only be located in clusters, in
the built-up land surrounded by areas of green space.

The case studies with smaller population densities (case
studies 1 and 3), have total pipe lengths of 22.0 and 32.8 km,
respectively. The case study with the larger population density
(case study 2), has a significantly smaller pipe length of 5.4 km.
The rough differences in pipe length between more and less
densely populated areas is by a factor of 4–6. As the capital costs
of the pipe lengths and the heat losses are both proportional to
pipe length (Raine, 2016), the capital costs of the pipe length
and heat losses are roughly 4–6 times smaller for a network in
an area with a large population density. The difference in costs is
likely to become significant when the techno-economic modeling
is applied. Potentially, the difference in pipe lengths will require
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FIGURE 2 | The size and locations of the heat source (in red) and customers

(in black), showing the clusters of heat customers (in black rings) in each case

study area. (A) GIS map showing the heat source and customers in case

study 1: Darley, England. (B) GIS map showing the heat source and

customers in case study 2: Sheffield, England. (C) GIS map showing the heat

source and customers in case study 3: Hayange, France (Geofabrik, 2017).

different business cases or series of financial incentives to be
applied in areas of differing population density.

The three case studies varied significantly in the number, and
locations of the customers as well as heat losses in the pipes. The

less densely populated case studies have hundreds of individual
customers on the network, with at least 70% of the customers
coming from domestic sources. The customers were shown to
be clustered in the built up land surrounded by areas of green
space. The heat losses in the less densely populated case studies
were shown to be 40 and 45% of the overall heat demand. In
comparison, the more densely populated case study was shown
to have less than a hundred individual customers, with <25% of
the customers being from domestic sources. The customers were
shown to have a greater dispersion around the heat source. The
heat losses in the more densely populated case study were shown
to be 7% of the overall heat demand. It was shown that the less
densely populated case studies have pipe lengths 4–6 times longer
than the more densely populated case studies. The overall heat
demand of the network is dependent on the number, type and
location of the customers and the heat losses in the pipe.

Model Validation
A primary goal of this paper was to keep the methodology simple
enough to allow a non-technical individual to use, meaning
several assumptions were made. The assumptions introduce the
possibility of inaccuracy into the model, the extent of which was
assessed both internally and externally. The internal assessment
was completed using Monte Carlo simulations. Normally, the
external assessment would be completed using primary district
heating network data or a similar model. No existing district
heating networks provided primary data for use in this study
and due to novel nature of the work, external models that could
be used as a comparison do not exist. Using an existing model
would require more assumptions to be made than are already in
the work, the accuracy of which would need assessing. Instead,
the external validation comes from the industry confidence in
the industrial model; the industrial model is generated based
on industry experience (Arup, 2017). The external validation is
sufficient for industry and is therefore the approach used in this
work as it ties the data back to genuine field data.

Monte Carlo simulations were used to assess the accuracy
of the key assumptions. Monte Carlo simulations re-ran the
model thousands of times, varying the inputs, and measuring
the variation in the model output. The assumptions that were
assessed are: (1) the assumption that each building in the
same archetype category is of a standard assumed size, (2) the
assumption that each building in the same archetype category has
the same hourly heat demand profile as described by industry
and (3) the assumption that the pipe route runs in the shortest
possible straight line distance from the heat source to the
customer via the center of the nodes and the subnodes.

It is expected that on a network wide scale the inaccuracies
from the assumptions will not be significant due to the large
sample size, meaning that the average will not be significantly
affected. In cases with large variance in the input data however,
the average is likely to be significantly affected, meaning that
the inaccuracies from the assumptions will be significant. The
data used to validate the assumptions came from a series of
studies into building size and heat demand variation [Burzynski
et al., 2011; Building Research Association of New Zealand
(BRANZ), 2014; Balcombe et al., 2015; BRE Trust, 2015; EIA,
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FIGURE 3 | (A) The change in mean and standard deviation with an

increasing number of simulations. (B) The percentage change in the standard

deviation from trial to trial with an increasing number of simulations.

2016; Törnros et al., 2016] and from comparing the length of an
existing district heating network to the shortest possible straight
line route (Finney et al., 2011). Studies from outside of the UK
were used to increase the sample size and therefore the Monte
Carlo accuracy. In order to account for the variation in building
types from country to country, the data sets were normalized
to themselves before being compared against each other. Using
data from countries outside of the UK allowed the model to be
assessed immediately, despite the lack of UK specific data. As UK
studies are found investigating building heat demand and size
variation, the Monte Carlo work can be updated.

The probability distributions that were loaded into Goldsim
are based off the distributions found studying the variation
in building sizes, heat demands and networks lengths. The
distributions were as follows. For the building size assumption
(1): a normal distribution with a mean of 1 and a standard

FIGURE 4 | Results of the Monte Carlo simulations for the assumptions in the

model, after 1,000 simulations. The mean result, 50th percentile, is shown with

a black line. The range of percentiles to the extremes of 5th and 95th are

denoted by the color bands. (A) Results of the Monte Carlo simulations for the

assumption of each building in an archetype category having the same

assumed size (1). (B) Results of the Monte Carlo simulations for the

assumption of each building in an archetype category having the same,

assumed heat demand profile (2). (C) Results of the Monte Carlo simulations

for the assumption that the pipe network travels in the shortest possible

straight line distance (3).
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deviation of 1.96. For the building heat demand assumption (2):
a normal distribution with a mean of 1 and a standard deviation
of 0.212. For the network route variation assumption (3): a pareto
distribution with a shape factor of 5 and a lower bound of 1. In
the loaded distributions, a value of 1 means that the building size,
heat demand or network route is unchanged. A value higher or
lower than 1 changes the building size, heat demand or network
route by a factor of that value. The Darley Dale case study was
used to run the Monte Carlo simulations during the winter
season. The probability distributions were run 1,000 times in the
Goldsim software. One thousand simulations allowed the model
output to reach convergence, which is achieved when less than a
1% change in standard deviation occurs; as shown in Figure 3.

The results of the Monte Carlo simulations are show in
Figure 4. The figure shows the mean heat demand curve, 50th
percentile, found over the 1,000 simulations with a black line. The
range of percentiles to the extremes of 5th and 95th are denoted
by the color bands. Due to software limitations, Figures 4A,B
were unable to consider the entire network structure. Instead,
the Monte Carlo simulations were run for a typical subnode of
the overall model, with the results used to represent the demand
experienced in the heat source. Figure 4 does not clearly show
the extent of the variation from themean, thereforemore analysis
was required. Figure 5 better demonstrates the relation between
the input and the output variation for the results from Figure 4.
Figure 5 is quantified and shown in Table 3.

Figure 5 and Table 3 better represent the variation shown in
Figure 4 by showing the percentage differences in the power
outputs (heat demands) of the different percentile lines. The
information used in Figure 5 and Table 3 is a snapshot taken
from the afternoon peak at 4 pm showing the current heat
demand. Figure 5 and Table 3 show that the Monte Carlo
simulation based on the assumption of standard building sizes (1)
is highly sensitive to the data used in the simulation. The Monte
Carlo simulation is run for a typical network subnode and the
results are used to represent the entire network. A 90% variation
in the input uncertainty causes 247% variation in the output
uncertainty. The assumption of standard building sizes creates
a large spread of results and uncertainty, therefore the modeling
technique needs to be modified to more accurately quantify the
building sizes in the study area. It was unclear from Figure 5 and
Table 3 how sensitive the Monte Carlo simulation based on the
assumption of standard heat demand profiles (2) was to the data
used in the simulation. Figure 5 and Table 3 showed that the
Monte Carlo simulation based on the assumption of a straight
network route (3) is highly insensitive to the data used in the

simulation. A 90% variation in the input uncertainty causes 29%
variation in the output uncertainty and a 98% variation in the
input uncertainty causes 53% variation in the output uncertainty.
The assumption of a straight line network route creates a small
spread of results and uncertainty, therefore the assumption of the
straight line network route is acceptable for further use.

It was not definitively determined if the assumption of
standard heat demands (2) creates an acceptable spread of results.
Figure 6 compared the output result distributions to the input
distribution found in the literature to provide a better level of
understanding.

Figure 6 compares the distribution of the results of the
Monte Carlo simulation assessing the assumption of standard
heat demand profiles (2) with the distribution in heat demands
found in the literature. The Monte Carlo simulation is run for
a typical network subnode and the results are used to represent
the entire network. The figure shows that the variation due to
the assumption is near enough identical to the variation found
practically. The matching distributions show that the assumption
of standard building heat demands is acceptable for further use.

Thus far, the Monte Carlo analysis was performed
investigating one variable at a time instead of globally, where all
of the assumptions are varied simultaneously. Global assessment

FIGURE 5 | The input and output ranges for the Monte Carlo simulations,

showing the assumption of standard building sizes, standard heat demand

profiles and a straight line network route.

TABLE 3 | Input and output uncertainty for the different Monte Carlo studies.

Output uncertainty (%) Input uncertainty (%)

−49 −45 −35 −25 −15 −5 0 5 15 25 35 45 49

Type of assumption Building size (1) 98 89 67 49 30 10 0 11 34 61 96 158 229

Heat profile (2) 49 34 22 14 8 3 0 3 8 14 22 34 48

Network route (3) 5 5 4 3 2 1 0 1 3 6 12 24 48
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FIGURE 6 | The distribution of the heat demands found by the Monte Carlo

simulations of the assumption of an average heat demand profile (2) compared

against the distribution of heat demand variations found in the literature, which

were used as the inputs into the Monte Carlo simulations.

was vital to comprehensively assess the accuracy of the multiple
assumptions. As stated, the assumption of standard building
sizes was inaccurate, therefore will be omitted from future work.
In future work the building sizes (1) will be measured manually,
creating a more accurate model. The global assessment now
requires the assumptions of standard heat demand profiles (2)
and network route length (3) to be done simultaneously as
shown in Figure 7.

Figure 7 shows that the results found when assuming that
the buildings in the study have a standard heat demand
profile (2) and that the network route runs in the shortest
possible straight lines (3) have a similar variation to that
of building heat demands and network lengths found in
literature. Due to the similar variation, it is shown that
sensitivity of the results on the input data is acceptable and
the assumptions of standard heat demand profiles (2) and
straight line network route (3) can be kept in future modeling
work.

The modeling technique was altered to remove the
assumption of standard building sizes (1), by measuring
the buildings in the local area. It was useful to observe the extent
that the change to the modeling technique would have had on
the results. The modeling process used in Figure 1 was repeated
but with accurate building sizes.

Figure 8 quantifies the effects of the changed modeling
technique. Figure 8 shows the original model that was generated
with the assumed building sizes and the refined model that was
generated with measured building sizes. Manually measuring
the building sizes increased the heat demand, showing that the
assumed building sizes were, on average, smaller than the actual
buildings. The increase in the heat demand is likely to be as the
assumed building sizes do not accurately account for the number
of floors in the buildings. The average variation between the two
curves is more than 20% with a peak variation of roughly 40%.

FIGURE 7 | (A) Results of the global Monte Carlo Simulations for the

assumption of standard heat demand profiles (2) and network route length (3)

after 1,000 simulations. The mean result, 50th percentile, is shown with a

black line. The range of percentiles to the extremes of 5th and 95th are

denoted by the color bands. (B) The distribution of the heat demand from the

global and individual Monte Carlo simulations as well as the distributions of

heat demand and network route length as found in the literature.

In the new methodology, there are two possible ways to
measure the size of the buildings. The ideal measurement,
which would be possible for the non-technical individual at a
local authority is to access the building records available. The
second technique is to use Google Maps to measure the floor
area of a building and use Google Street View to count the
number of floors in the building. Using building records should
not introduce any error into the work, using Google Maps to
measure area has been shown to have errors of 3.54% (Lopes
andNogueira, 2011). The possible errors due to themeasurement
from Google need to be assessed in a global sensitivity analysis
alongside the possible errors from the assumptions of standard
building sizes and a straight line network route (Figure 9).

Figure 9 shows nearly identical results to Figure 7. It is shown
that combined global sensitivity analysis, of the two assumptions
and the measurement errors, has a similar distribution to
that of building heat demands and network lengths found
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FIGURE 8 | A comparison of the original (assumed building sizes) and refined

(measured building sizes) models for local area heat demand.

FIGURE 9 | The distribution of the heat demand from the global (including the

error from the measurement process) and individual Monte Carlo simulations

as well as the distributions of heat demand and network route length as found

in the literature.

in literature. Due to the similar variation, it is shown that
sensitivity of the results on the input data is acceptable and
the assumptions of standard heat demand profiles (2) and
straight line network route (3) can be kept in future modeling
work. In addition it is shown that the risk of the errors from
using Google Maps and Google Street View is insignificant
and that this measurement technique can be kept in future
work.

CONCLUSIONS

The hypothesis of this paper proposes a new model that could
be used to estimate the hourly heat demand variation of any

new district heating network whilst being simple enough that
a non-technical staff member could use it. Case studies were
investigated to see if the same modeling technique could be
used for areas of different population densities. Monte Carlo
simulations assessed the accuracy of the assumptions made in the
modeling process.

Networks with large population densities were shown to
have significantly shorter pipe lengths, resulting in reduced
heat losses and installation costs. This may require networks
with differing population densities to have differing business
cases and incentives in later techno-economic work. Networks
with small population densities were shown to be comprised
of a large proportion of small domestic customers. In future
work, the modeling process will need to be modified to
ensure that domestic customers are omitted from the modeling
process or, the business case of networks with small population
densities may fail. The number, type and location of the
customers included in the network, along with the overall pipe
length and heat losses in the pipes affects the overall heat
demand.

Individually, the assumption of the shortest possible network
route (3) and standard building heat demand profiles (2) were
found to be acceptable. The network route assumption (3)
was shown to be acceptable as a 90% variation in the input
uncertainty only causes 29% variation in the output uncertainty.
The heat demand assumption (2) was shown to be acceptable
as the probability distribution of the results were shown to be
identical to the probability distribution in the heat demands of
actual buildings. The simultaneous assumptions of a standard
heat demand profile (2) and network route (3) were assessed
using Monte Carlo simulations. The output distribution of the
combined assumptions is similar to the input distribution of the
results found in literature, therefore both assumptions can be
kept simultaneously in future modeling work.

The assumption of standard building sizes (1) was not
acceptable as the output uncertainty was highly sensitive to the
input uncertainty. A new modeling technique was proposed,
where the building sizes were measured, not assumed, which was
shown to significantly alter the modeled hourly heat demand
profile. Due to the use of Google Maps and Google Street View
to measure the size of the buildings, the new methodology
introduces measurement errors of 3.54%. A global sensitivity
analysis was run for the measurement errors as well as the
assumptions of standard building sizes and straight line network
routes. The output distribution of the global sensitivity analysis
was similar to the input distribution of the results found in
literature, showing that both of the assumptions can be kept in
future work. In addition it showed that the errors associated
with this measuring technique are minimal and that the new
measuring technique can be kept in future work.
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