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Abstract:

Circuit clustering algorithms fit synthesised circuits into FPGA configurable logic blocks (CLBs) efficiently. This fundamental

process in FPGA CAD flow directly impacts both effort required and performance achievable in subsequent place-and-route

processes. Circuit clustering is limited by hardware constraints of specific target architectures. Hence, better circuit clustering

approaches are essential for improving device utilisation whilst at the same time optimising circuit performance parameters such

as, e.g., power and delay. In this paper, we present a method based on multi-objective genetic algorithm (MOGA) to facilitate circuit

clustering. We address a number of challenges including CLB input bandwidth constraints, improvement of CLB utilisation, min-

imisation of interconnects between CLBs. Our new approach has been validated using the “Golden 20” MCNC benchmark circuits

that are regularly used in FPGA-related literature. The results show that the method proposed in this paper achieves improvements

of up to 50% in clustering, routability and timing when compared to state-of-the-art approaches including VPack, T-VPack, RPack,

DPack, HDPack, MOPack and iRAC. Key contribution of this work is a flexible EDA flow that can incorporate numerous objectives

required to successfully tackle real-world circuit design on FPGA, providing device utilisation at increased design performance.

1 Introduction

Field Programmable Gate Arrays (FPGAs) have developed signif-
icantly over the past 20+ years and are the number one choice
for prototyping complex digital designs. Their flexibility moves
them into many application areas such as reconfigurable computing,
evolvable hardware and fault-tolerant systems. However, this flexi-
bility puts limitations on maximum achievable design speed and area
on FPGA. The resource utilisation is thereby not constrained solely
by the hardware structure, but also depends significantly on the
application mapping process. Such computer-aided design (CAD)
flow for a implementing digital circuits on FPGA consists of synthe-
sising a design into gate-level netlists whose components are mapped
onto basic logic elements of the fabric. These are then clustered into
higher-level configurable logic blocks (CLBs). Hence, this process
is known as circuit clustering [1–3]. Separate placement and rout-
ing stages then attempt to map clustered functions onto the fabric
and connect these blocks to form the circuit for a given application.
Clustering is therefore a fundamental process in CAD flow that is
linked to the architecture of a specific FPGA and therefore possibly
limited by a variety of hardware constraints. Hence, better circuit
clustering approaches are essential to the successful and effective
use of FPGAs.

Clustering a large netlist, the synthesised circuit, into groups is
a non-trival task when considering all clustered circuit properties.
The problem becomes more complex as the inherent hardware con-
straints are considered as well. When a group of logic elements has
been selected and clustered into a logic block, the circuit properties
that have to be optimised are often conflicting, and it is usually a
non-trivial problem to optimally balance multiple clustering objec-
tives. This cannot be efficiently addressed by simply weighting and
accumulating them into a single performance metric or figure of
merit. Circuit clustering is by its very nature a complex multi-
objective optimisation problem. In this paper, we therefore propose
a multi-objective circuit clustering technique to solve and optimise
the circuit-clustering stage in CAD for FPGA design.

The method proposed in this paper is divided into two steps,
each using multi-objective generic algorithms (MOGAs): the first
generates initial solutions using predictive metrics, and the sec-
ond generates specific optimised solutions. Both steps consider five
optimisation objectives using non-dominated sorting and crowding-
distance selection based on NSGA-II [4]. The MOGAs described
in this paper produce multiple unique solutions, which are based on
Pareto optimality. This method gives maximum flexibility and makes
it possible to add additional clustering metrics later without chang-
ing the core algorithm or invalidating solutions found already. The
MCNC-20 benchmark suite is used to test and validate the proposed
method. We compare the experimental results to other state-of-
the-art FPGA circuit clustering methods, VPack [1], T-VPack [5],
RPack [6], DPack, HDPack [7], MOPack [8] and iRAC [3]. The
improvements achieved with the proposed method are up to 4.33% in
reducing the number of logic blocks and up to 14.24% in reducing
interconnect when compared to iRAC, the best-performing circuit
clustering method which also enhances both FPGA area usage and
routability. The most important result of our method is that optimised
solutions achieve a speed up of mapped circuits by up to 27.62%
compared to T-VPack and outperforms other well-known methods.
The results indicate that the MOGA-based method can efficiently
solve the FPGA circuit clustering problem taking both routability
and delay into account.

2 Circuit Clustering in FPGA Design Flow

This section provides an overview of the FPGA architecture and
state-of-the-art FPGA design flow. In order to implement a complete
design onto FPGA, many design objectives have to be considered by
automated CAD tools. Fig. 1(a) shows a cluster-based FPGA CAD
flow.
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2.1 FPGA Model

A cluster-based island-style FPGA is widely used, and its logic and
routing blocks are arranged in a 2D mesh [9]. To lower the routing
difficulties and improve application performance, a logic block, also
known as configurable logic block (CLB), usually contains N basic
logic elements (BLEs) and internal routing resources [10]. The BLE
is the smallest configurable logic element that includes a k-input
look-up table (LUT) and a reconfigurable flip-flop (FF). An impor-
tant feature is usually presented in many Altera FPGAs [11, 12],
which is the input-bandwidth constraint [13]. This means that the
total number of inputs, I , of a CLB is less than N × k, due to
resource limitations. Though this constraint does not exist in all
modern FPGAs, it represents an additional issue and has been the
subject of research in circuit clustering. Additionally, the FPGA
CAD research tool VPR [14] used here to facilitate design mapping
is also based on an input-bandwidth-constraint CLB model. In most
FPGA circuit clustering literature, I , N and k are normally set to
18, 8 and 4 respectively, and CLBs are assumed to have a unique
clock [15]. These assumptions are also used in this paper.

The routing architecture is based on a X row by Y column
array of CLBs. Each CLB is connected to the routing channel, wire
segments, via the input and output connection blocks [16]. The con-
nectivity of the input and output connection blocks are defined by
two parameters, Fc,in and Fc,out, the fraction of wire segment width
in the channel (which refers to the pre-defined channel width W ) to
the connection number of the input or output of the CLB is used [9].
The switch block contains a set of programmable routing switches,
and is positioned between CLBs. Switch block flexibility is defined
by the parameter Fs representing the number of possible connections
that a wire segment can make to other wire segments.

2.2 Circuit Clustering for FPGAs

Circuit clustering, also known as circuit packing, is a process to par-
tition a synthesised circuit into sub circuits to enable mapping them
to FPGA without breaking any CLB hardware constraints. Circuit
clustering also indicates how to best group (pair) the BLEs based on
their LUT and FF connections. Fig. 1(b) illustrates this process.

Circuit clustering is a fundamental process in the CAD flow,
and the quality of clustering can significantly impact subsequent
placement and routing processes which then directly affect the per-
formance of the circuit. It can be significantly more problematic—or
even impossible—to optimise a circuit’s performance in subsequent
steps of the CAD flow if clustering is ineffective. When clustering
BLEs into CLBs, even if two solutions have the same number of
clustered CLBs, their BLE combinations within the CLBs can be
different. Therefore, circuit clustering is a complex grouping prob-
lem similar to multi-objective bin packing—a well-known NP-hard
problem [17], but with additional constraints and requirements.

2.3 Multi-objective Problem Formulation

The basic requirements of circuit clustering which refer to
routability-driven circuit clustering are: Firstly, it is required to clus-
ter all BLEs into CLB resources while minimising the number of
CLBs. Secondly, external CLB interconnects must be reduced by
including as many connections within the CLBs. Fig. 1(c) illustrates
this and explains how fewer external CLB interconnects facilitate
routing [6, 15].

Under the assumption that I is the CLB input number, N spec-
ifies the BLE number within the CLB and each has one clock,
the circuit clustering problem can be formulated as a set of BLEs:
B = {b1, b2, ..., bn} representing a synthesized circuit, and a set of
empty CLBs representing the FPGA: C = {c1, c2, ..., cm}. When
clustering BLEs into CLBs, the following conditions have to be met:

INPUT(ci) ≤ I i = 1, 2, ...,m (1)

BLE(ci) ≤ N i = 1, 2, ...,m (2)

ci ∩ cj = ∅ i, j = 1, 2, ...,m, i 6= j (3)

Synthesise to 

logic blocks

Circuit description, e.g. 

VHDL, schematics...

Place logic 

blocks in FPGA

Route connections 

between logic blocks

FPGA configuration 

file – bitstream 

Technology-independent 

logic optimisation  

Netlist of 

basic gates

Technology 

map, to LUTs

Cluster LUTs to 

logic blocks

Netlist of 

logic blocks 

LUT

LUT

LUT

LUT

(a) A typical FPGA CAD flow, including details of synthesis to logic block

clustering [2]. A design is synthesised, assigned to BLEs and then clustered

into CLBs. Separate placement and routing steps map the CLBs onto the

FPGA fabric and connect them together.

Synthesised circuit: 

netlist

...

A B

F E

C D

CLB

Circuit to FPGA Configurable 

Logic Blocks (CLBs)

Circuit Clustering 

Process

C

D

E

F

G

HBA

BLEs

G H

(b) An example of the circuit clustering process [15]. Synthesized gates are

packed into BLEs and then clustered in CLBs.

Routing 

Process

CLB

CLB

CLB

CLB

in

out

in

out

in

out

out

in

CLB

CLB

CLB

CLB

in

out

in

out

in

out

out

in

CLB

CLB

CLB

CLB

out

in

in

in

in

out

in

in

CLB

CLB

CLB

CLB

out

in

in

in

out

in

in

in

4 Nets 4 Tracks

2 Nets 2 Tracks

(c) Mapping results under different CLB interconnects, when a clustered

circuit has fewer CLB interconnects, the routed circuit can have fewer

tracks [15]. Therefore, a narrow channel width is used on the FPGA.

Fig. 1

m
∑

i=1

BLE(ci) = B i = 1, 2, ...,m (4)

Hence, a routability-driven circuit clustering method usually opti-
mises two aspects of a clustered circuit, which are defined in
Equations (5)-(6). Equation (5) represents a circuit’s absolute area
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on a FPGA. As shown in Fig. 1(c), the CLB interconnect (net) num-
ber also has to be as small as possible; this condition is represented
by Equation (6):

BLE(ci) → N (minimise |C|) i = 1, 2, ...,m (5)

∪m
i=1Net(ci) → 0 i = 1, 2, ...,m (6)

As a result, these two parameters are usually considered a “golden
rule” to evaluate the quality of the clustered circuit. In addition to
improving routability, the circuit clustering method also reduces the
delay of the mapped circuit thereby improving its speed through
optimising the critical path. Other goals include power-driven cir-
cuit clustering, however, we focus on routability- and timing-driven
circuit clustering in this paper.

3 Conventional Circuit Clustering Methods

This section reviews a number of well-known circuit clustering
methods (algorithms). Most methods are targeting CLB-input-
bandwidth-constraint island-style FPGAs. In contrast, there are also
methods for the input-bandwidth-free CLB FPGA, where I is set to
k ×N and represented no input constraint.

These clustering techniques can be classified as bottom-up and
top-down. Bottom-up refers to clustering a circuit by moving BLEs
into CLBs sequentially based on a greedy algorithm, giving a locally
optimal perspective, and CLBs are constructed one by one. Top-
down methods typically consider using graph partitioning methods,
which view a circuit from a more global perspective, and separate
the circuit by recursively partitioning it until each part of the cir-
cuit is able to fit into CLBs. There are also hybrid methods and
post-routing-assisted methods. “Hybrid” methods combine bottom-
up and top-down methods, and “post-routing-assistant” indicates
that the methods incorporate the CAD flow in their techniques.

3.1 Bottom-up Methods

In bottom-up methods, a seed BLE has to be selected via a spec-
ified method, for example the number of BLE inputs and outputs.
The seed is then directly moved into an empty CLB. To cluster more
suitable BLEs in the CLB, these algorithms usually use an attraction
function to determine which is the best candidate BLE that can be
moved next. The attraction function is weighted by a number of clus-
tering objectives. The value of the function is known as the “gain”.
The highest gain BLE is selected for each clustering iteration.

Typical bottom-up clustering methods include VPack [1] T-
VPack [5], RPack [6], T-RPack [18], iRAC [3] and MO-Pack [8].
As the seed BLE selection and attraction function are required in
these methods, where it is uncertain whether or not the above two
functions can supply the best BLE, the solution is usually local-
optimal only. Weighting objectives in a single attraction function is
able to meet the multi-objective optimisation needs, but the simple
weighting can also destroy the proportionality between objectives.

3.2 Top-down Methods

To facilitate top-down circuit clustering, most methods in this cate-
gory are based on graph partitioning approaches treating the circuit
as a hypergraph. The top-down circuit clustering methods usually
deploy the hMETIS [19] hypergraph partitioning algorithm, and
these methods can be viewed as various extensions of hMETIS,
where hMETIS is a standalone tool for performing a k-way graph
partitioning based on a multi-level paradigm.

The first notable top-down FPGA circuit clustering method was
introduced in [20], and designed for input-bandwidth-constraint
CLB FPGAs. This method initially uses hMETIS to partitioning
a circuit coarsely, involving a second iRAC-method-based step to
further optimise clustered sub circuits in order to fit into CLBs.
Since there is an extra step, it degrades the quality of the hMETIS
results. A more recent top-down method has been proposed, PPack
(also T-PPack, short for timing-driven PPack) [13], with promising
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Fig. 2: DBPack circuit clustering flow. DBPack uses a number of
GAs to construct CLBs. Each GA produces a set of solutions, the
best solution is then used for a CLB. The flow is stopped when no
unclustered BLEs are left.

results. Although these methods can produce better solutions than
the bottom-up method, using graphs to cluster a circuit can make it
difficult to involve clustering constraints, or clustering metrics.

3.3 Other Methods

HDPack and DPack [7] are typical examples of hybrid methods,
where they use circuit partitioning to preferentially cluster the syn-
thesised circuit into sub circuits. These sub circuits are then opti-
mised using bottom-up methods. Moreover, HDPack also incorpo-
rates the placement process in the CAD flow (DPack without using
a CAD flow), which can approximately determine which regions
are more congested based on a FPGA model, and extra adjust-
ments can be conducted for the clustered circuit. Un/DoPack [21]
and T-NDPack [22] involve the entire mapping process. In addi-
tion, Un/DoPack and T-NDPack introduce the concept of depopu-
lation [21] in their methods. Even though these methods combine
both top-down and bottom-up and use the top-down method as the
first step, the quality of the results is usually decreased massively
during the (second) bottom-up step.

4 Proposing new MOGA-based FPGA Circuit
Clustering Methods

The concept of evolutionary computing (EC) has been developed
over many years [23, 24], genetic algorithms (GAs) [25] are an
important variant of evolutionary algorithms developed within the
EC community. The outstanding advantages of GAs are that they
can produce excellent solutions for a targeted problem without sig-
nificant amounts of domain knowledge introduced at the start of the
process and, if designed correctly, do not fall into local minima.
In addition, multi-objective genetic algorithms (MOGAs) further
enhance the problem solving ability for conflicting multi-objective
problems, allowing MOGAs to address real search and optimisation
problems.

In this paper, we propose a novel multi-objective genetic
algorithm [4, 26, 27] based circuit clustering method. The proposed
method contains two customised MOGAs: DBPack and HYPack,
where both use Pareto optimality to incorporate multiple optimisa-
tion objectives. The former is used to generate initial circuit cluster-
ing solutions. As the GA produces stochastic results, DBPack can
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be executed many times to accumulate different solutions. HYPack
then uses these solutions as input and performs further optimisa-
tion. This work is conducted from a global perspective (top-down).
Subsequently, HYPack is connected to a CAD flow, and optimises
solutions via the real mappings.

5 DBPack: Producing Initial Clustering Solutions
Using MOGA

Rather than incrementally adding BLEs to a CLB, DBPack (“DB”
being short for database), utilises a MOGA to search for groups
of BLEs for a CLB. In this work, each GA run produces a CLB
containing one or more BLEs. DBPack and partial experimental
results were initially published in [28]. In this section, the DBPack
implementation is introduced. It includes the GA chromosome rep-
resentation, genetic operations, fitness functions, solution selection
and experimental results.

5.1 Overview Algorithm

The DBPack execution flow is illustrated in Fig. 2. DBPack clusters
BLEs by using a number of GAs, the number of GAs are depen-
dent on whether it has un-clustered all BLEs or not. Experiments
show that clustering circuits using such an approach can reduce the
GA search space compared to searching for a solution from a global
perspective, where a useful solution can be produced efficiently. In
each GA run, the initial population is randomly generated and based
on the un-clustered BLEs. Then the individuals are evolved under
multiple clustering objectives.

5.2 Representation

A binary string has been used to encode DBPack GA’s chromo-
some. The DBPack GA chromosome consists of a number of genes,
and these genes are used to represent BLE selected for a CLB.
The number of genes in the chromosome is determined by the un-
clustered BLE number, hence the chromosome length is variable (as
un-clustered BLEs become clustered). Each gene is used to encode
each BLE index. A gene that has the binary value “1” means that
the BLE index corresponding to that gene position has been selected
for a CLB. Otherwise, the gene has the binary value “0” suggest-
ing that the corresponding BLE is not yet selected. The detailed GA
representation can be found in [28].

5.3 Reproduction

Each GA has both crossover and mutation implemented as genetic
operation in order to generate new individuals. The crossover is
a one-point binary crossover, and the crossover operation is con-
trolled by a crossover rate. In a GA generation, two individuals
are randomly selected from the population to perform crossover,
the crossover point of their chromosomes is randomly determined.
These two individuals then produce two new individuals.

The “flipping a bit” mutation operation is utilised in DBPack. This
mutation operates after crossover, and is performed on all offspring.
For each offspring, DBPack mutation operation is designed to ran-
domly flip one, and only one gene in the individual’s chromosome.

5.4 Fitness Functions

At each CLB construction, DBPack involves five fitness functions to
guide the GA evolution to search for suitable BLEs. Each objective
requires its own fitness function which evaluates a candidate solu-
tion and assigns a quality metric in the form of a fitness value to
guide evolutionary search. In this case, these fitness functions not
only describe which objectives need to be optimised, but also han-
dle clustering constraints. In DBPack, the MO selection is based
on the NSGA-II [4], which selects the best individuals using the
fast-non-dominated sort and crowding distance.

fBLE(x) = (# of BLEs)−1
(7)

f inter. cons.(x) =























2, (# of inter. cons. = 0)

(# of inter. cons.)−1

, (# of inter. cons. > 0)

(8)

f incresd. cons.(x) = # of increased CLB nets (9)

f input(x) = # of inputs (10)

foutput(x) = # of outputs (11)

Clustering objectives are described in Equations (7)-(11). Each
function represents one objective of the searched BLEs, and all
functions are defined to return smaller values when the function rep-
resented objective is improved. Explanations of these functions are
as follows: Equation (7) represents the number of BLEs for a CLB.
Equation (8) shows how many circuit connections a CLB contains.
It presents two situations: When the BLEs have no included con-
nection, it returns a large penalty. Otherwise, it presents a function
relationship of CLB included connections. Equation (9) is to set up a
global optimisation for CLB interconnects. If there are already clus-
tered CLBs, current clustered CLB interconnects are known. When
a new CLB is added, how many new interconnects appeared is cal-
culable. Equations (10)-(11) are the controls of the CLB input and
output numbers, and these are inspired by Rent’s rule [29].

fBLE penalty(x) =























0, (# of BLEs ≤ N)

# of BLEs / A

, (# of BLEs > N)

(12)

f input penalty(x) =























0, (# of inputs ≤ I)

# of inputs ∗B

, (# of BLEs > I)

(13)

In addition to the objective functions that are defined, penal-
ties are implemented to handle constraints. Equations (12)-(13)
are the defined penalty functions. These functions produce penalty
violations when BLE combinations are invalid for the targeted
CLB type. Equation (12) presents the BLE number constraint, and
Equation (13) is to control the input number of the BLEs. A and
B are two proportional coefficients. These coefficients adjust the
penalty violation levels. Experiments show, A = 7, B = 2 are effi-
cient settings, where the penalty violations have to be small enough
to avoid degrading the GA population diversity.

The objective functions and penalty functions have been set up for
DBPack. According to [27, 30, 31], the penalty can be added to all
objective functions to handle constraints in MOGAs. DBPack fitness
functions are defined as Equations (14), where Equation (15) shows
the sum of the penalties. Index j indicates the five objects listed in
Equations (12)-(13).

ffitness j
(x) = fobj j

(x) + fpenalty(x) (14)

fpenalty(x) = fBLE penalty(x) + f input penalty(x) (15)

5.5 Solution Selection

In DBPack, each CLB construction uses a MOGA, and the GA exe-
cutes for a fixed number of generations. At the end of this execution
all individuals can be considered as possible solutions for a CLB.
In order to identify the best individual based upon MO character-
istic, the selection process checks all final generation individuals.
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‘
Table 1 Results comparison between DBPack, VPack, T-VPack, RPack and iRAC for a subset of MCNC benchmarks. “Interc.” represents the number of CLB

interconnects, lower values are better

Circuit Property DBPack VPack T-VPack RPack iRAC

Benchmark LUTs FFs CLBs Interc. CLBs Interc. CLBs Interc. CLBs Interc. CLBs Interc.

alu4 1522 0 192 543 198 1296 192 804 196 985 196 624
apex2 1878 0 238 841 241 1626 240 1249 242 1288 249 993
apex4 1262 0 161 637 163 1037 165 863 167 868 168 739
bigkey 1707 224 214 716 214 1622 214 1040 214 1060 227 585
clma 8381 33 1058 3636 1056 7139 1054 5307 1054 5585 1089 3884
des 1591 0 199 909 204 1601 200 1214 202 1339 352 1213
diffeq 1494 377 188 590 188 1280 189 1033 189 895 195 662
dsip 1370 224 172 713 198 1590 172 762 188 1219 228 472
elliptic 3602 1122 453 1278 453 3244 454 2247 462 2300 475 1408
ex1010 1598 0 587 2264 595 3799 599 3110 602 3064 613 2575
ex5p 1064 0 136 595 136 950 139 767 139 754 140 664
frisc 3539 886 447 1266 448 2955 446 2048 447 1983 477 1521
misex3 1397 0 177 586 178 1101 178 840 178 876 191 679
pdc 4575 0 580 1934 593 3813 582 2627 590 3011 608 2246
s298 1930 8 242 480 246 1711 243 767 243 1330 251 591
s38417 6096 1463 804 2912 803 4921 802 4423 802 3921 825 3153
s38584 6281 1260 806 2537 806 4649 806 4183 806 3556 839 2884
seq 1750 0 222 753 223 1496 221 1055 223 1166 223 878
spla 3690 0 467 1464 476 3031 469 2099 473 2336 484 1771
tseng 1046 385 132 464 132 979 133 801 133 764 141 535

Sum of CLBs 7475 7551 7498 7550 7971
DBPack # CLB improvement 0.00% 1.01% 0.31% 0.99% 6.22%

Sum of Interc. 25118 49840 37239 38300 28077
DBPack Interc. improvement 0.00% 49.60% 32.55% 34.42% 10.54%

Individuals that are on the first Pareto front and having n (n = N )
BLEs and less than or equal I inputs, are temporarily stored. In prac-
tice, the GA might not find any solution which has n = N BLEs, so
n is reduced until individuals are found. The key to this process is
to find all maximum BLE solutions. Subsequently, these temporar-
ily stored individuals are ranked based on their internal connections.
The individual that has the most internal connections is selected as a
CLB.

5.6 Results Comparison

The largest benchmark “clma” in MCNC-20 is used for adjusting the
DBPack GA parameters as it represents the largest search space. The
calibrated DBPack GA parameters are summarised as follows:

1. Population size: 200
2. Crossover probability: 0.6
3. Mutation probability: one gene per individual
4. Maximum generation number: 15000

As the output of DBPack is fully clustered circuits, which enables
the comparison of the clustered circuits to other methods. Similar
to these other methods, the CLB size N , CLB input number I and
LUT size k are set to 8, 18 and 4, and include one clock. Table 1
lists the DBPack best results compared to previously published bests,
including CLB number and CLB interconnects. These results, each
benchmark, are based on 100 DBPack runs. As can be seen, DBPack
CLB interconnect can be reduced by up to 49.60% compared to
VPack, and also better than other methods. At meantime, DBPack
can maximum CLB utilisation.

6 HYPack: Optimising Clustering Solutions from
A Global Perspective Using MOGA

HYPack (“HY” short for hybrid) attempts to continuously optimise
clustered circuits from a global perspective, and also incorporates
with DBPack a method to re-cluster BLEs. The HYPack implemen-
tation is introduced in this section including the GA chromosome
representation and genetic operations. The HYPack experimen-
tal results can be found in [28], Subsequently, HYPack has been
extended as a timing-driven circuit clustering method, T-HYPack,
where CAD flow based fitness is involved. The fitness functions and
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Fig. 3: HYPack circuit clustering flow. HYPack reads already clus-
tered circuit solutions, and uses these as the GA’s initial population.
Then the GA further optimises solutions under an MO selection
mechanism.

further experimental results of T-HYPack are detailed in the next
section.

6.1 Overview Algorithm

The HYPack execution flow is illustrated in Fig. 3. HYPack opti-
mises intermediate solutions, in this case, from DBPack. Assuming
DBPack has executed many times and generated enough solutions,
these solutions are then converted as HYPack initial population.
Subsequently, the solutions are selected via a MO selection mech-
anism which is similar to DBPack, and best solutions are used in the
HYPack GA loop. The HYPack GA is executed for a fixed number
of generations. On the final generation, an individual is chosen from
the first Pareto front based on solution CLB interconnect and timing.

IET Research Journals, pp. 1–9

c© The Institution of Engineering and Technology 2015 5



121 0 3 23 1 1 02 3Chromosome:

BLE Index:

CLB Index: 0

2,10

1

0, 3, 5, 6

2

1, 8, 9

3

4, 7, 11

565 4 6 74 7 5 46 7Chromosome:

BLE Index:

CLB Index: 4

2, 4, 10

5

0, 3, 6

6

1, 7, 9

7

5, 8, 11

Individual X:

Individual Y:

CLB for exchanging

(a) Select the crossover CLBs from copied individuals

BLE Index:

CLB Index: 0

2,10

1

0, 3, 5, 6

2

1, 8, 9

3

4, 7, 11

BLE Index:

CLB Index: 4

2, 4, 10

5

0, 3, 6

6

1, 7, 9

7

5, 8, 11

Individual X:

Individual Y:

1

0, 3, 5, 6

2

1, 8, 9

6

1, 7, 9

Injected

Injected

Injected-CLB-contained BLEs

Eliminating

Injected-CLB-contained BLEs

Eliminating

(b) Directly inject selected CLBs in individuals, and eliminate CLBs that

contain these injected BLEs

BLE Index:

CLB Index: 0

2,10

1

0, 3, 5, 6
4, 8, 11

BLE Index:

CLB Index: 4

2, 4, 10

Individual X_x:

Individual Y_y:

1

0, 3, 5, 6

2

1, 8, 9

1, 7, 9

Free BLEs

7, 11

Free BLEs

6

121 4 ? 24 1 1 42 ?Chromosome:

161 0 6 ?? 1 1 06 ?Chromosome:

(c) Keep freed BLEs, and store two individuals as offspring

Fig. 4: HYPack crossover operation. This operation is designed to
swap BLE combinations between two possible solutions (individu-
als).

6.2 Representation

In the HYPack, an integer string has been selected to encode the
chromosome. These integer values present the CLB index, and the
gene’s position is used to encode the BLE index. Fig. 5(a) is an
example to illustrate this representation. In this representation, each
integer position, gene position, is used to encode each independent
BLE, and these gene values indicate which CLBs the BLEs are allo-
cated. Inside the chromosome, its gene number is equal to BLE
number, hence the length of chromosome is variable and dependent
on the BLE number.

6.3 Reproduction

Both crossover and mutation are implemented in the HYPack
GA to create new individuals, and these operations are inspired
by [32]. These genetic operations have two functions: Firstly,
The crossover operation is intended to exchange BLE combina-
tions (CLBs) between different solutions. Secondly, The mutation
operation is designed to generate new BLE combinations for CLBs.

HYPack GA crossover operates in five steps:

1. Select two individuals randomly from the population, and copy
them to produce two new individuals.
2. Randomly determine which CLBs between the copied individu-
als exchange BLEs (crossover).
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(a) HYPack chromosome representation. HYPack uses an integer string to

represent a circuit clustering solution. The integer values present the CLB

index, each BLE is also encoded by an integer indicating which CLB it

belongs to.
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(b) HYPack mutation operation. It randomly eliminate two CLBs in an

individual, and the released CLBs are kept in the individual.

Fig. 5: HYPack genotype and mutation operation.

3. Inject the chosen CLBs into copied individuals of each individ-
ual.
4. Eliminate CLBs that contain these injected BLEs.
5. Store the two copied and crossed individuals as offspring.

Fig. 4(a) presents an example of two randomly selected and
copied individuals (X and Y ) from the population. In these indi-
viduals, the crossover CLBs, or the exchange-purposed CLBs, are
randomly selected. For example, the crossover CLBs are the three
CLBs shown in black. The number of crossover CLBs in each
individual is configurable, and controlled by a pre-defined range.
After determining the CLBs, these CLBs are directly injected into
two individuals, as shown in Fig. 4(b). Subsequently, the crossover
operation checks injected-CLB contained BLEs, and eliminates the
individual CLBs that contain injected BLEs. The BLEs that do not
appear in the injected CLBs need to be released for subsequent re-
inclusion in another CLB. Once the injection (crossover) process is
finished, the injected CLBs are reserved in the injected individuals
X_x and Y _y, as shown in Fig. 4(c).

The mutation operation in HYPack is executed after the crossover
operation, it is designed to randomly eliminate two CLBs in one indi-
vidual, which releases previously allocated BLEs in the individual.
Fig. 5(b) illustrates the HYPack mutation operation. Individual X_x
is an individual before the mutation. Individual X_x′ is a possible
individual after the mutation.

After both crossover and mutation operations are completed, a
number of BLEs are likely to have been released. These released
BLEs which are reserved in the individual need to be reclustered,
and this is using the DBPack method. In this reclustered process, the
DBPack method only produces new CLBs with new indexes back to
the HYPack GA individuals. This implies that the DBPack method
does not reinsert a single BLE into an individual exsited CLBs, also
there is no need to handling clustering constrains in HYPack as there
is no invaild solution generated.
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Table 2 FPGA model details for evaluating clustered circuits in VPR.

(In./Out.: input/output, conn.: connection. flex.: flexibility)

Parameter Setting

BLE, CLB – k, I,N,Clock k, I,N = 4, 18, 8 and one clock
Switch block type Wilton
Switch block flexibility – Fs 3
In. conn. block flex. – Fc,in 0.25
Out. conn. block flex. – Fc,out 1
Wire segments Segment length 4, uniform
Technology TSMC’s 0.35µM CMOS process

7 T-HYPack: Involving CAD Flow in GA for
further Improving Clustering Solutions

The major difference from HYPack is that T-HYPack uses VPR [14]
to facilitate a CAD-assistant, placement and routing processes, cir-
cuit timing optimisation, which extracts additional FPGA mapping
information as the fitness in HYPack GA loop. This timing optimi-
sation is different from conventional methods, for example T-VPack,
where clusters target circuits based on a circuit timing analysis
and incorporating the connection criticality, and then arranges most
critical connections inside CLBs. The reason is that the FPGA
CLB internal connection propagation delays are lower than CLB
interconnects.

7.1 Extracting Mapping Parameters as Fitness Functions

When T-HYPack evolves solutions, or receives initial solutions
from DBPack, the solutions are not only evaluated on the basic
circuit clustering requirements, but also comparing their mapping
performances.

In the solution evaluation process, an individual is firstly con-
verted as a clustered circuit. The basic clustering fitness then are
assigned, as shown in Equation (16)-(18), where (16) indicates
CLB number, (17) shows the CLB interconnect number and (18)
illustrates how many connections are included in CLBs. For each
individual, the individual represented circuit, is then translated as a
VPR readable netlist. Subsequently, the VPR output is used to com-
pose new fitness criteria. The new fitness functions are represented
in Equations (19)-(20). T-HYPack has five fitness functions, all these
fitness functions return smaller values when a better solution is
found.

fhyobj1(x) = # of CLBs (16)

fhyobj2(x) = # of global nets (17)

fhyobj3(x) = (# of CLB absorbed nets)−1
(18)

fhyobj4(x) = Critical path delay (19)

fhyobj5(x) = Routing wire length (20)

T-HYPack is executed for a fixed number of generations. On the
final generation, the best individual, with the smallest delay and
fewest CLB solution, is chosen from the first Pareto front, the indi-
vidual is then converted as a netlist, and regarded as the ultimate
clustering solution of a targeted circuit.

7.2 Results Comparison

According to DBPack GA parameter calibration and settings, the GA
parameters of T-HYPack were determined. As the released BLEs
are limited in number, generation and population size reductions
are applied to the BLE recluster process. Recluster DBPack GA, T-
HYPack and recluster DBPack GA parameters are summarised as
follows:

1. Initial solution size: 100 (initial solution number)

VPack: Routing succeeded with a channel width 28. T-HYPack: Routing succeeded with a channel width 20.

Fig. 6: Different routings of “tseng" benchmark when using VPack
and T-HYPack circuit clustering methods. VPack (left) uses 28
tracks vs. T-HYPack (right) uses 20 tracks in the FPGA routing
channel.

2. T-HYPack population size: 10 (keep best 10 from 100)
3. T-HYPack crossover rate: 0.6
4. T-HYPack generation number: 1,000
5. Reinsert DBPack population size: 200
6. Reinsert DBPack crossover rate: 0.6
7. Reinsert DBPack mutation rate: one gene per offspring.
8. Reinsert DBPack generation number: 2,000

As T-HYPack involves VPR, and VPR mapping is time con-
suming when circuits are large, which significantly increases the
evolution time, T-HYPack only uses ten small MCNC-20 bench-
marks for testing; “small” refers to a synthesised benchmark that has
1,000-1,500 BLEs. Based on the FPGA model, the defined FPGA
architecture parameters are shown in Table 2, which are based on
the T-VPack testing environments.

Each selected MCNC-20 benchmark has been optimised ten times
using T-HYPack, the best results are compared to T-VPack. Table 3
shows the comparison, which includes circuit CLB number, CLB
interconnect, channel width, routing wire length and delay (tim-
ing). Note that T-HYPack uses the same FPGA area as T-VPack.
As can be seen, T-HYPack solution demonstrated a number of
improvements, T-HYPack can speed up a circuit by up to 27.62%
compared to T-VPack. As nearly all methods are compared with
T-VPack, Table 4 shows a general comparison to these methods
based on the literature. The table indicates the T-HYPack is the best
timing-driven circuit clustering method. In addition, Fig. 6 shows the
routed "tseng" benchmark on the FPGA using two different cluster-
ing methods – VPack and T-HYPack. However, T-HYPack has its
disadvantages, the important concern is that the execution time as
it is based on the MOGA and involving placement and routing in
each GA generation, which can be slower than some methods. This
issue can be aliviated somewhat by the linear speed-up that can be
obtained by GAs when executed on multiple processing cores.

8 Conclusion

In this paper, we present a new method to perform circuit cluster-
ing based on MOGAs for cluster-based FPGAs. Directly forming
CLBs from BLEs makes the clustering efficient and robust, and
the use of Pareto optimality also allows multiple objectives to be
evolved simultaneously without degrading the solution quality on a
particular objective. The CAD-assisted method also shows signif-
icant potential to improve the circuit clustering. The experimental
results indicate that our method offers a significant improvement on
clustered circuits compared to other methods, especially for circuit
timing performance. However, there is also a cost; The main con-
cern is currently execution time which is longer than conventional
clustering algorithms as the proposed method uses a combination
of GA, nested GAs, and CAD flow. However the structure of our
method and algorithms is inherently parallel and can be improved
to reduce execution time by using parallel execution on a multi-core
system or HPC infrastructure. A larger number of GA generations
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Table 3 Best timing performed T-HYPack results compared to T-VPack. (Algo.:algorithm, Interc.: CLB interconnects, CH: channel width, Wire-Len: wire length, T-V:

T-VPack, T-HY: T-HYPack. Lower is better)

Benchmark Algo. CLBs Interc. CH Wire-Len. Delay (nS)

alu4 T-V. 192 804 34 9410 8.33
T-HY. 192 528 34 8864 7.15

apex2 T-V. 240 1249 44 15681 11.05
T-HY. 238 834 44 15824 8.75

apex4 T-V. 165 863 52 12072 9.74
T-HY. 162 645 46 10588 7.60

bigkey T-V. 214 1040 26 15619 6.44
T-HY. 214 669 14 13640 4.49

diffeq T-V. 189 1033 28 7686 6.22
T-HY. 188 565 26 6817 7.14

dsip T-V. 172 762 18 14368 6.21
T-HY. 172 704 22 15157 4.58

ex5p T-V. 139 767 46 9780 10.01
T-HY. 136 592 46 9618 7.68

misex3 T-V. 178 840 38 10429 8.93
T-HY. 178 579 42 9925 7.08

seq T-V. 221 1055 42 14480 8.93
T-HY. 225 758 44 13800 7.22

tseng T-V. 133 801 24 6632 7.80
T-HY. 132 456 20 4545 6.15

Table 4 A comparison for FPGA circuit clustering methods. (CLB input-bandwidth-free circuit clustering method, N.A.: not available, Interc.: CLB interconnects. CH:

Channel, Higher is better)

Method CLB(%) CLB interc.(%) CH width(%) Wire length(%) Delay(%)

T-VPack 0.00 0.00 0.00 0.00 0.00
T-RPack N.A. 7.01 2.66 N.A. 5.00
iRAC -6.24 25.86 16.10 25.00 -4.35
DPack N.A. 9.20 N.A. 17.70 7.80
HDPack N.A. 12.70 N.A. 23.20 6.10
MO-Pack N.A. 10.73 11.44 12.60 -1.44
PPack* N.A. N.A. 19.80 17.20 -4.30
T-PPack* N.A. N.A. 17.00 15.10 3.60
DBPack 0.59 31.21 13.00 8.70 20.85
T-HYPack 0.54 32.34 6.25 8.52 27.62

and benchmarks can then be tested, where the method can be fur-
ther evaluated. The key contribution of the proposed methodology
is a flexible design automation method that can incorporate multiple
objectives and constraints required to successfully tackle real-world
circuit design on FPGA, resulting in better FPGA device utilisation
at increased circuit performance. Additional clustering objectives
can be incorporated without the need to change the core algorithm.
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