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Abstract—Hardware in HPC environments in recent years
has become ever more heterogeneous in order to improve
computational performance and as an aspect of managing power
and energy constraints. This increase in heterogeneity requires
middleware abstractions to eliminate additional complexities that
it brings. In this paper we present a self-adaptation framework
which includes aspects such as automated configuration, deploy-
ment and redeployment of applications to different heterogeneous
infrastructure. This therefore not only mitigates complexity but
aims to take advantage of the existing heterogeneity. The overall
result of this paper is a generic event driven self-adaptive system
that manages application QoS at runtime, which includes the
automatic migration of applications between different acceler-
ated infrastructures. Discussion covers when this migration is
appropriate and quantifies the likely benefits.

Index Terms—Self-adaptation, energy modelling, middleware,
heterogeneous hardware architectures, application deployment.

I. INTRODUCTION

Advances in distributed computing research have in recent

years resulted in considerable commercial interest in utilising

heterogeneous hardware architectures (e.g. CPUs, GPUs, FP-

GAs), with the intent of improving performance and reducing

overall power and energy consumption. This heterogeneity of

computer systems adds complexity to using the infrastructure

that must be managed by the software in order to take full

advantage of the available hardware.

Added to this complexity computer systems have faced

significant power consumption challenges over the past 20

years. This dual challenge of both power and performance

has in recent years shifted from the devices and circuits level,

to their current position as first-order constraints for system

architects and developers. A common theme is the need for

low-power computing systems that are fully interconnected,

self-aware, context-aware and self-optimising within applica-

tion boundaries [1]. Thus, power saving, performance and

fast computational speed are key requirements in application

development. A key aspect for any future system is there-

fore to abstract away complexities of the heterogeneity and

to support power and energy awareness through automatic

reconfiguration at the level of the application. In doing so

this handles the impact of heterogeneity which is rapidly

increasing, the need for innovative architectures, algorithms

Work here was supported by the European Union’s Horizon 2020 research
and innovation programme under grant agreement RIA 687584.

and specialized environments to efficiently use these new

and mixed/diversified parallel architectures. In this paper

we address these issues with a energy-aware self-adaptive

framework for heterogeneous parallel architectures. The main

contributions of this paper are:

• a software framework for the adaptation of jobs on

heterogeneous HPC infrastructure

• an algorithm for the redeployment of jobs onto alternative

hardware configurations

• guidance on the redeployment of jobs on heterogeneous

hardware.

The remainder of the paper is organised as follows. In Sec-

tion III we present the overall architecture that supports energy

awareness and self-adaptation. In Section IV, the middleware

and self-adaptation engine is discussed. In Section V the ex-

perimental setup is outlined, followed by experimentation and

evaluation in Section VI. The related work is then presented

in Section II and Section VII summarises the research and

provides plans for future work.

II. RELATED WORK

Due to increasing systems complexity in recent years, there

has been a trend towards self-adaptive systems (SASs) to ad-

dress issues such as maintenance, configuration and Quality of

Service (QoS) compliance in such complicated environments.

Self-adaptation requires the answering of fundamental ques-

tions of “When, Why, Where, do we have to adapt?”, “What

kind of change is needed?”, “Who performs the adaptation?”

and “How is the adaptation performed?” [2].

Krupitzer et al. [3] presents a taxonomy of self-adaptive

systems and their inspiration, while R. deLemos et al. [4]

identifies research challenges when developing, deploying and

managing self-adaptive software systems. These challenges

result from the dynamic nature of self-adaptation, which brings

uncertainty. Adaptation commonly follows a Monitor Analyses

Plan and Execute (MAPE) [5], [6] approach. An extended

architecture of the MAPE-K loop as a reference model for

the design of self-adaptive systems is found in [7], assuming

that the system has a central controller with a central MAPE-

K loop. The proposal consists in continuously evaluating

adaptation steps concerning their actual effect and adaptation

mechanisms concerning their applicability and efficiency in

the case of topology changes.



Research effort has focused on the exploitation of hardware

accelerators in cloud computing environments by addressing

the challenge of programming such systems and making

them easily accessible in a virtualized environment. One

common approach is propose methods to offload computa-

tions on heterogeneous hardware components. A solution for

the efficient exploitation of specialised computing resources

of a heterogeneous system is found in [8]. Other works

have proposed heterogeneous architectures that combine high-

performance and low-power servers in order to achieve better

overall energy proportionality and energy efficiency [9]. The

mapping problem between compute resources and application

configurations is explored in [10], considering throughput in

the context of cloud. This is similar in idea to the work

presented in this paper, though the exact context and approach

differs regarding the heterogeneity that is being utilised. The

ASCETiC project [11] holds similarities in that it worked upon

energy efficiency and software adaptation but in the context

of clouds. A model for developing applications, exploiting

hardware heterogeneity in cloud data centres while considering

the aspect of energy efficiency is presented in [12]. In this

model applications are expressed as interconnected microser-

vices which are automatically scheduled for execution on the

most suitable heterogeneous computing elements. This leaves

the open problem of handling of applications that do not follow

a microservices pattern such as in HPC environments.

The Legato project [13] identifies power as a key concern

and while software-stack support for heterogeneity is relatively

well developed for performance, is seen to remain an open

question for power and energy-efficiency, which is an aspect

that this paper contributes towards. StarPU [14] is one such

early work that uses abstractions to allow workloads to be

placed upon various different accelerator based platforms,

selecting between various different accelerators, to improve

computational performance and not energy. EcoScale [15],

[16] uses hardware performance monitors and models to

project runtime and power consumption in heterogeneous

environments, with the aim of dynamically selecting and

distribute software functions to either hardware acceleration

or to software based execution. This paper in comparison to

existing literature brings together key aspects of performance,

QoS and energy management, with application migration on

heterogeneous architectures. The Antarex project [17], [18],

focuses on energy efficient systems and in particular on

producing a tool chain that tunes code to run efficiently on

heterogeneous infrastructures. The Manago project [19] is

equally similar to work presented in this paper but with a

particular focus on time-predictability with trade-offs with

power and energy efficiency. Dutot et al. [20] advance upon

power-capping and consider energy budgets with a principle

focus on scheduling.

From a technology viewpoint hardware accelerators, such

as GPGPUs and FPGAs still need the use of power reduction

techniques such as Dynamic Voltage and Frequency Scal-

ing (DVFS) and partial reconfiguration for FPGAs to keep

power consumption under control [21]. Many approaches to

adaptation and energy/power optimisation concentrate at the

hardware level, such as utilising task scheduling coupled with

GPU-specific DVFS and dynamic resource sleep (DRS) mech-

anisms, as a means to minimise the total energy consumption

[22]. Our work in this paper compliments such hardware based

strategies given the similarity of goals, yet utilises software

based approaches to minimise power and conserve energy.

III. ARCHITECTURE

The architecture’s (Figure 1) aim is to control and abstract

underlying heterogeneous hardware architectures, configura-

tions and software systems.

Fig. 1. Architecture

The overall flow in the architecture starts with Application

Life cycle Deployment Engine (ALDE). It manages the overall

lifecycle of an application. It introduces for each application

the entities: Executable (a specific implementation), Execution

Configuration (resource requirements and setup). The ALDE

submits jobs to the Device Supervisor which provides schedul-

ing capabilities during application deployment and operation,

where it maps tasks to appropriate Heterogeneous Parallel

Device (HPDs). The Monitor Infrastructure provides metrics

along with historical statistics for the devices and applications

( e.g. power, energy consumed and performance). The Self-

Adaptation Manager (SAM) during the operation phase man-

ages the runtime based adaptation strategy applied to appli-

cations and HPDs (see Section IV-A). This includes aspects

such as initiating redeployment to another HPD, restructuring

a workflow task graph or dynamic recompilation. Furthermore,

the component provides functionality to guide the deployment

of an application to a specific HPD through predictive energy

modelling capabilities and polices.

IV. ADAPTATION FRAMEWORK

A. Self-Adaptation Management

The SAM’s principle role is to manage adaptation at run-

time, managing trade-offs between energy, power and perfor-

mance within the framework. It is event driven, deciding for

each event what adaptation to take and where it should be

applied. It works through a series of listeners that monitor

the physical infrastructure, the jobs that are launched and the

system clock for cron based events. This therefore requires

interaction with the Monitoring infrastructure (for system and

application based metrics) as well as the Device Supervisor

and ALDE (for application based information). The listeners



act as triggers generating events which through a sequence

of rules then map to actuators that perform the required

adaptation.

Events - The first step in adaptation is a notification event

which derives from the listeners. Events principally contain

the following information:

• Time: the timestamp of the event.

• Value: a raw value representing how large the QoS breach

is, i.e. the measured value of the violation.

• Event Type: This is either a “violation” if the violation is

detected, a “warning”, or an informative indicator such

as a event driven by the system clock has occurred.

• Agreement Term: the metric to be monitored.

• Guarantee Id: an identifier for each QoS constraint.

• Operator: such as greater than, less than, equal.

• Guaranteed Value: the value of the threshold.

Events (Host, Application and Clock) dependent upon their

source must contain additional information. Host events addi-

tionally must contain the hostname, thus indicating the events’

origin. Application based events must additionally record

the application’s name, a reference to the exact application

instance and a reference to any application configuration

information and specific firing rules as defined by the ALDE.

Clock events, must hold a map for additional settings. This

allows clock events to mimic host or application based events,

facilitating features such as un-pausing an application after

a set period of time. Events such as the following have the

potential to trigger adaptation:

• Boundary conditions on measurements: provide a reactive

response to a QoS breaches, by setting constraints on

application and host metrics.

• Idle host detection: enables responses such as increasing

application’s resource utilisation or switching off under-

utilised resources. Enhanced with accelerator detection,

it can discover opportunities for redeploying and recon-

figuring applications.

• Host’s failing/failed or in drain state: allows for self-

healing, where applications can be reconfigured and

redeployed on the remaining infrastructure. Draining

hosts of existing jobs can be sped up.

• Applications approaching deadline: This allows applica-

tions to be check-pointed close to completion in order

to preserve work before eviction.

• Application starting/completion: Useful to constrain execu-

tion to set times of the day, ensuring power hungry

applications with low QoS requirements can be launched

as required but run later.

• Cron based events: create triggers based upon schedules,

increasing flexibility, e.g. events such as un-pausing jobs

at a set time later on.

On event notification the SAM works in two phases. The

first considers the mapping between the type of notification

and the actuators to use essentially the type of adaptation to

make such as: redeploying an application to use accelerators or

pausing an application. The second phase indicates the exact

nature of this adaptation to take such as which application

should be adapted and by how much?

Adaptation Rules - The first phase utilises adaptation rules

that can be specified as a tuple of: 〈Agreement Term,

Comparator, Response Type, {Event Type}, {Lower Bound},

{Upper Bound}, {Parameters} 〉 which is utilised to determine

the form of adaptation to take. Two examples of this are:

〈IDLE HOST+ACCELERATED,EQ,

RESELECT ACCELERATORS 〉 and

〈 IDLE HOST+ACCELERATED, EQ,

RESELECT ACCELERATORS, WARNING, 0, 0,

KILL PREVIOUS=TRUE ;application=gromacs 〉.
The latter optional values allow for stronger granularity en-

suring the adaptation behaviour considers the scale of the

notification event, providing the flexibility to do things such

as:

• Responding to warnings, in a different fashion to breaches

or informative notifications.

• Observe the difference between the guaranteed value and

the measured value and providing a stronger response if

the deviation is further away (i.e. the lower bound and

upper bound values).

• Parametrising the rules, so applications can further indi-

cate how adaptation should occur e.g. clock based events

such as “it is out of working hours” can specify through

parameters application information, thus allowing lower

priority jobs to run.

Application and resource based events, derived from mea-

surements utilise a threshold value, which determines how

many events are required before a rule fires. This ensures that

the temporary reporting of minor breaches can be ignored (e.g.

if power consumption goes too high due to a short burst of

CPU utilisation).

Once a rule has fired a recent history log prevents the same

rule firing in rapid succession, thus avoiding over adaptation.

After a short configurable amount of time (e.g. last minute),

the rule can then be re-fired. The rules can optionally be

set into a hierarchy so that if one rule cannot be applied

additional rules that match the criteria may be used instead.

This generates the prospect of either having fall back options

for adaptation or an intensification of the adaptation response.

Decision Engines - The second phase involves the usage

of a decision engine that decides upon the location and

scale of adaptation. This considers various parameters, such

as the application configuration, QoS goals and the current

environment to achieve this. Decision engines handle cases

where information is lacking on how to adapt including

cases such as host based events and their transformation into

actions applied to applications. The transformation process

for host based events can be achieved: randomly, based upon

the applications power consumption, or based upon the last

application instantiated on the originating host. Clock events

can be transformed into either host or application based events

dependent upon the additional parameters attached to the

event. They are transformed in order of precedence by:



1) Event data with application details attached, which can

happen for example when a pause action has specified

when to resume.

2) Event data with host details attached. Similar to above

but originates from a host based events instead.

3) The decision rule contains the host or application data.

Actuators - The actuators that are available to be utilised are:

• Increase/Reduce Wall Time: Increases or reduces the wall

time by a fixed increment as specified in the rule-set.

• Minimize Wall Time of Similar Apps: Sets wall times closer

to the average job completion time, aiming to aid back-

filling by the device supervisor.

• Pause/Unpause App: This pauses an application, optionally

can trigger unpause actions after a set period of time.

• Pause/Unpause Similar Apps: pauses/resumes many similar

applications at once, for example if they are low priority

and a power cap needs to be achieved.

• Oversubscribe App: allows pending jobs to be scheduled

alongside each other on the same physical host.

• Exclusive App: ensures pending jobs are exclusively sched-

uled to physical hosts.

• Reselect Accelerators: This examines the configurations

available to run an application and redeploys the ap-

plication where necessary to improve on the current

deployment’s configuration (e.g. less energy, lower power,

faster completion time).

• Kill App: This terminates a given application

• Kill Similar Apps: This kills a series of instances of the

same application

• Startup/Shutdown Host: Actions to start and stop physical

hosts

• Increase/Reduce Power Cap: This adjusts the power cap of

the cluster by an incremental amount.

• Set Power Cap: sets the power cap to a defined value.

One actuator stands out as being more complex than the

rest, “Reselect Accelerators” (see Figure 2). Its primary aim

is to choose an application configuration that is better than

the existing configuration. This may for example be switching

from a single threaded CPU bound executable to a GPU

accelerated version of the same application. This could be done

to improve the accelerator utilisation. The algorithm firstly

filters out configurations that are already running and thus

have a head start upon any new instance starting. The second

phase in the algorithm selects the new instance to launch. This

works by ranking each configuration by either, power, energy

or completion time. The best configuration is then selected

so long as its power/energy or completion time is better than

the existing running configuration. This ranking is performed

based upon pilot jobs that are executed beforehand. The pilot

jobs have a fixed workload (or a sequence of workloads that

is repeated uniformly against each configuration), ensuring

that each application configuration is compared fairly. This

comparison gives a relative ranking between the configurations

based upon the current hardware setup. It is considered that

each application configuration has a relative affinity to each

of the available resources on the testbed, therefore if the pilot

jobs are repeated several times the likely improvement between

configurations is going to be realised. This process enables

the ratio of improvement between the configurations to be

determined. This includes aspects such as the likely energy

consumption and average power consumption for running a

pilot job or job (by relative ratio between configurations),

which reflects complex aspects such as which resources a

particular job was submitted to.

B. Energy Modelling

Adaptation inside the framework requires guidance, one

such aspect regards application power and overall energy

consumption. The self-adaptation manager needs to know

the likely consequences of its actions in regards to aspects

such as the power and energy consumed by an application

or physical host. Application power consumption cannot di-

rectly be measured and is synthetic in nature, based upon

attributing power consumption to an application dependent

upon workload. Adaptation of applications based upon power

consumption therefore requires a model to attribute this power.

The energy modeller (EM) [23] considers the major power

consumers such as CPUs and other accelerators. In order to

do this it has various models that may be used to attribute

power consumption to an application. Two models have been

specifically designed for physical hosts with accelerators,

namely the CpuAndAcceleratorEnergyPredictor

that utilises neural networks to apply a fit

to the available calibration data and the

CpuAndBiModalAcceleratorEnergyPredictor

that determines power usage of an accelerator assuming an

unutilised and heavily utilised state. The latter adaptor being

useful in cases where the quality of calibration data is poor

which causes calibration to fail, yet it still offers an estimate

that can give a guide to any adaptation.

The CpuAndAcceleratorEnergyPredictor works

as an additive model in which the CPU and the accelerator’s

utilisation is considered separately. The CPU is considered as

polynomial fit of order 2, this has been chosen because if the

model turns out to be linear then it will still provide a good

fit, yet offers flexibility in cases where pure linearity does not

hold [23].

The accelerator based calibration is written in such a way as

to be as flexible as possible. It utilises a multilayer perceptron

network with a single hidden layer. The amount of inputs is

based upon the size of the calibration data gathered providing

a single output. The size of the hidden layer is scaled to be√
inputsize+ outputsize, this ensures its size is sufficient

but not so large as to cause it to be overly trained. The

emphasis is therefore placed upon gathering training data of

sufficient quality for the network to train correctly, ensuring

that the parameters chosen have sufficiently strong influence

on the power consumption.

The second predictor CpuAndBiModalAccelerator

EnergyPredictor also works in an additive fashion, with



p u b l i c vo id r e s e l e c t A c c e l e r a t o r s ( S t r i n g appName , S t r i n g dep loyment Id , boolean k i l l P r e v i o u s A p p ,
R a n k C r i t e r i a rankBy ) {

AppConfig c u r r e n t C o n f i g = g e t C u r r e n t C o n f i g u r a t i o n I n U s e ( appName , d e p l o y m e n t I d ) ;
A p p l i c a t i o n D e f i n t i o n appDef = g e t A p p l i c a t i o n D e f i n t i o n ( c u r r e n t C o n f i g ) ;
\\a check on i f r e s o u r c e s a r e a v a i l a b l e and t h e e x e c u t a b l e s r e q u i r e d a r e compi l ed
AppConfig v a l i d C o n f i g s [ ] = g e t V a l i d C o n f i g u r a t i o n s ( appDef ) ;
v a l i d C o n f i g s [ ] = r e m o v e A l r e a d y R u n n i n g C o n f i g u r a t i o n s ( v a l i d C o n f i g s [ ] ) ;
s e l e c t e d C o n f i g u r a t i o n = s e l e c t C o n f i g ( v a l i d C o n f i g s [ ] , appDef , c u r r e n t C o n f i g , rankBy ) ;
s ta r tAndStopNewAndOldJobs ( s e l e c t e d C o n f i g u r a t i o n , appDef , c u r r e n t C o n f i g u r a t i o n ) ;

}

p r i v a t e C u r r e n t C o n f i g s e l e c t C o n f i g ( AppConfig v a l i d C o n f i g s [ ] , A p p l i c a t i o n D e f i n t i o n appDef ,
AppConfig c u r r e n t C o n f i g , R a n k C r i t e r i a rankBy ) {

s o r t ( v a l i d C o n f i g s [ ] , rankBy ) ;
I f ( f i r s t ( v a l i d C o n f i g s [ ] ) . i s R u n n i n g ( ) ) {

\\ e n s u r e s a r u n n i n g c o n f i g u r a t i o n i s n o t r e s t a r t e d , a s i t s a l r e a d y made p r o g r e s s
re turn n u l l ;

}
I f ( c o m p a r e R a n k T o C u r r e n t I n s t a n c e ( f i r s t ( v a l i d C o n f i g s [ ] ) , c u r r e n t C o n f i g ) {

re turn f i r s t ( v a l i d C o n f i g s [ ] ) ; \\ e n s u r e s new c o n f i g u r a t i o n d o m i n a t e s p r e v i o u s c o n f i g
}
re turn n u l l ; \\no b e t t e r s o l u t i o n so e x i t

}

Fig. 2. Reselection of Accelerators Algorithm

two sub models, one for the CPU and another for the accel-

erators in use. The CPU sub-model uses the same polynomial

model as the CpuAndAcceleratorEnergyPredictor

model. This accelerator model performs clustering assuming

two distinct states, one at the higher end of usage while the

accelerator is active and another assuming the accelerator is

idle. This model acts as an approximation for situations when

the accelerator is only partially observable, has limited training

data, or when the training data for accelerator utilisation does

not correlate well to power consumption. An example of

limited observability and correlation is with Nvidia GPUs,

whereby the clock frequency of a stream multiprocessor (SM)

may be used as a substitute for utilisation. This due to Nvidia-

smi’s utilisation value reporting the percentage of time in a

given interval where at least one SM is active [24], which has

limited direct correlation to power consumption. Alternative

routes such as application profiling which provide performance

counters for each application remain impractical, given over-

heads and requirements to attach to every application running.

V. EXPERIMENTAL DESIGN

To evaluate the feasibility of the adaptation features as

outlined in Section IV, the experimentation is presented in the

context of the energy efficient HPC environment presented in

Section III as implemented by the TANGO project [1].

The objective of the experimentation is to ascertain if

the self-adaptation when monitoring applications in operation

achieves dynamic energy management from the middleware of

a HPC software stack. First an outline of the experimentation

is given followed by the testbed and application setup.

The experimentation centres around the prospect of hard-

ware becoming available, this might be the completion of

another job for example. This presents the opportunity to

trigger adaptation and redeploy an application in order to

obtain an improvement and may include changing accelerators

in use. A similar scenario is the loss of resources, such as a

node failure, whereby the reselection process for jobs may be

required.

The experimentation was performed on a nova S5 cluster,

using a subset of a bullx blade system. The testbed was

composed of the following heterogeneous hardware resources.

4 bullx 515 nodes equipped with: 2 Intel Xeon E5-2470

(Sandy Bridge) at 2.3GHz, 12 X 16GB DDR3-1600 ECC

SDRAM and 2 X 256GB SATA3 flash SSDs. Additionally

two nodes ns50-51 with 2 Nvidia Kepler K20X GPUs each

and nodes ns52-53 with 2 Intel Xeon Phi 5100 series (rev

11) KNC each. In addition to these nodes there are: 3 bullx

B520 double compute blades (ns55-57), each equipped with:

2 Intel Xeon E5-2690 v3 (Haswell) at 2.6GHz with 16 X

16GB DDR4-RDIMM 2133DDR and 2 X 256GB SATA3 flash

SSDs.

The experimentation utilises the GROMACS

(http://www.gromacs.org/) application, an open source

and widely utilised molecular dynamics simulation package.

It is used to generate load within the testbed and provides

a realistic application that can be compiled into various

alternative implementations such as Message Passing

Interface (MPI) and CUDA.

VI. EVALUATION

The following section discusses the performance of the self-

adaptation presenting an analysis of the experimental results.

This experiment illustrates the use of multiple application

implementations of HPC applications in order to deploy,

monitor and adapt an application so that the most efficient im-

plementation is executed, given the resources that are available

at the time of execution. The workflow, as shown in Figure 1,

is as follows:

1) The Gromacs application is defined in the ALDE and the

configurations available



2) Job Deployment, A CUDA instance is started

3) Launch Job, The device supervisor launches the job onto

the infrastructure

4) The SAM receives an event indicating a host has become

free with an accelerator

5) The SAM compares Gromacs implementations and re-

launches the most efficient version of the application

6) The Gromacs application completes

In the following experimentation two different versions of

the Gromacs mini-app are prepared one using MPI (using

16 threads) and the other CUDA. For each configuration,

previous pilot runs are performed where execution time and

energy consumption are measured for a given fixed workload.

This presents a relative ranking of each configuration of

the application upon the available hardware. This ranking of

each application configuration will have an affinity towards a

particular set of resources. A CUDA job for example must

be launched on a subset of resources that have GPUs. The

following table show these initial measurements, where we

can see that depending on the configuration, the Gromacs

simulations can achieve different performance and energy

consumption. The most efficient configuration in terms of time

and energy for this execution is using the MPI implementation

of Gromacs. The variance in execution time and energy

consumption is low, in this case, making it particularly suitable

for determining speed up between configurations.

TABLE I
RUN OF PILOT JOBS TO DETERMINE POWER, ENERGY AND COMPLETION

TIME RANKINGS

Name Run
Count

Total
Energy
(all
runs)(J)

Average
Energy
(J)

Total
Time

Average
Time
Per Run
(s)

Average
power
(W)

cuda 3 22,835 7,611.67 87 29 262.47

mpi 16 3 19,217 6,405.67 67 22.33 286.82

What can be seen is that the MPI application has the lowest

energy consumption overall at 6,405.67J per run. This is prin-

cipally due to the lower runtime of the MPI application, 67s

as compared to 87s. The average power consumption of the

CUDA application is however less. This set of configurations

therefore offers either:

a) A lower power consumption that runs for longer and

consumes more energy.

b) A higher power consumption that runs for a shorter period

of time and therefore uses less energy.

These results give an indication of how quickly a replace-

ment replica should start in order to consume less energy

overall, assuming the overall application workload is similar

to that of the pilot jobs. To find the relative rank between

configuration options requires each application configuration

to remain proportional in its energy usage to the other potential

configurations. In the case of the pilot job executions shown

in Table I, an MPI implementation could be started in the first

4s of the CUDA instance’s execution and still use less energy.

This is derived from:

avg(cuda run energy) - avg(mpi run energy) =

∆energy between run types

7611.67 - 6405.67 = 1206J

∆energy between run types / avg(mpi run power) =

migration exploitation window size

1206 / 286.82 = 4.02s

Given the executions above are short lived the benefits of

restarting jobs with different accelerators is limited, however

if the workload is increased then the migration exploitation

window size will also increase. Practically as this mechanism

only provides the relative ranking between application con-

figurations, without a priori knowledge of the runtime (to

work out scale differences from the pilot jobs), then it is

possible to use recent job submissions as guidance on current

expected execution durations. The MPI and CUDA jobs both

linearly scale (so far as tested), leaving the ratios between their

durations and energy consumption comparable. However, due

to gradient differences causing divergence (Figure 3, CUDA

increasingly uses more energy in comparison to the MPI

implementation, therefore to save both energy and time, larger

jobs should favour the MPI implementation. The migration

exploitation window size, scales linearly with the job size.

Fig. 3. CUDA vs MPI Job Workload Scaling

In addition applications using this calculation may be ranked

to consider which ones have the most difference between

the available configurations options. This therefore finds the

application which is most likely to benefit from adaptation.

To illustrate this a rule is added that causes the detec-

tion of idle resources with accelerators. The SAM therefore

considers if any Gromacs instance may be accelerated. The

rule used is: 〈IDLE HOST ACCELERATED, EQ, RESE-

LECT ACCELERATORS, WARNING, 0, 0, KILL PREVI-

OUS=TRUE;application=gromacs 〉 which follows the format:

〈 Agreement Term, Direction, Response Type, Event Type,

Upper Bound, Lower bound, Parameters 〉.
The reselect accelerators actuator compared the deployment

options available and found it was possible to execute an in-

stance that consumes a lower amount of energy. The sequence

of events generated is therefore that an IDLE HOST ACCEL-

ERATED event triggers the adaptation, which terminates the

CUDA instance and launches a new MPI instance. The result

of this is shown in Figure 4. The CUDA job runs on node ns51



and is then replaced by an MPI job on node ns55. Followed by

the MPI job then completing at 27s, 2 seconds earlier than the

CUDA job could have been expected to complete. Although

this is a small benefit 6%, with longer running jobs the benefit

is likely to be more substantial.

Fig. 4. MPI Job Launching and Cancelling CUDA Job

This job redeployment mechanism allows for multiple pos-

sibilities, when considering events that the SAM will act upon.

For example job or node failure could cause the job redeploy-

ment to the most appropriate available resources, thus acting

as a recovery mechanism. If ranking by power consumption it

would aid power capping mechanisms by ensuring the mix of

jobs running is most likely to have a sufficiently low power

consumption. This mechanism also ensures accelerators where

appropriate are more likely to be utilized.

In Figure 3 it seems counter intuitive that the CUDA

implementation given the vast parallelism of the GPU does

not perform better than the MPI implementation. This results

in the transfer of the job from ns51 to ns55 in Figure 4. The

difference is caused by the overall efficiency of the host. The

explanation can be seen in Figure 5, which shows the energy

consumption of a series of Gromacs jobs, both on ns51 (default

choice for GPUs) and ns55 (default choice for MPI jobs),

along with MPI implementation on ns51. We omit here the

graph for job completion time for purposes of clarity though

it is similar to Figure 3 and 5.

Fig. 5. MPI vs CUDA on Multiple Host Types

The CUDA implementation is more efficient than the MPI

implementation of ns51, however the MPI implementation

may also run on ns55 which is generally more efficient than

ns51 due to CPU generational differences, such that the MPI

implementation is the best choice should the more efficient

nodes be available.

The strategy employed here to determine the relative rank-

ing of jobs has many considerations that must be made, which

are going to be split into categories and discussed in turn.

In terms of comparing various different configurations of an

application then there are two key aspects: temporal and power.

Job duration is important, simply the longer it runs the

greater the energy consumption. However ranking of jobs may

be subject to changes in throughput over time for a given

configuration, dependent upon the size of the workload (Figure

3 and 5). This can be checked with a series of jobs of different

sizes and examining if the application scales under workload

changes. If an application scales in a predictable fashion,

recently completed jobs can be used as a guide to estimate both

completion time and the migration exploitation window size.

Thus offering an estimate of the likely speed up/energy saving

between configurations. One strategy of tackling throughput

changes would be to make pilot jobs of a similar size to

“typical” jobs thus mitigating scaling differences.

The second aspect is the power consumption of a job and if

its power consumption is consistent (with obvious exception

of the start and end of jobs). In the case of Gromacs (MPI) on

ns55 the power consumption is consistent in the range of 303-

320W with an average of 310W excluding earlier lower power

consumption at the start of the applications execution. If it

varies through time, the following questions can be considered.

Does it act in phases with any particular recognisable fashion?

and more importantly does the average power consumption

stay the same with job length?

Applications may be made up of several stages. These

from the perspective of ranking configurations only need be

considered in cases where the average power consumption

varies or the duration varies because of some underlying

change in actions. Examples of this might include transferring

data vs compute work, or different types of compute work on

different accelerators/instruction sets. The steps may change

size, altering average power consumption (e.g. in cases where a

larger input file is needed). Data transfers may alternatively act

as bounding behaviour on the power consumption, for example

streaming where only a certain amount of power consumption

can be achieved during transfer.

An additional aspect is the heterogeneity of the hardware.

An application’s configuration is unlikely to specify specific

hardware, but it may provide an affinity to a given subset of

hardware or explicitly exclude some resources. An example of

this is a CUDA job that needs a GPU. It may be for a given job

configuration that the resources available to use are not very

heterogeneous in terms of power and compute capacity (i.e.

temporal/duration of job given the same workload). It is likely

that this affinity of a given configuration towards different

subsets of the infrastructure can be discovered by several runs

of a given pilot job. Thus giving an average case for the likely

speed up between configurations can be discovered.



This strategy has its limitations and is dependent upon other

workloads running at the same time, as well as the scheduler

in use and size of the job to be rescheduled. The variance in

time and energy consumption can be considered a measure of

the reliability of the reselection method. The variance would

be reduced if the pilot run dataset could be filtered to records

only considering the types of resources available.

VII. CONCLUSION

This paper has shown a self-adaptive framework for hetero-

geneous hardware, including more specific aspects such as the

automatic redeployment of applications and power capping.

The criteria for selecting an application for migration has been

discussed, with particular focus on a window of opportunity

for migration. Opportunities for reducing power and energy

consumption are shown to be further complicated by trade-

offs between GPU acceleration and host CPU architectural

versions, thus ensuring use of accelerators is not always best.

In a wider context of self-adaptation mechanisms have been

demonstrated that can aid power capping behaviour and raise

the intelligence of such an approach from the hardware to

the middleware/application level. In future work this will be

extended to include check-pointing as part of migration along

with extending adaptation into domains such as Internet of

Things.
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