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Abstract

Consider a helix in three-dimensional space along which a sequence of equally
spaced points is observed, subject to statistical noise. For data coming from
a single helix, a two-stage algorithm based on a profile likelihood is devel-
oped to compute the maximum likelihood estimate of the helix parameters.
Statistical properties of the estimator are studied and comparisons are made
to other estimators found in the literature. Next a likelihood ratio test is
developed to test if there is a change point in the helix, splitting the data
into two sub-helices. The shapes of protein α-helices are used to illustrate
the methodology.
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1 Introduction

Proteins form a major part of all living organisms, with their shape
being specific to their function. The most common shape is the α-helix,
which is a right-handed helix (see for examples, Campbell and Farrell (2014),
Wilman (2014a), and Section 2 below). Many helices have a kink, i.e. a point
where the helix axis locally changes direction (Wilman et al., 2014b; Mardia,
2014). Various statistical methods in the literature have been developed to
analyze kinks as local change points, such as Helanal by Bansal et al. (2000),
Kinkfinder by Wilman (2014a), and Kink-Detector by Mardia et al. (2018).
Kinkfinder uses all the atoms on the helix, whereas the Helanal and Kink-
Detector use just the Cα atoms. These methods estimate the kink position
by looking for a local change point in the direction of the helix axis. For
further review of the topic, see Mardia (2013) and Mardia et al. (2018).

Blundell et al. (1983) and Barlow and Thornton (1988) initiated the
work on helix structure based on curvature; they used main classifications:
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straight, kinked and curved. There are several ways to define these classifi-
cations but it is better to recall how Wilman et al. (2014b) formulated these
for their experiments.

• Kinked: There is a clear location where the direction of the helix
changes. Only a small part of the helix is involved in this.

• Curved: There is a slow but steady change of the direction of the helix.
This can happen over a large part or even all of the helix.

• Straight: There is no change in the overall direction of the helix.

Mardia et al. (1999) was another early paper on the estimation of curvature
and torsion for a helix.

The study of helix structure falls within the scope of statistical shape
analysis. Shape analysis deals with geometric objects in Euclidean space
and is concerned with the properties that remain invariant under a group of
transformations. There is now a rich collection of statistical tools for shape
data (e.g. Dryden and Mardia, 2016). The simplest type of object consists
of a collection of points or landmarks, and the most important groups are the
similarity transformations (location, scale and rotation) and the rigid body
transformations (location and rotation). For this paper an object consists of
a set of points in R

3 that lie on or near a helix and the relevant group is the
rigid body transformations.

A helix in three dimensions is defined by the function

f (t) =

⎡
⎣

r cos t
r sin t
ct

⎤
⎦ (1.1)

where r and 2πc denote the radius and pitch. In this representation the
helix is traversed at constant speed as a function of an independent variable
t, which can be regarded either as arc length after projecting the helix onto
the plane of the first two coordinates, or as a sort of time, even though
the helix exists as a static object. In addition, the position of the helix in
R
3 can be altered by a rigid body motion. In a statistical helix, regular

measurements are available along the helix subject to statistical error.
There are two main purposes for the present paper. First we revisit the

estimation problem for a statistical helix and show that maximum likelihood
estimation can be reduced to an optimized least squares problem under cer-
tain assumptions. Secondly, we present a new global approach to the change
point problem and investigate the use of feature statistics to highlight the
character of a change point.
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In more detail, the paper is organized as follows. Section 2 introduces the
statistical helix model (similar in spirit to Mardia et al. (2018), but more
geometrically explicit). Section 3 gives the details behind the optimized
least squares algorithm. This algorithm needs an initial estimate of the
helix axis to start the iterations, and there are a large number of methods
in the literature such as Rotfit described by Christopher et al. (1996) and
HELFIT by Enkhbayar et al. (2008). Two methods to estimate the initial
axis are compared in Section 4: Rotfit and a new method based on modified
principal components. Section 6 presents a new likelihood ratio test for
the presence of a global change point, both where the time index of the
potential change point is known and where it needs to be estimated. We
give this procedure the name ChangePoint-Detector. A bootstrap procedure
is proposed to assess statistical significance. This procedure is investigated
on simulated data in Section 7. In Section 8 it is applied to several protein
examples and compared to Kink-Detector (Mardia et al., 2018).

2 The Statistical Helix Model

If an arbitrary rotation and location are incorporated in Eq. 1.1, then
the mathematical helix at a regularly spaced set of “times” takes the form

f (ti) = r cos(ti)u + r sin(ti)v + ctiw + b, i = n1, n1 + 1, . . . , n2 − 1, n2.
(2.1)

Thus the number of points on the helix is n = n2 − n1 + 1. General indices
n1 < n2 are allowed for the start and finish points in order to facilitate the
parameterization when a change point is present; see Section 6. Here

• Γ =
[
u v w

]
is a 3 × 3 orthogonal matrix whose three columns

define the orientation of the helix. In particular the vector w defines
the helix axis, and the vectors u and v define the plane normal to the
helix axis.

• r > 0 defines the helix radius,

• 2πc > 0 defines the helix pitch, which is the vertical height of one turn
of the helix,

• b ∈ R
3 is an intercept,

• ti = iβ is a sequence of regularly-spaced times at which the helix is
observed, where β > 0 defines the turn angle of the helix in radians
(i.e. the angle between two consecutive points on the helix).
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Helices can be regarded as right-handed or left-handed depending on
whether det(Γ) = +1 or −1 respectively (e.g. Campbell and Farrell, 2014).
For the purpose of this paper we largely restrict a helix to be right-handed.

A regular (statistical) helix is a collection of points or landmarks

{y i = [yi1, yi2, yi3]
T , i = n1, n1 + 1, . . . , n2 − 1, n2}

in three dimensions obtained from a mathematical helix by adding noise,

y i = f (ti) + εi, i = n1, n1 + 1, . . . , n2 − 1, n2, (2.2)

where the error terms

εi ∼ N3(0, σ
2I)

are assumed here to follow independent isotropic normal distributions. The
adjective “regular” is used to distinguish model (2.2) from the change point
helix model to be introduced in Section 4.

It is also convenient to let

g(t) = ctw + b, (2.3)

so that g(t) − b denotes the projection of the centered true helix function
f (t)− b onto the helix axis w . In particular, let

g i = ctiw + b, (2.4)

denote the axis values at the data times ti.
For the purposes of this paper, we shall treat the turn angle β as known.

It is well-known in the protein structure literature that the turn angle β
along the helix can be treated as having a constant value very close to
β = 100◦; e.g. Dickerson and Geis (1969) give a value of 1.75 radians =
100.3◦. Recent confirmation can be obtained from the detailed analysis of
the maximum likelihood estimation of β carried out for 129 straight helices
from crowdsourcing data in the web supplement (Web Figure 5(d)) to Mardia
et al. (2018); for this data it was found that the mean estimate of β is 99.1◦

with a standard error of 1.2◦.
All of the other parameters will be regarded as unknown and needing

estimation. However, for the purposes of developing an estimation algorithm,
we shall first treat the case where the axis w is known.

The parameters of a helix can be divided into two types. The registration
parameters are the orthonormal vectors u , v and w , and the intercept vector
b = (b1, b2, b3)

T . The shape parameters are the radius r and the pitch c.
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Consider a right-handed helix in Eq. 2.2 with orientation matrix Γ, so
ΓTΓ = I and det(Γ) = +1. The following definitions impose further restric-
tions on Γ. The helix is said to be in

H.1 canonical coordinates if Γ = Γ0, where

Γ0 =
[
u0 v0 w0

]
= I3

is the identity matrix, so the three orientation vectors are given by
the three standard coordinate directions in R

3; in particular w0 =[
0 0 1

]T
lies in the vertical direction.

H.2 semi-canonical coordinates if w = w0 =
[
0 0 1

]T
, without further

restrictions on u and v . They are used in Section 3.1.

H.3 general coordinates if there are no further restrictions on Γ. They are
used in Section 3.2.

For a left-handed helix in canonical coordinates it is convenient to define

Γ0 =

⎡
⎣

1 0 0
0 −1 0
0 0 1

⎤
⎦ .

Thus, looking at the horizontal plane from above in canonical or semi-
canonical coordinates, a right-handed helix winds around the plane in a
counter-clockwise direction as t increases; a left-handed helix winds in a
clockwise direction.

3 Parameter Estimation for a Regular Helix

3.1. Known vertical helix axis Start with the assumption that a right-
handed data helix is in semi-canonical coordinates, so that w = w0 =[
0 0 1

]T
is known to be vertical. Then u and v take the form

[
u v

]
=

⎡
⎣

cos τ sin τ
− sin τ cos τ

0 0

⎤
⎦ , (3.1)

for some angle τ . In this case model (2.2) can be re-written as

y i = r cos(ti − τ)u(0) + r sin(ti − τ)v (0) + ctiw
(0) + b + εi,

= α1(cos ti u
(0) + sin ti v

(0)) + α2(sin ti u
(0) − cos ti v

(0)) + cti w
(0) + b + εi,

i = n1, n1 + 1, . . . , n2 − 1, n2 (3.2)
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where α1 = r cos τ, α2 = r sin τ .
The model in Eq. 3.2 can be viewed as a multivariate linear regression

model with a three-dimensional response on n observations. The regression
parameters are α1, α2, c, b. Since the error term is isotropic, the model can
also be represented as a multiple regression model with 3n scalar responses,
after stacking the 3 columns for the response. Further, maximum likelihood
estimation reduces to least squares regression. The 3n× 6 design matrix is

X =

⎡
⎣

c s 0 1 0 0
s −c 0 0 1 0
0 0 t 0 0 1

⎤
⎦ , (3.3)

where

c =

⎡
⎢⎣

cos tn1

...
cos tn2

⎤
⎥⎦ , s =

⎡
⎢⎣

sin tn1

...
sin tn2

⎤
⎥⎦ , t =

⎡
⎢⎣

tn1

...
tn2

⎤
⎥⎦ , 1 =

⎡
⎢⎣

1
...
1

⎤
⎥⎦ , 0 =

⎡
⎢⎣

0
...
0

⎤
⎥⎦ .

Write y i = (yi1, yi2, yi3)
T . Then the least squares estimators take the form

α̂1 =
∑

(c′iy
′
i1 + s′iy

′
i2)/{n(1−R

2
)},

α̂2 =
∑

(s′iy
′
i1 + c′iy

′
i2)/{n(1−R

2
)},

ĉ =
∑

t′iy
′
i3/{

∑
(ti − T )2},

(3.4)

in terms of the centered variables y ′
i = y i − y , c′i = cos ti −C, s′i = sin ti −

S, t′i = ti − T , where

y =
1

n

∑
y i, C =

1

n

∑
cos ti, S =

1

n

∑
sin ti, T =

1

n

∑
ti, R =

√
C

2
+ S

2
.

We can then derive τ̂ and r̂ by

τ̂ = atan2(α̂2, α̂1), r̂ =
√
α̂2
1 + α̂2

2,

where atan2 is the two-argument arctan function, so that we have (α̂1, α̂2) =
r(cos τ̂ , sin τ̂). Further, the estimated shift vector b̂ = [b̂1, b̂2, b̂3]

T is given
by

b̂1 = y1 − α̂1C − α̂2S,

b̂2 = y2 − α̂1S + α̂2C,

b̂3 = y3 − ĉ T ,
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where y1, y2 and y3 are the means of each coordinate. Finally, the residual
sum of squares (RSS) is given by:

RSS(w0) =

n2∑
i=n1

||y i − ŷ i||2,

where ŷ i is the ith fitted value of y i, a vector of dimension 3. The residual
sum of squares depends on the choice of helix axis, denoted here by w0.

In the case of a left-handed helix, just change the sign of one of the
columns in Eq. 3.1; e.g. let

[
u v

]
=

⎡
⎣

cos τ − sin τ
− sin τ − cos τ

0 0

⎤
⎦ , (3.5)

for some angle τ , with corresponding changes to the subsequent algebra. If it
is unknown whether or not the helix is right- or left-handed, fit both models
and choose the model with the smaller residual sum of squares. Unless σ2 is
extremely large, the correct choice will be obvious.

In addition, if the estimate of the pitch parameter c in Eq. 3.4 is negative,
then it is necessary to change the sign of the helix axis w (plus the sign of
either u or v to preserve the sign of det(Γ)).

3.2. Known helix axis in general position Next let the axis w of a right-
handed helix be a known unit vector, but not necessarily vertical. Let G =
G(w) be a 3 × 3 rotation matrix whose third column equals w . Let z i =
GTy i, denote the rotated data, so that the known helix axis for the {z i}
is vertical. Then the estimation procedure of the previous section can be
applied to the {z i}.

The plane spanned by the first two columns of G is determined by w ,
but not the two columns themselves. A rotation of this plane about the w
axis corresponds to changing the meaning of the angle τ in Eq. 3.2.

After fitting the helix by least squares, the quality of the fit can be
summarized by the residual sum of squares, denoted RSS(w), say. The
value of RSS(w) does not depend on the indeterminacy in the meaning of τ .

3.3. Unknown helix axis If w is unknown, an iterative method based
on profile likelihood can be used to find the maximum likelihood estimators.
The procedure works as follows:

(a) Start with an initial estimate w init, say. Two possibilities are suggested
in the next section.
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(b) Given w , the maximized likelihood with respect to the remaining pa-
rameters (known as the “profile likelihood”),

−n

2
log(2π)− n

2
log(

RSS(w)

n
)− n

2
,

is a monotone decreasing function of RSS(w). A nonlinear optimiza-
tion algorithm, e.g. the routine nlm in R (R Core Team, 2014), can be
used to numerically minimize RSS(w) over w lying on the unit sphere
in R

3. There is no mathematical guarantee that RSS(w) possesses a
unique local minimum. Hence it is important to choose a good starting
point. For all the examples in the paper, convergence has never been
as issue.

For the optimization in (b) it is helpful to rotate the initial estimate

w init to the north pole, w0 =
[
0 0 1

]T
, and to represent w using an

unconstrained coordinate system in R
2, e.g. stereographic projection (p1, p2)

where
(p1, p2)

T = (w1, w2)
T /(1− w3),

with inverse
⎡
⎣

w1

w2

w3

⎤
⎦ =

⎡
⎣

2p1
2p2

−1 + p21 + p22

⎤
⎦ /(1 + p21 + p22).

As (p1, p2) ranges through R
2, w covers the unit sphere minus the south

pole,
[
0 0 −1

]T
. In practice the minimizing value of w will usually be

very close to the initial estimate w0.
The resulting MLEs for all the parameters can be termed the “Optimized

least squares” (OptLS) estimates. An estimate of the error variance is

σ̂2 = RSS(ŵ)/(3n− 8),

where in the denominator we subtract 8 degrees of freedom from 3n since
a regular helix model contains 8 regression parameters (6 for the linear re-
gression model, plus 2 for the helix axis).

4 Initial Estimate of the Helix Axis

Several methods have been established in the literature to estimate a
helix axis; see for example, Christopher et al. (1996) and Wilman (2014a).
Here we limit discussion to two methods for getting initial estimates: Rotfit
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(described in Christopher et al., 1996) and a new method based on modified
least squares.

The principle behind Rotfit is easy to describe. Starting from an n × 3
mathematical helix Y , let Y−1 denote Y without its first row, and Y−n denote
Y without its last row. Then Y−1 can be mapped onto Y−n by a shift and
rotation. Further the fixed axis of the rotation matrix is the desired axis w .

When working with a statistical helix, the rotation matrix can be fitted
using Procrustes analysis (e.g., Mardia et al., 1979 p. 416). Let Hn−1 =
In−1 − 1

n−111
T denote the (n − 1) × (n − 1) centering matrix. Decompose

the matrix B = Y T
−1Hn−1Y−n using the singular value decomposition, B =

MLNT , where M and N are 3× 3 orthogonal matrices and L is a diagonal
matrix with positive entries. Then the Procrustes rotation matrix can be
estimated by R = MNT . Further, the fixed axis of R is the eigenvector with
eigenvalue 1, and can be found by a spectral decomposition (the other two
eigenvalues are complex).

The modified least squares method can be described as follows. Starting
from Y , construct the increments

d i = y i −
1

2
{y i+1 + y i−1}, i = n1 + 1, . . . , n2 − 1, (4.1)

and combine them into an (n− 2)× 3 matrix D.
Set E = DTD. In a mathematical helix, E will have a zero eigenvalue

with eigenvector given by w . In the statistical case, there will be one small
eigenvalue, and two larger approximately equal eigenvalues.

Recall that if w is an eigenvector, so is −w . Hence we need to specify
its sign. That is, we need to choose the sign of w so that the fitted value of
pitch parameter c in the helix model (2.1)–(2.2) will be positive. This task
is straightforward when the level of noise σ2 is not excessive. Just ensure
the sign of w is chosen so that the difference between the endpoints, after
projection onto the helix axis, is positive, wTyn −wTy1 > 0.

In practice, it does not matter which of these two initial estimates is used.
However, simulations from the model (2.2) indicate that Rotfit is generally
more accurate.

5 Assumptions About the Turn Angle β

The turn angle β is a key parameter in the statistical helix model, and
there are several ways in which it can be treated.

Model A: the helix turn angle β = 100◦ is known exactly. This is the
choice made in this paper; see Section 2.



Statistical Shape Methodology... S17

However, as emphasized by a referee, it is also of interest to consider
what happens when this assumption is violated. There are two natural
possibilities:

Model B: the turn angle β is constant within a helix, but is not known
exactly. One course of action is to include it as one of the parameters
to be estimated in the likelihood for a single helix, as in Mardia et
al. (2018). Another is to carry out a sensitivity analysis to assess
the effect on the conclusions of varying β. We carried out a small
sensitivity analysis on simulated data and found that varying β in the
range 98o−102◦ had a negligible effect on the statistical analysis. This
range has been chosen to be roughly 100o ± 2s where s = 1.2◦ is the
standard error reported in Section 2 that was found by Mardia et al.
(2018).

Model C: A more severe violation is to allow the turn angle to vary along
the helix; that is, the incremental turn angle between xj and xj+1,
denoted now by βj , varies with j, j = 1, . . . , n − 1, where n is the
number of landmarks in the helix. The simplest explicit model is to
assume that the βj are i.i.d. samples from N(β0, τ

2
β), say, with β0 =

100◦.

For illustration suppose τβ = 4◦. This choice is motivated from Web
Figure 5(d) in the web supplement to Mardia et al. (2018), where
the 129 straight helices have lengths ranging from 16 atoms to about
40 atoms with most helices having 20-25 atoms. Since the standard
deviation of the 129 values for β is about 1◦, and since each of these
values stems from a data set with n ≥ 16, one can conclude that the
standard deviation of the distribution of the βj is at least τβ = 4◦.

Next assume we have a helix consisting of n = 2m + 1 atoms, where
the central atom is perfectly aligned with the model. The outermost
atoms have cumulative turn angles

α1 = −
m∑
j=1

βj ∼ N(mβ0,mτ2β), αn =

n−1∑
j=m

βj ∼ N(mβ0,mτ2β).

For example, this means that the outermost atoms in a helix consisting
of 19 = 2×9+1 atoms will have turn angles which are distributed with
a standard deviation of

√
9×4o = 12◦ around the position assumed by

a model with a constant turn angle. Hence errors of 10 - 15% in the
cumulative turn angle can easily occur under Model C.
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Model C was explored in the web supplement to Mardia et al. (2018),
and was found to be unsupported by the data in the protein application.
The view in biochemistry is that a constant incremental turn angle is more
appropriate than Model C. In addition the external knowledge about β has
a small enough standard error to justify using Model A instead of Model B.

6 The Change Point Model

We have already used the term regular helix model to describe the sta-
tistical helix in Eq. 2.2 in which all the data are modelled by a single helix.
In this section we introduce and investigate a change point helix model in
which there is a change point along the helix. That is, for some value of k,
n1 < k < n2, we suppose that the points y i, n1 ≤ i ≤ k lie on one statistical
helix, and the remaining points y i, k + 1 ≤ i ≤ n2 lie on another helix. All
the regression parameters of the two helices are allowed to be different from
one another, but they are assumed to have a common value of the error vari-
ance σ2. Note that the change point model does not require the continuity
of the curve consisting of the two helix pieces at the change point t = k+ 1

2 .
Let m denote the smallest number of points along a helix we are willing

to countenance for estimation purposes. Then the admissible values of k are

n1 +m− 1 ≤ k ≤ n2 −m.

Since a regular helix model contains 8 regression parameters, the smallest
feasible choice of m is m = 3. However, it is reasonable to limit attention to
larger values of m in order to avoid very short helices. Following Mardia et
al. (2018), we take m = 6 in this paper.

6.1. Known change point index k Suppose the index k of a possible
change point is known, and consider testing for the presence of a change
point. The null hypothesis is H0 : the data follow a regular helix model,
and the alternative hypothesis is H1 : the data follow a change point helix
model.

Just as in the analysis of variance, the likelihood ratio test can be recast
in terms of an F statistic. Let RSS(0) denote the optimized residual sum
of squares under the null model after fitting a single helix to the whole data
set by OptLS with d(0) = 3n− 8 degrees of freedom. Similarly let RSS(�)(k)
denote the optimized residual sum of squares after fitting a helix to the data
points i = n1, . . . , k for � = 1 and i = k + 1, . . . , n2 for � = 2, respectively.
Then the likelihood ratio test statistic can be recast as the F -statistic

Fk =
SS

(B)
k /d(B)

SS
(W )
k /d(W )

∼ F (d(B), d(W )). (6.1)
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Here

SS
(B)
k = RSS(0) −RSS(1)(k)−RSS(2)(k)

is the reduction in the residual sum of squares after fitting the alternative
model with degrees of freedom d(B) = 8, the number of extra estimated

parameters under H1. Note that SS
(B)
k is analogous to the between-groups

sum of squares in ANOVA. Similarly,

SS
(W )
k = RSS(1)(k) +RSS(2)(k)

represents the overall residual sum of squares under the alternative model
with d(W ) = 3n−16 degrees of freedom, as we have estimated 8 helix param-
eters twice. Two estimates of σ2 are given by the residual variance σ̂2 under
the null hypothesis and pooled residual variance σ̂2

p under the alternative
hypothesis,

σ̂2 =
SS

(B)
k + SS

(W )
k

d(B) + d(W )
, σ̂2

p =
SS

(W )
k

d(W )
. (6.2)

If the error variance σ2 is small, we expect that the dependence on the
parameters in the helix model (2.2), and its change point counterpart, can
be linearized through a Taylor series expansion, so that the model can be ap-
proximated by a standard linear model with normal errors. Hence from the
standard ANOVA decomposition, we expect that when the change point po-
sition is known, the Fk-statistic will approximately follow the F (d(B), d(W ))
distribution, as suggested by the notation in Eq. 6.1. To test this expecta-
tion, a simulation study was carried out with n = 30, r = 2.3, c=5.4

2π and
σ2 = 0.05. Then 10, 000 helices were simulated from the null distribution
and the statistic Fk was computed to look for a change point at k = 15. A
Q-Q plot comparing the simulated F -statistics to the F (8, 74) distribution
is given in Fig. 1. Note that there is close agreement between the two dis-
tributions except in the upper tail, where the simulated test statistic has a
shorter tail than the F -distribution.

6.2. Unknown change point index k In practice the location of the
change point is generally unknown. The likelihood ratio statistic is now
given by maximizing Fk over k,

Fmax = max{Fk : n1 +m− 1 ≤ k ≤ n2 −m}, (6.3)

where m = 6. Since k is no longer fixed, the distribution of Fmax will be
larger than the F (d(B), d(W )) distribution. Hence standard statistical tables
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Figure 1: The Q-Q plot of 10,000 simulated Fk-statistics from Eq. 6.1 versus
quantiles from the F-distribution for the example in Section 6.1

cannot be used for testing purposes. Instead the parametric bootstrap is
used to assess significance.

The parametric bootstrap works as follows. Under the null hypothesis,
estimate the regression parameters and σ2. Using these values, simulate a
large number nboot of new helices with normally distributed error terms. For
each simulation evaluate the value of F ∗

max, where * indicates a simulated

bootstrap sample. Then the upper α tail of the simulated distribution, F
∗(α)
max ,

say, gives the threshold of a statistical test of size α, e.g. with α = 0.05.
If the null hypothesis is rejected, then we can try to pinpoint the ways in

which the two sub-helices differ from one another. Let k̂ denote the value of
k maximizing (6.3). The following notation is useful. Let Γ̂ =

[
û v̂ ŵ

]
denote the fitted orientation matrix under the null hypothesis, and let ĝ (�)(t)

and f̂
(�)
(t) denote the fitted axis and helix functions for each sub-helix.

Then Γ̂T ĝ (�)(t) and Γ̂T f̂
(�)
(t) denote the fitted axis and helix functions after

rotation to canonical coordinates under the null hypothesis. Let

p(�) = (p
(�)
1 , p

(�)
2 , p

(�)
3 )T = Γ̂T ĝ (�)(tk̂+1/2)
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q (�) = (q
(�)
1 , q

(�)
2 , q

(�)
3 )T = Γ̂T f̂

(�)
(tk̂+1/2), � = 1, 2

denote the fitted axis position and fitted helix position, respectively, of a
notional landmark at index k̂ + 1

2 under each of the sub-helix models, after
rotation to canonical coordinates under the null hypothesis.

The following six features can be constructed to compare fitted sub-
helices. Note that they are not orthogonal to one another.

1. (Difference in helix axes.) Let

A1 = 1− cos θ̂

where ŵ (1)T ŵ (2) = cos θ̂ and where 0 ≤ θ̂ ≤ π is the angle between
the two sub-helix axes. The statistic A1 contains the same information
as θ̂ and measures the difference in helix axis for the two sub-helices,
� = 1, 2. If the two helices point in the same direction then θ̂ = 0 and
cos θ̂ = 1 so that A1 = 0. Further, A1 increases as the directions get
further apart. The angle θ̂ is the most important feature in practice
when there is a change point.

2. (Shift parameter.) Let

A2 = (p
(1)
3 − p

(2)
3 )2

denote the squared difference in the fitted axis positions at index k̂+ 1
2 ,

as measured along the fitted helix axis ŵ under the null model in
canonical coordinates.

3. (Offset parameter.) Let

A3 = (p
(1)
1 − p

(2)
1 )2 + (p

(1)
2 − p

(2)
2 )2

denote the squared Euclidean distance between the fitted axis positions
at index k̂ + 1

2 , after projection onto the (û , v̂)-plane under the null
model, which is a horizontal plane in canonical coordinates.

4. (Spin parameter). Let
A4 = |φ̂|

where φ̂ = atan2(q
(1)
2 − p

(1)
2 , q

(1)
1 − p

(1)
1 )− atan2(q

(2)
2 − p

(2)
2 , q

(2)
1 − p

(2)
1 ),

denotes the angle, treated as a number in [−π, π), between the two
fitted helix angles, after projection onto the (û − v̂)-plane under the
null model. This feature measures spin at the change point between
the two sub-helices.
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5. (Change in radius.) Let

A5 = |r̂(1) − r̂(2)|.

6. (Change in pitch.) Let

A6 = |ĉ(1) − ĉ(2)|.

Thus we have six features: difference in helix axes, shift parameter, offset
parameter, spin parameter, change in radius, and change in pitch. In each
case critical values for these features can be simulated using the parametric
bootstrap. For all quantities (A1, A2, A3, A4, A5, A6), an upper critical value
is used. In each bootstrap sample, the values of A1, . . . , A6 are computed
using the bootstrap value of k = k∗ maximizing the bootstrap version of the
F -statistic given by Eq. 6.3.

A simple simulation study was carried out to see how the distribution of
Fmax depends on σ2 and n using parameters typical for protein α- helices.
On fixing n = 30 and varying σ2, with nboot = 1000, we found that the
bootstrap threshold values for F ∗

max, in Table 1, are very similar for all σ2,
which implies the distribution of the F statistic does not depend heavily on
σ2. On the other hand, if we fix σ2 = 0.05 and alter n, then the threshold
value does change somewhat; that is, the distribution of the Fmax statistic
does depend on the number of landmarks, just as the usual F distribution
does.

For each data helix we can compare the computed F statistic with the

threshold, F
∗(α)
max . If F < F

∗(α)
max , we conclude that there is no evidence our

helix has a change point; otherwise, if F ≥ F
∗(α)
max , the point with the largest

F statistic corresponds to the estimated index of the change point. We give
our procedure for estimation and testing the name ChangePoint-Detector.

Table 1: Threshold F
∗(0.05)
max with nboot = 1000 simulations for various choices

for n, the number of landmarks, and σ2, the error variance

n σ2 F
∗(0.05)
max

15 0.05 2.877
25 0.05 3.073
30 0.05 3.008
30 0.01 3.008
30 0.1 3.015
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7 Simulation Study for ChangePoint-Detector

In this section we illustrate the behavior of ChangePoint-Detector on two
simulated helices, a regular helix and a change point helix.

• Example 1. A regular helix was simulated with n = 27 landmarks and
parameters that mimic a protein α-helix (i.e. r = 2.3, 2πc = 5.4, β =
2π
3.6 and σ2 = 0.05).

• Example 2. A change point helix with change point k = 12, was
constructed by simulating a regular helix in the same way as Example
1, but then introducing a rotation of the helix axis by an angle θ = 0.3
radians = 17.1◦, centered at time index k + 1

2 = 12.5.

Table 2 presents the results for the key parameters, the overall test
statistic and the six features of interest. The p-values in parentheses are
constructed using bootstrap sampling with nboot = 1000.

First consider Example 1, the regular helix. As expected, there is no
reason to reject the null hypothesis. The test statistic Fmax is not significant,
the estimates of σ2 under the null hypothesis σ̂2 = 0.039 and under the
alternative hypothesis σ2

p = 0.039, from Eq. 6.2, are approximately equal,
and none of the features A1, . . . , A6 are significant.

Next consider Example 2, the change point helix, for which the test
statistic Fmax is highly significant. For this example, ChangePoint-Detector

Table 2: The ChangePoint-Detector estimates of σ̂2, σ̂2
p, k̂, θ̂, the statis-

tics Fmax, A1, . . . , A6, and the bootstrap p-values for Examples 1 and 2, the
regular and the change point simulated helices
Helix Regular Change point

Example 1 Example 2

σ̂2 0.039 0.223
σ̂2
p 0.039 0.045

Fmax 0.924 (0.973) 26.3 ∗∗

k̂ 13 12

θ̂ 2.5◦ 18.4◦

A1 1e-4 (0.765) 0.051 ∗∗

A2 0.134 (0.455) 0.146 (0.447)
A3 0.004 (0.981) 0.012 (0.954)
A4 0.002 (0.965) 0.048 (0.392)
A5 0.046 (0.666) 0.183 (0.125)
A6 0.002 (0.919) 0.010 (0.724)
∗∗ indicates p-value < 0.001
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Figure 2: The Fk statistic against the possible choice of k for the simulated
change point helix, where the maximum of Fk is at k = 12

estimates the change point correctly at k̂ = 12 as shown in Fig. 2. Table 3
shows the bootstrap distribution of k∗ for nboot = 1000 simulations to help
judge the accuracy of k̂. In particular, k∗ equals the estimate k̂ = 12 most
of the time, but occasionally overshoots by 1 or 2.

The estimated angle between the two sub-helices θ̂ = 0.32 radians is
close to the true value. Further the p-value for A1 confirms that the change
in angle is significantly different from 0, but none of the other features
(A2, A3, A4, A5, A6) is significant.

Figure 3 shows the fitted helices. Panel (a) shows a fitted single helix for
Example 1. Panel (b) shows the two fitted sub-helices for Example 2 after
estimating the change point. The change in helix axis of size θ̂ = 18.4◦ = 0.32
radians at k = 12 is visible.

Table 3: The frequency table of k∗ from 1000 bootstrap samples for Example 2
k 12 13 14

frequency 728 220 52
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(b) simulated bent helix
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(a) simulated regular helix
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Figure 3: The two sub-helices found by ChangePoint-Detector for the simu-
lated regular helix (Example 1) and the simulated change point helix (Exam-
ple 2). In each case the two sub-helices are plotted using a thin line and a
thicker line, respectively. Also plotted are the two fitted axes, as a dotted
line with small dots and a dotted line with larger dots, respectively

8 Data Examples

In this section we look at nine α-helix protein structures from Mardia
et al. (2018). Each helix comprises a sequence of Cα atoms; there are 3.6
equally-spaced Cα atoms per turn of the helix, i.e. one Cα atom every
β = 2π

3.6 radians (100 degrees). For the ith landmark (Cα atom) we associate
the time index ti = iβ, i = n1, . . . , n2, where all the helices start at n1 = 1
and and for each helix n2 = n denotes the total number of the landmarks.

Three other parameters in the helix model in the protein setting have
ideal values: 2πc = 5.4Å (the vertical distance of one complete turn), radius

r = 2.3Å, and the variance σ2 = 0.056Å
2
(e.g., Mardia et al., 2018). One

Ångström (Å) equals 10−10 m. For the analysis in this paper, we treat β
as known, but include r, c and σ2 as unknown parameters in our estimation
and testing procedures, so that the data can “speak for themselves” as far
as possible.

In the study of protein helices, it is of particular interest to identify and
locate kinks. Typically the number of kinks in protein helices is either 0 or
1 (Mardia et al., 2018). Mardia et al. (2018) developed an algorithm called
Kink-Detector to identify the presence of a kink and to estimate its location.
The Kink-Detector method is based on a local moving window (6 landmarks
each side of the possible kink).
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Following Mardia et al. (2018), we used their nine test helices here, la-
belled Helix 1 – Helix 9. Mardia et al. (2018) chose these helices partly
because identification of any kinks was particularly challenging. Note that
the conclusions from the Kink-Detector methodology were confirmed in a
crowdsourcing assessment (Wilman et al., 2014b) by experts in the protein
community.

Here we want to see if the kinks found by Mardia et al. (2018) coincide
with any change points found by ChangePoint-Detector, or if the presence
of a kink is unassociated with larger-scale structure in the helix.

The ChangePoint-Detector methodology was applied to each of the nine
helices. The regular helix model H0 consisting of a single helix and the
change point helix model H1 with one change point were fitted to the data.
The Fmax statistic of Section 6.1 was computed to test H0 vs. H1. Further
the statistics A1 to A6 were computed to compare the two sub-helices under
H1. The results are summarized in Tables 4–5. These tables show for each
helix: (a) the error variance estimates σ̂2 and σ̂2

p from Eq. 6.2 (b) the overall

Fmax statistic; (c) the optimizing index k̂ for the change point; (d) the angle
θ̂ in degrees between the two sub-helix axes; and (e) the features A1, . . . , A6;
and (f) the p-values for Fmax and A1, . . . , A6 based on bootstrap sampling
with nboot = 1000.

Table 4: Test statistics and estimates from ChangePoint-Detector for He-
lices 1, . . . , 4: the estimates of variance σ̂2, pooled variance estimate σ̂2

p, the

position k̂, the angle θ̂ between the two sub-helices and the test statistics
(and p-values) of Fmax, A1, . . . , A6 for each helix
Helix 1 2 3 4

n 31 24 24 17
σ̂2 0.318 0.836 0.195 0.179
σ̂2
p 0.083 0.144 0.060 0.034

Fmax 30.9 ∗∗ 39.5 ∗∗ 18.8 ∗∗ 24.0 ∗∗

k̂ 14 7 9 10

θ̂ 10.7◦ 25.6◦ 9.2◦ 8.8◦

A1 0.017 ∗∗ 0.098 ∗∗ 0.013 ∗∗ 0.012 ∗∗

A2 0.005 (0.889) 0.454 (0.443) 0.076 (0.615) 0.012 (0.927)
A3 1.983 ∗∗ 1.518 (0.014) 0.343 (0.154) 0.880 ∗∗

A4 0.352 ∗∗ 5.039 (0.014) 0.436 (0.008) 0.352 (0.002)
A5 0.014 (0.930) 0.001 (0.998) 0.012 (0.917) 0.038 (0.737)
A6 0.007 (0.803) 0.008 (0.847) 0.010 (0.730) 0.039 (0.141)
∗∗ indicates p-value < 0.001
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From Tables 4–5 we see that all nine helices have a highly significant
value of Fmax (with p-value in each case less than 0.001), meaning that all
helices are deemed to have a change point. Further, in general the change
point seems to be due to a change in axis direction. For the most of the
helices, the feature A1 is significantly different from 0 with a p-value less
than 0.001. Two mild exceptions are Helices 5 and 6 with p-values 0.008
and 0.049.

Some further evidence in support of the change point helix model is given
by the residual variances. In most cases σ̂2

p is close to the theoretical value
of σ2 = 0.056. The main exceptions are Helix 2 with σ̂2

p = 0.144 too large
and Helix 8 with σ̂2

p = 0.014 too small. Figure 4 presents Helix 8 and the
fitted helices using ChangePoint-Detector. The axis has a change point with
θ̂ = 9.6◦ as the first sub-helix axis direction (bottom) is different than the
second sub-helix axis direction (top). Figure 5 shows that the maximum Fk

occurs at k = 8.

Helix 8
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Figure 4: The two sub-helices found by ChangePoint-Detector for Helix
8. The two sub-helices are plotted using a thin line and a thicker line,
respectively. Also plotted are the two fitted axes, as a dotted line with small
dots and a dotted line with larger dots
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Figure 5: The plot of Fk statistic against the possible choice of k for helix
8; the maximum of Fk is at k = 8

It is also of interest to look at the other features. Features A2 (shift),
and A5 (radius) never show any signs of significance. However, features A3

(offset) and A4 (spin) are occasionally very significant. Feature A6 (pitch)
is significant only in Helix 8. The reasons are unclear.

Next we compare the results of ChangePoint-Detector with the results
of Kink-Detector (Table 6). It can be seen that there is little, if any,
correspondence between the two methods. ChangePoint-Detector finds that
all the helices have a change point; Kink-Detector finds only 6 out of 9 he-
lices to be kinked. Further, when both methods do find a change point, the
index k and the angle θ do not match.

This analysis leads to two general conclusions. First, Kink-Detector and
ChangePoint-Detector find very different features in the data; the reason
seems to be that Kink-Detector looks for local change whereas ChangePoint-
Detector looks for global change. Further, although the change point model
is certainly an over-simplification of the structure in the data, it has still
managed to capture succinctly much of the variability for most of the helices
in this study.
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Table 6: The kink position k̂, the angle between the two sub-helices θ̂ in
degrees, and the classification by Kink-Detector ( k=kinked, s= straight) and
the classification by ChangePoint-Detector (c=change point, r= regular)
Helix Kink-Detector Change Point-Detector

k̂ θ̂◦ classification k̂ θ̂◦ classification Fmax

1 – – s 14 10.7◦ c 30.9
2 – – s 7 25.6◦ c 39.5
3 13 18.7◦ k 9 9.2◦ c 18.8
4 7 15.9◦ k 10 8.8◦ c 24.0
5 7 22.8◦ k 10 6.6◦ c 17.6
6 10 20.4◦ k 12 5.0◦ c 6.7
7 13 20.0◦ k 11 12.6◦ c 11.5
8 – – s 8 9.6◦ c 16.7
9 9 30.5◦ k 11 31.9◦ c 142.9

9 Discussion

We have developed a ChangePoint-Detector procedure which tests if the
helix has a change point; if the helix is deemed to have a change point,
it estimates the location of the change point; and then fits the two sub-
helices. In addition the method looks at six features at the change point, to
investigate the reason for the change point.

In this paper, the errors are assumed to be independent and identically
normally distributed with mean 0 and variance σ2. In the simulation study
we assumed σ2 = 0.05, although ChangePoint-Detector performs well even
for larger σ2 (at least up to σ2 = 1). In future work it would be interesting
to incorporate dependence between the landmarks to model the effect of
hydrogen bonds.

Another issue worthy of further study is the turn angle β. Although
(Mardia et al., 2018) found no evidence of a varying turn angle in their
work, it would be interesting to investigate this possibility in more detail,
with a separate turn angle parameter for each successive pair of landmarks.
Such a model could be investigated through likelihood methods (though
fitting such a model faces challenges similar to the Neyman-Scott problem
since the number of parameters increases with the number of landmarks) or
through Bayesian hierarchical models.
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