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Summary

Regulatory T cells (Tregs) play a pivotal role in the inhibition of anti-tumor immune responses. 

Understanding the mechanisms governing Treg homeostasis may therefore be important for 

development of effective tumor immunotherapy. We have recently demonstrated a key role for the 

canonical nuclear factor ͬB (NF-ͬ B) subunits, p65 and c-Rel, in Treg identity and function. In this 

report, we show that NF-ͬB c-Rel ablation specifically impairs the generation and maintenance of 

the activated Treg (aTreg) subset, which is known to be enriched at sites of tumors. Using mouse 

models, we demonstrate that melanoma growth is drastically reduced in mice lacking c-Rel, but 

not p65, in Tregs. Moreover, chemical inhibition of c-Rel function delayed melanoma growth by 

impairing aTreg-mediated immunosuppression and potentiated the effects of anti-PD-1 

immunotherapy. Our studies therefore establish inhibition of NF-ͬB c-Rel as a viable therapeutic 

approach for enhancing checkpoint-targeting immunotherapy protocols.
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NF-ͬ B c-Rel is critical for the function of activated Tregs and serves as a target to reduce Treg 

function in the tumor microenvironment without compromising systemic tolerance or causing 

autoimmunity.

Introduction

Tumors employ a wide variety of strategies to grow, metastasize, and avoid recognition and 

elimination by the immune system. One of the major mechanisms of immune evasion by 

tumors is through the engagement of immunosuppressive receptors, such as PD-1 and 

CTLA-4, on effector T cells by their ligands expressed in the tumor microenvironment. 

Emerging cancer immunotherapy approaches are aimed toward overcoming such tolerance 

mechanisms and promoting a productive anti-tumor immune response. Although these 

immune checkpoint blockade therapies are revolutionizing cancer care (Sharma and Allison, 

2015), there are a significant number of tumors that do not benefit from such approaches 

alone. One possible explanation for such resistance is that other immunosuppressive 

mechanisms are engaged in such tumors. For example, CD4+Foxp3+ regulatory T cells 

(Tregs) suppress anti-tumor responses (Nishikawa and Sakaguchi, 2010; Tang and 

Bluestone, 2008). Tregs are highly enriched in patient melanomas (Jandus et al., 2008; 

Ouyang et al., 2016) and their presence in tumors correlates with poor prognosis 

(Baumgartner et al., 2009).

Tregs, that either develop in the thymus (nTreg) or are induced in the periphery (iTreg), 

normally represent 5%–15% of the CD4+ T cell population. They can inhibit immune 

responses through diverse mechanisms that include secretion of inhibitory cytokines, direct 

cytotoxicity, disruption of metabolic pathways in target cells, or inhibition of antigen-

presenting cells (Tang and Bluestone, 2008). The expression of the forkhead-box 

transcription factor Foxp3 is crucial for the acquisition of the Treg suppressive program and 

maintenance of Treg identity (Samstein et al., 2012). Tregs may exist as specialized subsets 

that have distinct functions. In mice, the resting Treg population (rTreg) that resides in 
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lymphoid tissues acts to prevent lymphoproliferation and autoimmunity and is maintained 

by the transcription factor Foxo1 (Huehn et al., 2004; Luo et al., 2016). In contrast, the 

“effector-memory like” activated Treg subset (aTreg) migrates to inflamed tissues and 

tumors and has been shown to act as a potent inhibitor of anti-tumor responses (Darrasse-

Jèze et al., 2009; Levine et al., 2014; Luo et al., 2016). It was recently proposed that IRF-4 

and Myb could help maintain aTreg homeostasis (Levine et al., 2014) (Dias et al., 2017). 

However, the regulators of aTreg differentiation and function are poorly characterized. 

Hence, understanding the molecular signals that drive Treg development and homeostasis 

remains of great interest.

Several studies have shown that the transcription factor NF-ͬB, in particular the c-Rel 

subunit, is crucial for the expression of FoxP3 and the thymic development of Tregs 

(Isomura et al., 2009; Long et al., 2009; Ruan et al., 2009). Activation of nuclear factor ͬB 

(NF-ͬ B) occurs through two pathways, the canonical and the non-canonical pathway. The 

canonical pathway leads to activation of NF-ͬB heterodimers consisting of p50 and p65, or 

p50 and c-Rel, and is primarily involved in immune activation and cell survival. The non-

canonical pathway leads to nuclear translocation of p52-RelB heterodimers and is mainly 

involved in lymphoid organogenesis. NF-ͬB complexes containing either p65 or c-Rel can 

perform distinct biological roles. While p65 containing NF-ͬB complexes are mainly 

responsible for cellular activation responses, c-Rel containing NF-ͬB complexes play more 

specialized rolesinthe immune response and lymphoid development. Germline deletion of 

p65 leads to embryonic lethality, and cells lacking p65 show broad defects in survival, 

proliferation, and function (Beg et al., 1995). In contrast, mice lacking c-Rel are viable and 

despite strong c-Rel expression in lymphocytes, show limited immunological defects 

(Köntgen et al., 1995). Hence, availability of inhibitors that could target only NF-ͬB c-Rel 

would likely avoid the undesirable side effects that have halted advancement of NF-ͬB-

inhibitors for therapeutic applications in inflammatory diseases and cancer (DiDonato et al., 

2012).

With our discovery that NF-ͬB c-Rel and p65 have divergent roles in the maintenance of 

Treg function (Oh et al., 2017), we tested the hypothesis that inhibiting c-Rel might be a 

viable method of selectively modulating Treg activity in cancer. We first observed that c-Rel, 

but not p65, was an important regulator of aTreg maintenance. Using genetic models with 

specific deletion of either p65 or c-Rel in Tregs, we found that c-Rel was selectively 

required for Treg-mediated melanoma tolerance. We have confirmed that Pentoxfylline 

(PTXF), an FDA-approved drug, can cause selective degradation of c-Rel, without affecting 

p65. Inhibition of c-Rel using PTXF delays tumor growth by altering Treg identity and 

function. Finally, we show that PTXF administration, along with PD-1-checkpoint blockade, 

has an additive effect in treating established melanoma in mice. These results confirm recent 

work suggesting that prevention of tumor tolerance and suppression of lymphoproliferation 

and autoimmunity are the result of distinct Treg functions (Luo et al., 2016; Sugiyama et al., 

2013) and provide preclinical evidence for the use of c-Rel inhibitors in conjunction with 

other immune checkpoint inhibitors.
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Results

NF-ͬB c-Rel Regulates Differentiation and Gene Expression of the Activated Treg 
Population

In the accompanying study (Oh et al., 2017), we show that mice lacking p65 in Tregs 

develop a lethal autoimmune syndrome by 6–12 weeks, whereas deletion of c-Rel leads to 

mild inflammation, but only after 20 weeks of age. These phenotypes were associated with 

distinct transcriptional programs governed by p65 and c-Rel and suggested a more 

prominent role for p65 in Tregs for the maintenance of peripheral tolerance and prevention 

of autoimmunity. We wondered whether the NF-ͬB subunits played distinct roles in the 

different Treg subsets and therefore analyzed gene expression profiles of WT aTreg 

(CD44hiCD62Llow) and rTreg (CD44lowCD62Lhigh) by RNA sequencing (RNA-seq) and 

compared them to the gene expression profiles from wild-type (WT), as well as p65 and c-

Rel-deficient total Tregs (Oh et al., 2017). We first identified gene sets enriched in aTreg 

(841 genes) and rTreg (320 genes) populations. Ablation of p65 only marginally affected 

aTreg and rTreg gene signatures (Figure 1A). However, in the absence of c-Rel, the numbers 

of affected genes increased dramatically (Figure 1B). Hallmarks of aTregs, such as Itgae, 
Tigit, Klrg1, Il1r2, or Tnfrsf8, were downregulated in c-Rel-deficient Tregs, while their 

expression was unaffected in p65-deficient Tregs (Figure 1C). The majority of the affected 

genes have been suggested to regulate Treg homeostasis and/or function, especially during 

cancer. We wanted to know whether this effect on aTreg genes was due to a reduction in 

aTreg numbers or rather due to an intrinsic defect in gene expression. Fluorescence-activated 

cell sorting (FACS) analysis of splenic T cells from Foxp3CREp65F/F animals showed a 

slight increase in the proportion of aTreg among total Tregs compared to controls; in 

contrast, we observed a profound decrease of aTregs in Foxp3CREc-RelF/F mice (Figures 1D 

and 1E), whereas rTreg numbers were unchanged (Figure 1F). Similarly, the proportion of 

Tregs expressing CD103 was reduced, whereas the Ki-67+ and Ly6C+ population were 

expanded in these mice (Figures 1G, S1A, and S1B). Therefore, c-Rel, but not p65, appears 

to be important for the maintenance of aTreg numbers. We next assessed whether NF-ͬB 

was required for establishment of the aTreg transcriptional landscape in already 

differentiated aTregs, by performing RNA-seq on sorted aTreg and rTreg from p65- and c-

Rel-deficient mice. Interestingly, deletion of either subunit led to impairment of the aTreg 

gene signature, as 103 or 104 genes, respectively, out of the 841 genes that characterize 

aTregs, were significantly downregulated (Figures 1H, S1C, and S1D). However, careful 

examination of these genes revealed a more important role for c-Rel in the expression of 

aTreg hallmark genes such as Tnfrsf8, Klrg1, Il1r2, Tigit, or Ccr8 that were all 

downregulated in c-Rel knockout (KO) aTregs, but affected to a lesser extent in p65-

deficient aTregs (Figure 1H). A significant decrease in Klrg1 and PD-1 protein expression in 

c-Rel-deficient, but not p65-deficient aTreg was also detected by FACS (Figures S1G and 

S1H). Finally, analysis of the rTreg transcriptome did not reveal a critical involvement of 

either p65 or c-Rel (Figures S1E and S1F), suggesting that other transcription factors, such 

as Foxo 1, might be more important for the maintenance of the rTreg population. Taken 

together, these results demonstrate that c-Rel plays a central role in aTreg biology and 

suggests that c-Rel deletion might have effects on anti-tumor responses.
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Tregs Specifically Require c-Rel to Inhibit Anti-tumor Effector Responses

To test the role of p65 and c-Rel in Tregs during anti-tumor responses, we compared the 

growth of B16F1 melanoma cells in WT mice versus mice lacking either NF-ͬB subunit. We 

observed exponential melanoma growth in control Foxp3CRE transgenic animals (Figure 

2A), and despite the functional defects in Tregs lacking p65 (Oh et al., 2017), tumor growth 

was unaltered in Foxp3CREp65F/F mice (Figure 2A). In contrast, only 50% of the 

Foxp3CREc-RelF/F animals exhibited detectable tumors after 2 weeks, and these tumors were 

significantly smaller than those seen in control littermates (Figure 2A). We next measured T 

cell infiltration 2 weeks after tumor inoculation and observed an equal increase of CD8+ T 

cells in p65- and c-Rel-deficient mice in tumor infiltrating lymphocytes (TILs). CD4+ T 

cells, however, were only increased in Foxp3CREc-RelF/F mice (Figures 2B and 2C), but the 

intrinsic expression of IFN-ͥ by T cells remained unchanged between strains (Figure 2D). 

We observed an equivalent reduction in the proportion of TIL Tregs in both c-Rel- and p65-

deficient animals when compared to WT littermates (Figure 2B). Therefore, the difference in 

tumor growth between the p65 and c-Rel KO strains reflects divergence in the functional 

capability of Tregs. This fits our initial observation on the important role of c-Rel in the 

homeostasis of the aTreg population, which was suggested to specifically control tumor 

immunity (Figure 1).

Among the 688 genes whose expression was modified by the absence of c-Rel but not p65, 

we observed a striking loss of Treg signature genes. For example, the expression of Ikzf2 
(Helios) or Ppar-ͥ, which are important regulators of Treg homeostasis, were significantly 

decreased; while expression of Pde3b, which is deleterious for Foxp3 stability, was 

increased (Figure S2A). On the other hand, the expression of effector transcription factors 

and cytokines, such as Eomes, Tbx21, Il2, or Ifng, were strongly increased in Tregs lacking 

c-Rel, but not p65 (Figure S2A). The modulation of Helios and IFN-g expression in Tregs 

was also specifically observed by flow cytometry in the TILs of Foxp3CREc-RelF/F mice, 

upon melanoma transplantation (Figures 2E, 2G, and 2H). This strongly suggests that the 

molecular program driven by c-Rel, in contrast to p65, allows Tregs to inhibit anti-tumor 

responses at early stages following tumor implantation and raises the possibility that Tregs 

lacking c-Rel could actually promote tumor immunity through effector cytokine production.

To better understand how c-Rel deficiency in Tregs affects early anti-tumor responses, we 

assessed T cell phenotype 4 days after melanoma inoculation. We observed enhanced 

expression of Ki67 and CD44 in splenic CD8 T cells of animals with conditional deletion of 

c-Rel in Tregs, compared to WT littermates (Figures 2I and 2J). This was associated with 

increased levels of polyfunctional (IFN-ͥTNFhigh) T cells upon polyclonal restimulation ex 

vivo (Figure 2K). These parameters remained mostly unchanged in p65-deficient mice. This 

may explain the different outcomes in tumor growth between c-Rel- and p65-deficient 

animals. Enhanced CD8 T cell activation in Foxp3CREc-RelF/F mice was observed following 

transplantation of the tumor, but not in unmanipulated mice (Figure S2B). Moreover, we 

observed increased secretion of IFN-ͥ by CD8 T cells upon gp100/p-mel restimulation 

(Figure S2C). In line with these results, CD8 depletion restored normal tumor growth in all 

the Foxp3CREc-RelF/F animals (Figure 2L). We confirmed these findings with 2 additional 

melanoma models. In mice injected intravenously with B16F10 melanoma cells, 
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examination of the lungs showed significantly reduced number of metastatic foci in c-Rel-

deficient animals compared to controls (Figure S2D). We also observed decreased growth 

when we transplanted subcutaneous BRAFCAPten−/− melanomas into c-Rel-deficient 

animals (Figure S2E). Taken together, our results demonstrate that c-Rel controls a specific 

genetic program in Tregs that is required for inhibition of the anti-melanoma protective 

immune response mediated by CD8 T cells.

c-Rel Inhibition Impairs Treg Identity

Although canonical NF-ͬB signaling is important for conventional T cell responses, the role 

of c-Rel in cellular immunity in vivo is not well established (Kontgen et al., 1995). 

Therefore, we hypothesized that inhibition of c-Rel would selectively block Treg-mediated 

tumor tolerance with minimal inhibition of antitumor responses. Pentoxifylline (PTXF) is a 

xanthine derivative that has been approved by FDA for clinical use for a wide variety of 

clinical conditions over the past 30 years. PTXF has been proposed to act through multiple 

targets in vivo, including as a potent inhibitor of c-Rel expression and activation in T cells 

(Neo et al., 2014; Wang et al., 1997). In our hands, treatment of Tregs with PTXF led to a 

significant reduction of c-Rel protein, whereas levels of p65 were unaffected (Figure 3A). 

We observed significantly decreased expression of Treg markers such as Foxp3, CD25, and 

Helios (Figure 3B), genes that were also reduced in Tregs upon conditional deletion of c-Rel 
(Figure S2A). To assess whether the decrease of these Treg markers was due to the effect of 

PTXF on c-Rel, we overexpressed c-Rel in Tregs using retroviral transduction. Interestingly, 

c-Rel overexpression alone increased steady-state expression of Foxp3 and Helios (Figure 

3C). Whereas PTXF treatment led to a significant decrease in Foxp3, Helios and CD25 

expression in GFP-transduced cells, it did not in c-Rel-transduced Tregs. We next used the 

converse approach of treating WT and c-Rel-deficient Tregs with PTXF. As expected, the 

levels of Foxp3, Helios and CD25 were reduced in c-Rel-deficient Tregs compared to WT; 

also, PTXF failed to further decrease the expression of these proteins (Figure 3D). This 

suggested that PTXF induced a perturbation of the Treg-associated signature through its 

effect on c-Rel. To determine the extent to which PTXF inhibited the c-Rel-mediated 

transcriptional program in Tregs, we next compared the transcriptomes of control, PTXF-

treated, and c-Rel-deficient Tregs. PTXF treatment led to a more profound alteration of the 

Treg transcriptome than genetic ablation of c-Rel (Figures 3E, S3A, and S3B), which was 

not surprising, given that PTXF likely affects additional signaling pathways (Deree et al., 

2007; Kamran and Gude, 2013; Pinzani et al., 1996). Of note, the expression of the c-Rel 

mRNA itself was unaffected by PTXF, suggesting that PTXF was affecting c-Rel through a 

post-translational mechanism (Figure 3F). A number of genes described to maintain Treg 

function and homeostasis were altered upon both chemical and genetic inhibition of c-Rel 

(Figures 3F, S3C, and S3D), such as Gzmb and Tgfb1, both involved in Treg function during 

cancer. Moreover, known NF-ͬB target genes, such as Tnfrsf8, Tnaip2, or Pde3b, also 

displayed altered expression in both PTXF-treated and c-Rel-deficient Tregs. In contrast, 

Cbl-b and Satb1, which destabilize Tregs, were upregulated in both conditions. Confirmation 

of gene expression by qPCR showed that these genes were, in fact, affected to a comparable 

extent by both chemical and genetic inhibition of NF-ͬB (Figure S3D). Interestingly, we 

observed only a minor overlap between the WT Treg+PTXF and Foxp3CREp65F/F 

transcriptomes, reinforcing the idea that PTXF affects c-Rel but not p65 (Figure S3B). Gene 
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set enrichment analysis (GSEA) indicated that, in addition to unique signatures found in the 

PTXF and c-Rel KO samples, 107 gene signatures overlapped between the 2 samples 

(Figure 3G). Among them, we detected a loss of Treg-associated genes and an impairment 

of the T cell activation processes and memory phenotype (Figure S3E). Ingenuity Pathway 

Analysis revealed that inhibition of the NF-ͬB pathway was a key feature of the c-Rel-

deficiency and PTXF-induced phenotype (Figure S3F). We next assessed whether PTXF 

treatment also affected the aTreg/rTreg signature. A total of 159 aTreg genes were 

significantly downregulated in PTXF-Tregs (Figure 3H), including Tnfrsf8, Il1r2, or Nid2. 

In contrast, 55 rTreg genes were enhanced, such as Klf2  or S1pr1. This indicates an 

enrichment of rTreg genes at the expense of aTreg genes. Thus, PTXF induced a substantial 

shift in Treg transcriptional program that is consistent with the change seen upon loss of c-

Rel activity.

Tregs lacking NF-ͬB c-Rel exhibit little change in suppressive ability in in vitro T cell 

suppression assays, despite a complete loss of function in in vivo assays (Oh et al., 2017). In 

an in vitro suppression assay, PTXF-treated Tregs exhibited modest, but significant, 

reduction in suppression of effector T cell proliferation when compared to control Tregs 

(Figure 3E) suggesting that PTXF likely affected some additional targets besides those 

regulated by c-Rel. However, in an in vivo suppression assay, PTXF-treated Treg completely 

failed to prevent colitis (Figures 3F, 3G, and S3H) similar to c-Rel-deleted Tregs (Oh et al., 

2017). In both experiments, PTXF did not affect Treg survival but rather impaired their 

intrinsic function (Figures S3G and S3I). Taken together, these results show that PTXF 

treatment impacts the homeostasis and function of Tregs similar to deletion of c-Rel.

c-Rel Inhibition Suppresses Tumor Growth

We predicted that administration of a c-Rel-inhibiting compound like PTXF would break 

Treg-mediated tumor immune tolerance and augment anti-tumor responses, similar to c-Rel 

deletion in Tregs. WT mice were transplanted with B16F1 melanoma cells and received 

daily injections of 50 mg/kg PTXF or PBS starting 1 day before tumor cell inoculation. 

Consistent with previous reports (Duaet al., 2007),we observed a significant reduction in the 

rate of tumor growth in PTXF-treated animals as compared to control animals (Figure 4A). 

No observable differences in the size or composition of lymphoid tissues were detected, and 

no adverse events were observed (data not shown). As it has been reported that PTXF can 

induce tumor cell apoptosis in vitro (Edward and MacKie, 1991; Ratheesh et al., 2007), we 

wanted to determine whether the effects of PTXF on tumor growth were tumor intrinsic or 

related to improved immune responses. Analysis of tumor infiltrates at D16 revealed an 

increased infiltration of total T cells, as well as IFN-ͥ producing CD4 and CD8 T cells 

(Figures 4B–4D). Additionally, there was a trend toward a decreased proportion of Tregs in 

the tumors, which also displayed an altered phenotype (Figures 4E, 4F, and S4A). As 

observed in the Foxp3CREc-RelF/F model, tumor-infiltrating Tregs exhibited increased IFN-

ͥ production (Figure 4F). Moreover, qPCR analysis of total tumors revealed an enhanced 

inflammatory response, including increased expression of activated T cell markers and 

cytokines (Figure 4G). This suggests that immune cells, especially T cells, may mediate the 

protective effect of PTXF on melanoma growth. As previously reported (Ratheesh et al., 

2007), we also detected a decrease in the expression of certain integrins, such as Itga2b and 
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Itgb3 (Figure S4B), suggesting that PTXF might act through the inhibition of tumor 

adhesion. To test whether there were direct effects on tumor growth independent of the 

changes in T cell responses, we transplanted immunodeficient RAG1−/− mice with B16F1 

cells and treated them with PBS or PTXF. In this background, PTXF had no effect on tumor 

growth (Figure 4G). Therefore, lymphocytes are required for the anti-tumor effects of PTXF. 

Moreover, CD8-depletion in PTXF-treated mice entirely restored tumor growth (Figure 4I). 

We further confirmed these results in the settings of B16F10 metastatic melanoma. Again, in 

immunocompetent mice, early PTXF treatment significantly decreased the total number of 

metastatic foci in lungs (Figure S4C).

To assess whether the beneficial effect of PTXF relied on its inhibition of c-Rel in Tregs, we 

next measured the influence of PTXF administration in Foxp3CREc-RelF/F mice. To ensure 

B16F1 melanoma growth in KO animals, we transplanted 3 × 105 cells instead of 5 × 104 

cells. Melanoma growth was accelerated in these settings, but PTXF was still able to 

significantly reduce tumor growth in WT mice (Figure 4J). Moreover, all Foxp3CREc-RelF/F 

mice harbored a visible tumor by D10, even though the tumors were smaller than those in 

control mice. Interestingly, PTXF was unable to further decrease melanoma growth. This 

suggested that PTXF acted, at least partially, by inhibiting Treg function through the 

suppression of c-Rel. Finally, to confirm that the observed effects on melanoma growth can 

be attributed to c-Rel inhibition, we tested whether an unrelated chemical c-Rel inhibitor 

could recapitulate the effects of PTXF. We used IT-603, a commercially available compound 

that inhibits c-Rel-mediated transcription and reduces lymphoid leukemia severity in mouse 

models (Shono et al., 2014). Administration of 200 µg IT-603 every other day, starting at 

D-1, reduced B16F1 growth modestly but significantly (Figure 4K). Increased T cell 

infiltration, IFN-ͥ  production, and reduced Tregs were observed in the tumors of IT-603-

treated mice (Figure S4D). These results demonstrate that chemical c-Rel inhibition can 

inhibit Treg function and prevent Treg-mediated tumor tolerance.

PTXF Treatment Potentiates the Effects of Checkpoint Blockade Therapies to Inhibit 
Melanoma Growth

The emergence of checkpoint blockade therapies has been a major step forward in the field 

of oncology. Antibody-mediated blockade of the PD-1/PD-L1 is believed to work by 

relieving exhaustion of CD8 T cells, thereby allowing the re-activation of anti-tumor effector 

cells (Francisco et al., 2010). However, anti-PD-1 monotherapy is ineffective for the 

treatment of many tumors, including animal models (e.g., in B16-induced melanoma in 

mice) (Chen et al., 2015). We therefore wondered whether targeting of Tregs with PTXF 

could potentiate the beneficial effect of PD-1-blockade. Mice were first transplanted with 

B16F1 melanoma cells and treated with vehicle, PTXF, and/or anti-PD-1 mAb when the 

tumors reached a volume >2 mm3 (D5 to D6). PTXF or anti-PD-1 monotherapies did not 

change tumor growth compared to PBS controls. However, the combination of PTXF and 

anti-PD-1 significantly flattened the growth curves (Figure 5A). Co-administration of PTXF 

and anti-PD-1 increased T cell infiltration and expression of IFN-ͥ by CD4 and CD8 T 

cells, while the CD4/CD8 ratio was decreased (Figures 5B–5D). The proportion of Tregs 

was reduced while Treg IFN-ͥ expression increased (Figures 5E and 5F). Of note, curative 

PTXF monotherapy did not induce dramatic changes in the tumor infiltrate, underscoring the 
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importance of early therapeutic intervention. RNA expression analysis demonstrated a 

cumulative effect of PTXF and anti-PD-1 treatments, with inflammatory cytokines and 

activation markers being strongly upregulated in the tumors of mice receiving the 

combination therapy (Figure 5G). Finally, CD8 depletion with a monoclonal antibody 

(mAb) fully restored tumor growth in PTXF+anti-PD-1-treated animals (Figure 5H) 

demonstrating a requirement for CD8 T cells for improved tumor clearance. We confirmed 

that these findings were not specific to the anti-PD-1 mAb by blocking the ligand of PD-1, 

PD-L1. Again, the combination of both PTXF and anti-PDL1 had an additive effect in 

decreasing and delaying melanoma growth (Figure 5I). We also assessed the effect of PTXF/

anti-PD-1 therapy in a different genetic background. BALB/c mice were transplanted with 

CT-26 colon carcinoma and subsequently treated with PTXF and suboptimal doses of anti-

PD-1 (because high doses of anti-PD-1 induced a significant decrease in CT-26 growth, data 

not shown). Again, only the combination of both drugs led to a significant reduction of 

tumor growth (Figure 5G). To test whether the inhibition of Treg c-Rel was sufficient to 

potentiate the curative effect of anti-PD-1 therapy, we next treated melanoma-bearing 

Foxp3CREc-RelF/F mice with anti-PD-1. Strikingly, unlike WT animals, tumor size was 

significantly reduced upon checkpoint-blockade therapy in mice whose Tregs lacked c-Rel 

(Figure S5A). Finally, curative combinatorial therapy with the c-Rel inhibitor IT-603 and 

anti-PD-1 led to reduced melanoma growth and increased T cell infiltration and activation 

(Figures 5K and S5B). Taken together, our data highlight the therapeutic potential of c-Rel 

inhibition in addition to checkpoint-blockade antibodies.

Discussion

NF-ͬB c-Rel Controls the Homeostasis of the aTreg Subset that Suppresses Anti-tumor 
Responses

Multiple lines of evidence demonstrate that the Treg pool can be separated into subsets with 

differing phenotypes and function. In both mice and humans, Tregs can be split into resting 

and activated populations (Huehn et al., 2004; Miyara et al., 2009). In mice, it was suggested 

that transcription factor Foxo1 maintains the CD62LhighCD44low rTreg pool (Luo et al., 

2016). These rTregs are retained in lymphoid tissues through expression of high levels of 

CD62L, CCR7, and S1PR1; and it is believed that they are crucial for the prevention of 

lymphoproliferative disease, as illustrated by the early splenomegaly and lymphadenopathy 

observed in Treg-restricted Foxo1 conditional mutants (Ouyang et al., 2012). In contrast, 

CD62LlowCD44high aTregs, which differentiate upon TCR-stimulation, acquire the ability to 

migrate to inflamed tissues through expression of homing receptors (Huehn et al., 2004; 

Rosenblum et al., 2011). Therefore, they are more specialized in the suppression of local 

tissue inflammation. Recently, Tregs have emerged as crucial regulators of cancer 

progression (Darrasse-Jèze et al., 2009; Luo et al., 2016). It has been suggested that the 

expression of aTreg-specific molecules, such as CD103, CCR8, Klrg1, or Tigit, are critical 

for tumor homing of Tregs and suppression of effector T cells, thereby providing a novel 

specialized function to the aTreg subset (De Simone et al., 2016). However, the precise 

molecular mechanisms that regulate aTreg differentiation and function are poorly described. 

It was proposed that IRF4 and Egr2 may be important for aTreg differentiation, and 

signaling through the TCR was absolutely required for their maintenance (Levine et al., 
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2014; Vahl et al., 2014). In a recent report (Messina et al., 2016), it was suggested that p65 

may be involved in effector Treg development in the competitive environment of fetal liver 

recipients. However, the authors only observed a mild decrease in aTreg in the lymph nodes, 

but not the spleen, of Foxp3CREp65F/F mice. Although we observed some effects of p65 

deletion on the expression of genes enriched in aTregs, we did not observe a decrease in the 

aTreg population in vivo. Instead, we show that c-Rel was required to maintain a normal 

pool of aTregs and a normal aTreg transcriptome. As NF-ͬB activation is a key downstream 

event of TCR/CD28 signaling, this observation is in agreement with previous reports. As 

p65 was mostly dispensable for aTreg, this reinforces the idea that c-Rel and p65 control 

separate gene targets and exert different functions in Tregs (Oh et al., 2017), possibly 

because the activation kinetics are different. A number of genes that are crucial for aTreg 

homing and homeostasis in inflamed tissues, such as CD83, PD-1, and Klrg1 were impaired 

in c-Rel-deficient Tregs and also in TCR−/− aTreg and in Foxo1CA, but not in p65-deficient 

Tregs (Levine et al., 2014; Luo et al., 2016) (Figure 1). Thus, our data suggests that c-Rel is 

specialized in the maintenance of the aTreg population, while p65 controls crucial 

suppressive properties of Tregs in both the resting and the activated subsets. Hence, this 

explains the early lethal lymphoproliferation observed in Foxp3CREp65F/F mice and the 

relative absence of autoimmunity in Foxp3CREc-RelF/F animals.

These data suggested that c-Rel deletion might have a specific effect on tumor tolerance. 

Indeed, the ablation of c-Rel, but not p65, in mature Tregs strongly impaired melanoma 

growth in a CD8 T cell-dependent manner and destabilized Treg-associated gene expression. 

Expression of Helios, which was recently implicated in the maintenance of Treg homeostasis 

and the suppression of tumor immunity, was reduced in the absence of c-Rel (Nakagawa et 

al., 2016). Although the immunological abnormalities present in the Foxp3Crep65f/f  mice 

(Oh et al., 2017) complicate the analysis of tumor growth, it is notable that we did not 

observe any increase in anti-tumor immune response in Treg p65-deficient mice. In WT 

mice, Tregs efficiently inhibited antitumor effector CD8 T cell responses, thereby allowing 

uncontrolled cancer cell proliferation. In Foxp3CREc-RelF/F animals, however, the impaired 

Treg function allowed increased activation of effector cells and enhanced tumor cell killing. 

This, combined with the lack of evidence of a role for c-Rel in prevention of autoimmunity 

(Oh et al., 2017), and in effector CD8 responses, suggested that the therapeutic targeting of 

c-Rel could selectively ablate Treg-mediated tumor tolerance.

c-Rel Inhibition as a Novel Cancer Immunotherapy

An extensive body of literature describes the roles of NF-ͬB in the initiation, proliferation, 

and propagation of tumors. This has led multiple groups to test whether global inhibition of 

NF-ͬ B could have an effect on tumor growth (DiDonato et al., 2012). For instance, 

inhibition of IKK activity by thalidomide, by the chemical BAY11-7082, or by the small 

inhibitory Nemo-Binding Domain (NBD) peptide, decrease severity of lymphomas 

(reviewed in Kim et al., 2006). Bortezomib (Velcade), which prevents degradation of the 

NF-ͬ B inhibitor IkBͣ, is now a Food and Drug Administration (FDA)-approved drug and is 

used for the treatment of multiple myeloma (Mulligan et al., 2007). Despite these promising 

results, the use of such non-specific NF-ͬB inhibitors has been complicated by the 

observation of multiple adverse effects, such as systemic inflammation through inter-leukin 

Grinberg-Bleyer et al. Page 10

Cell. Author manuscript; available in PMC 2018 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(IL)-1ͤ overexpression or non-immune-related complications (Greten et al., 2007). This 

could be a consequence of (1) the inhibition of non-NF-ͬB-related pathways upon inhibition 

of IKK (Oeckinghaus et al., 2011), or (2) the inhibition of the p65 subunit of NF-ͬB that is 

well known to exert central roles in organo-genesis and inflammation. Our results using 

conditional mutant mice suggested that c-Rel, whose biological function is mainly restricted 

to the adaptive immune system, could be a specific target for the treatment of cancer through 

its role in Tregs. In vitro, we observed that PTXF reduced the level of c-Rel protein in Tregs, 

while impairing the molecular identity of Tregs and Treg suppressive function. In agreement 

with previously published results, PTXF affected c-Rel, but not other NF-ͬB subunits (Wang 

et al., 1997). RNA-seq revealed a profound effect of PTXF on Treg-associated gene 

expression that was partially overlapping with changes observed in c-Rel-deficient Tregs. 

Genes required for optimal Treg function and immunosuppression in the tumor 

microenvironment, such as Tgfb1 or Gzmb (Boissonnas et al., 2010; Donkor et al., 2011), as 

well as numerous aTreg genes, were directly repressed by PTXF treatment, similar to that 

seen upon genetic deletion of c-Rel. Thus, PTXF affects Treg identity both directly by 

modifying c-Rel-dependent transcription and indirectly by forcing the expression of genes 

that promote anti-tumor responses.

PTXF has previously been described as an anti-cancer drug. Early PTXF administration 

reduced growth of subcutaneous B16F10 melanomas and decreased their metastatic 

potential (Dua et al., 2007). When injected together with the alkylating agent thiotepa, PTXF 

diminished growth of human bladder and breast cancer xenografts (Fingert et al., 1988). 

This has led to several ongoing clinical trials testing the effect of PTXF, in combination with 

existing treatments, in leukemia, glioblastoma, and non-small cell lung cancer (https://

clinicaltrials.gov). It has been proposed that the anti-cancer properties of PTXF were 

attributable to reduced expression of adhesion molecules or induction of apoptosis in cancer 

cells (Bravo-Cuellar et al., 2013; Edward and MacKie, 1991). The effects of PTXF on T 

cells are still debated, as the drug seems to downregulate T cell effector functions in vitro 

but has an opposite effect in vivo (Jimenez et al., 2001; Suresh et al., 2002). In this study, we 

show that PTXF improves effector cells anti-tumor responses likely through inhibition of 

Treg function.

However, PTXF alone failed to reduce the growth of established tumors. This is because 

B16F1 melanoma has long been described to be highly aggressive and resistant to most 

monotherapies, including anti-PD-1/PD-L1 (Kleffel et al., 2015). It has been proposed that 

such treatments could be improved by the co-administration of two drugs. For instance, anti-

CTLA-4 mAbs that are believed to directly target Tregs, and anti-PD-1 mAbs that relieve the 

exhaustion of effector T cells, could have a synergistic effect in monotherapy-resistant 

cancers (Curran et al., 2010). Although promising preliminary results have been obtained 

from clinical trials, one major pitfall has been the frequent (>70%) and multiple adverse 

effects induced by anti-CTLA-4 mAbs, such as cutaneous inflammation or colitis (Bertrand 

et al., 2015). In contrast, PTXF is well-tolerated in patients and mice (https://www.fda.gov/

Safety/MedWatch/SafetyInformation/ucm314605.htm). Here, we show that PTXF 

potentiates the effect of PD-1-blockade in our melanoma model without any adverse effects. 

Thus, we propose that this multi-therapy could be used as a safe novel treatment for solid 

cancers.

Grinberg-Bleyer et al. Page 11

Cell. Author manuscript; available in PMC 2018 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://clinicaltrials.gov
http://https://clinicaltrials.gov
http://https://www.fda.gov/Safety/MedWatch/SafetyInformation/ucm314605.htm
http://https://www.fda.gov/Safety/MedWatch/SafetyInformation/ucm314605.htm


Understanding how Treg homeostasis is controlled during tumor growth may reveal new 

targets for the development of novel anti-cancer therapies. In this study, we have 

demonstrated that activation of the c-Rel subunit of NF-ͬB in Tregs is central to the 

prevention of protective anti-tumor responses. Hence our findings provide a new rationale 

for the use of selective NF-ͬB inhibitors, especially those targeting c-Rel, for the treatment 

of cancer.

Contact for Reagents and Resources Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Sankar Ghosh (sg2715@cumc.columbia.edu).

Experimental Model and subject Details

Animals

p65-floxed mice were obtained from R. Schmid (Munich, Germany) (Algul et al., 2007) and 

c-Rel-floxed mice from U. Klein (Columbia University, New York) (Heise et al., 2014). 

CD4cre (Tg(CD4-cre)1Cw1), Foxp3CREYFP (Foxp3tm4(YFP/cre)Ayr), Foxp3EGFP 

(Foxp3tm2Tch), Foxp3RFP (Foxp3tm1Flv), CD45.1 (Ptprca Pepcb/BoyJ) and RAG1−/− were 

originally purchased from the Jackson Laboratory and maintained in our animal facility. 

C57BL/6J mice were purchased from the Jackson Laboratory. All mice were kept in specific 

pathogen-free conditions in the animal care facility at Columbia University (New York, NY), 

and were used between 5 and 8 weeks of age. Both males and females were used 

indifferently in the study. All mouse experiments were approved by Institutional Animal 

Care and Use Committee of Columbia University.

Cells

B16F1, B16F10 and CT-26 cells were obtained from the ATCC and grown in DMEM+10% 

FBS medium. BRAFCAPten−/− cells were originally derived from an in vivo melanoma 

induced by topical tamoxifen treatment of TyrcreERT2BRAFCAPtenF/F, as described. All cell 

lines were periodically tested for murine pathogens.

Method Details

Tumor transfer and treatments

5×104 B16F1 (or 3×105 when indicated) or 5×105 CT-26 or BRAFCAPten−/− cells diluted in 

sterile PBS1X were injected subcutaneously into the shaved flank of each mouse. For 

metastasis experiments, 2.5×104 B16F10 cells were injected intravenously in the tail vein. 

PTXF (Sigma) was diluted in PBS1X and sterile filtered prior to each injection. IT-603 

(Calbiochem) was first diluted in EtOH for storage; prior to injections it was further diluted 

in Cremophor EL and then in warm PBS1X (for a final ratio of 1 EtOH: 1 Cremophor:4 

PBS1X). Anti-PD-1 (RMP1-14), anti-PD-L1 (10F.9G2) and anti-CD8 (YTS.169-4) mAbs 

were obtained from BioXCell. Rat IgG isotype control was from R&D Systems. Mice 

received intraperitoneal injections of 50mg/kg PTXF, 200 µg IT-603 or 200 µg of the given 
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mAb. In Figure 5, BALB/c mice harboring CT-26 tumors received a suboptimal dose of 100 

µg of anti-PD-1.

Flow cytometry

Cells were isolated from thymus, spleen and lymph nodes by mechanical desegregation in 

PBS+FBS 3%. For tumor-infiltrating cell suspensions, total tumors were digested in DMEM 

(GIBCO) supplemented with 1 mg/ml collagenase type IV (Sigma) and 1 mg/ml DNase I 

(Sigma) for 40 min at 37°C, followed by centrifugation in a 36% Percoll solution. For 

intracellular cytokines analyses, cell suspensions were incubated 3 hr with PMA (Sigma, 50 

ng/mL), ionoymycin (Sigma, 1 µg/mL) in the presence of Golgi Plug (BD), or incubated 4 

hr with mitomycin C-treated WT splenocytes loaded with 10mg/mL gp100/pmel 17 peptide 

(Neo Biolab) in the presence of Golgi Plug. Cells were then stained with mAbs in PBS+3% 

FBS. Foxp3 and cytokine staining were performed using the eBioscience kit and protocol. 

Cells were acquired on a LSR II (BD Biosciences) and analyzed with FlowJo (Tree Star) 

software.

In vitro PTXF treatment

CD4+YFP+ Treg cells were FACS-sorted and pre-incubated with 500 µg/mL PTXF or H2O 

for 15 min at 37C. Total cells suspensions were then activated with 5 µg/mL plate-coated 

anti-mCD3,1 µg/ml soluble anti-mCD28 (BioLegend) and 10 ng/mL mIL-2, overnight at 

37C. Treg cells were then washed for further use.

Suppression assays

For in vitro assays, CD45.1+ naive conventional CD4+ T cells were magnetically isolated 

(Miltenyi) and labeled with CellTrace Violet Proliferation Tracker (Life Technologies). They 

were cultured with T cell depleted, mitomycin C-treated WT splenocytes and 2.5 µg/mLanti-

mCD3, in the presence or not of treated Treg cells as described above. Proliferation of 

CD45.1+ T cells was assessed by FACS at D4. The % of suppression was calculated as 

described. For in vivo assays, 4.105 naive Tconv cells were isolated as above and transferred 

with or without 1.105 Treg cells, to the retro-orbital sinus of 6-9 week-old RAG1−/− mice. 

Recipients were then weighed every week and euthanized when weight loss was > 30%.

Retroviral transduction

For overexpression of GFP or c-Rel in Treg cells, Foxp3RFP+ Treg cells were sorted and 

activated with 5 µg/mL plate-coated anti-mCD3,1 µg/ml soluble anti-mCD28 (BioLegend) 

and 10 ng/mL mIL-2. At D1 and D2, fresh retrovirus supernatant containing pMIGR or 

pMIGR-CREL (Addgene) was added and the cells were spun at 2500 rpm for 1.5 hr at 30C. 

After spin infection, the cells were cultured in the T cell culture medium and harvested on 

day 5 for sorting of RFP+GFP+ transduced cells.

Western Blotting

Total lysates were extracted using RIPA buffer and protease inhibitors with SDS. 20 µg 

protein extracts were ran in polyacrylamide gels and transferred onto PVDF membranes. 
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Membranes were incubated with anti-p65, c-Rel (Santa-Cruz) and GAPDH (Fitzgerald) 

Abs, followed HRP-coupled secondary Abs.

RT-qPCR and RNA-sequencing

Total RNA was extracted using a QIAGEN Rneasy Mini Kit with DNase treatment. For 

qPCR, RNA was reverse transcribed by Superscript III (Invitrogen). cDNAs were used for 

PCR with SYBR Green reagents (Quanta Biosciences, Gaithersburg, MD) on a C1000 

Touch thermal cycler (Bio Rad, Hercules, CA). The data was normalized to GAPDH 

expression. Primers sequences can be sent under request. For RNA-sequencing, libraries 

were prepared using an Illumina TruSeq Library Kit and sequenced by an Illumina 2500 

instrument. Upon sequencing, raw FASTQ files were aligned on the mm10 genome using 

STAR aligner with default parameters. Aligned fragments were then counted and annotated 

using Rsamtools v3.2 and the TxDb.Mmusculus.UCSC.mm10.knownGene' version 3.1.2 

transcript database respectively. Normalized FPKM (fragments per kilobase per million 

mapped reads) were obtained using the robust FPKM estimate function of DeSeq2 v1.10.1 

after removing the batch effect using the ComBat function of the sva package v3.18.0. 

Differentially expressed genes were obtained using the DESeqResults function of the same 

package. All p values were adjusted for multiple testing using the Benjamini & Hochberg 

FDR algorithm. For gene set enrichment analysis, we acknowledge our use of the GSEA 

software, and Molecular Signature Database (MSigDB) including the ImmuneSigDB (C7 

collection) (Godec et al., 2016; Subramanian et al., 2005).

Quantitation and Statistical Analysis

For tumor growth analysis, we used 2-way ANOVA followed by Bonferroni post-test (when 

more than 2 groups), and the non-parametric Mann-Whitney U test (when only 2 groups). In 

the 2nd case we did not take into account the measures before D7 as tumors have similar 

sizes. For other comparisons, we used 1-way ANOVA (when more than 2 groups of 

samples), and the unpaired Student t test (when only 2 groups).

Data and Software Availability

RNA-sequencing data have been deposited to NCBI (GEO: GSE82008).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• NF-ͬ B c-Rel regulates the transcriptional landscape of activated Tregs

• c-Rel activity in Tregs restricts anti-tumor responses

• Chemical c-Rel inhibition reduces melanoma growth and potentiates anti-

PD-1 therapy
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Figure 1. NF-ͬ B c-Rel Regulates the Activated-Treg Differentiation and Gene Expression
(A–C) CD62Llow CD44high aTreg and CD62Lhigh CD44low rTreg were sorted from 

Foxp3CRE-YFP (WT) mice and submitted to RNA-seq analysis. Gene expression was 

compared to that in stimulated total Foxp3crep65F/F (p65KO) and Foxp3crec-RelF/F (c-

RelKO) Treg (Oh et al., 2017). (A and B) Gene expression changes in WT aTreg versus WT 

rTreg were plotted against those in p65KO versus WT total Tregs (A) and c-RelKO versus 

WT total Tregs (B). Numbers and colored dots indicate genes upregulated in aTreg while 

downregulated in KO Treg (red) and downregulated in aTreg while upregulated in KO Treg 

(blue) (fold change >2, p < 0.01).

(C) Expression of selected aTreg genes.

(D) Representative FACS profiles in spleen Tregs from 5- to 7-week-old Foxp3cre, 

Foxp3crep65F/F, and Foxp3crec-RelF/F mice.

(E and F) Cumulative % (E) and absolute numbers (F) of rTreg and aTreg in spleen Tregs.

(G) Cumulative % of Ki67+ in spleen Tregs.

(H) RNA-seq analysis of aTregs sorted from Foxp3cre, Foxp3crep65F/F, and Foxp3crec-

RelF/F. Left heatmap shows expression of all 841 aTreg genes (fold change >2, p < 0.01 in 

WT aTreg versus WT rTreg) in each genotype. Right heatmap shows expression of selected 

aTreg genes. All RNA-seq data come from 2 independent experiments. FACS data is shown 

as mean ± SEM of 3 experiments with >6 mice/group. *p < 0.05, **p < 0.01, **p < 0.001; 

ns, non-significant. See also Figure S1.
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Figure 2. c-Rel Expression in Tregs Restricts Anti-tumor Immune Responses
Five- to 7-week-old Foxp3cre, Foxp3crep65F/F, and Foxp3crec-RelF/F were transplanted 

subcutaneously with B16F1 cells.

(A) Tumor growth over time. Numbers indicate the number of mice with detectable tumors 

at the end of the experiment.

(B–H) Flow cytometry analysis 16 days after tumor challenge, with (B–D, G, and H) or 

without (E–G) PMA-ionomycin re-stimulation. (B) Numbers of T cells among 106 live cells. 

(C) CD4/CD8 T cells ratio. (D) Percent of IFN-ͥ+ in gated CD4+Foxp3− (CD4) and CD8+ 

(CD8) live T cells. (E) Representative FACS profiles in TILs. Numbers indicate % in gate. 

(F) Percent of Foxp3+ cells among CD4+ T cells. (G and H) Percent of Helios+ and IFN-ͥ + 

among Tregs in TILs.

(I–K) Splenocytes were stained immediately (I and J) or after PMA-ionomycin re-

stimulation, 4 days after tumor challenge. Proportion of Ki67+ (I), CD44high (J), and 

TNFhighIFN-ͥ+ (K) cells is shown.

(L) Mice were transplanted as in (A) and were injected at D0 and D3 with anti-CD8 or IgG 

isotype control. Tumor growth over time is shown. All data are represented as mean ± SEM 

of at least 3 experiments. *p < 0.05, **p < 0.01; n.s., non-significant.

See also Figure S2.
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Figure 3. Chemical c-Rel Inhibition Impairs Treg Identity
(A and B) CD4+GFP+ Tregs were sorted form Foxp3eGFP spleens and stimulated for 16 hr 

with anti-CD3/CD28 and mIL-2 in the presence of 500 µg/mL PTXF or H20. (A) Western 

Blot on total cell lysates and cumulative expression of c-Rel and RelA across 3 experiments. 

(B) Representative FACS profiles in gated live CD4+ cells.

(C) Tregs sorted from Foxp3RFP mice were infected with GFP or c-Rel-GFP-encoding 

retroviruses and treated with PTXF or H2O as in (A). Data is shown as MFI relative to the 

GFP+H2O sample.

(D) Tregs sorted from Foxp3cre (WT) and Foxp3crec-RelF/F (c-RelKO) were treated as in (A) 

and analyzed by FACS. Data is shown as MFI relative to the WT+H2O sample.

(E–H) CD4+YFP+Tregs sorted from Foxp3cre (WT) and Foxp3crec-RelF/F were activated as 

in (B) and submitted to RNA-seq analysis. (E) Heatmap of differentially expressed genes 

(changed in at least one condition, using a fold-change cut-off >2 and a p value < 0.05 when 

compared to the WT+H2O samples). Gene expression in normalized for each row. (F) 

Expression of selected genes in each condition. (G) RNA-seq datasets were analyzed for 

signature enrichment using the C7 GSEA Collection (ImmunoSigDB). The proportion of 

unique and overlapping signatures (p value < 0.05) is shown. (H) Gene expression in WT 

aTreg versus WT rTreg (see Figure 1) was plotted against that in PTXF-treated Tregs versus 

H20-treated Tregs. Numbers and colored dots indicate genes upregulated in aTreg while 
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downregulated in PTXF Treg (red) and downregulated in aTreg while upregulated in PTXF-

Treg (blue) (fold change >2, p < 0.01).

(I–K) CD4+GFP+ Tregs were stimulated as in (B) and subsequently tested for in vitro 

suppression (I) and in vivo colitis assays (J and K). (I) Suppression of responder T cells 

proliferation. (J) Weight changes upon cell transfer, shown as % of the initial weight at D0. 

(K) Total colon length at D35 after transfer. In (A)–(D) and (I)–(K), data are shown as mean 

± SEM and are cumulative of 3–4 experiments. In (E)–(H), RNA-seq data is from 2 

independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001; n.s., non-significant.

See also Figure S3.
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Figure 4. c-Rel Inhibition by PTXF Suppresses Melanoma Growth
(A–G) WT C57BL/6J mice were transplanted subcutaneously with B16F1 cells and treated 

from D– 1 to D7 with PTXF or PBS. (A) Tumor growth over time. Arrows indicate the days 

of PTXF or PBS injection. (B–F) TILs were restimulated with PMA and ionomycin 16 days 

after tumor inoculation. (B) Cumulative numbers of T cells among 106 live cells. (C) 

CD4/CD8 T cells ratio. (D) Representative expression in CD8+ T cells (left) and cumulative 

% (right) of IFN-ͥ  in T cells. (E) Percent of Foxp3+Tregs in CD4+T cells. (F) Percent of 

IFN-ͥ+ in Tregs.

(G) qPCR analysis of total tumor RNA at D16.

(H) RAG1−/− mice were transplanted and treated as in (A). Tumor growth overtime is 

shown.

(I) WT C57BL/6J mice were transplanted and treated as in (A) with or without anti-CD8 

administration (blue arrows).

(J) Foxp3cre and Foxp3crec-RelF/F were transplanted subcutaneously with 3 × 105 B16F1 

cells and treated as in (A).

(K) WT C57BL/6J mice were transplanted subcutaneously with B16F1 cells and treated 

from D– 1 to D7 with IT-603 or vehicle (arrows). Data are represented as mean ± SEM of 3 

experiments. *p < 0.05, ***p < 0.001.

See also Figure S4.
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Figure 5. PTXF and PD-1-Blockade Have Additive Inhibitory Effects on Growth of Established 
Melanoma
(A–G) WT C57BL/6J mice were transplanted subcutaneously with B16F1 cells and treated 

from D6 with PTXF or anti-PD-1 mAb or PBS.

(A) Tumor growth over time. Red arrows, PTXF injections; black arrows, anti-PD-1 

injections.

(B–F) TILS were restimulated with PMA and ionomycin 16 days after tumor inoculation. 

(B) Cumulative numbers of T cells among 106 live cells. (C) CD4/CD8 T cells ratio. (D) 

Representative expression in CD8+ T cells (left) and cumulative % (right) of IFN-ͥ in T 

cells. (E) Percent of Foxp3+ Tregs in CD4+ T cells. (F) Percent of IFN-ͥ+ in Tregs.

(G) qPCR analysis of total tumor RNA at D16.

(H) Mice were treated as in (A) and were injected with anti-CD8 mAb or IgG at D7 and D9 

(blue arrows).

(I) Mice were treated as in (A) but with anti-PD-L1 mAb.

(J) WT Balb/C mice were transplanted subcutaneously with CT-26 cells and treated from D6 

with PTXF or anti-PD-1 mAb (100 µg) or PBS.

(K) WT C57BL/6J mice were transplanted subcutaneously with B16F1 cells and treated 

from with IT-603, and/or anti-PD-1, or vehicle. Data are represented as mean ± SEM of 3 to 

4 experiments. *p < 0.05, ***p < 0.001.

See also Figure S5.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse TCR-b, Percp-Cy5.5 conjugated, clone H57-507 Tonbo Biosciences 65-5961

Anti-mouse CD16/CD32, unconjugated, clone 2.4G2 Tonbo Biosciences 70-0161

Anti-mouse CD4, APC-eFluor 780 conjugated, clone RM4-5 EBioscience 47-0042-82

Anti-mouse CD8a, PE-CF594 conjugatedm clone 53.6.7 BD Biosciences 562315

Anti-mouse CD45, Alexa Fluor 700 conjugated, clone 30F11 Tonbo Biosciences 80-0451

Anti-mouse IFN-gamma, PE-Cy7 conjugated, clone XMG1.2 Tonbo Biosciences 60-7311

Anti-mouse TNF, FITC conjugated, clone MP6-XT22 EBioscience 53-7321-82

Anti-mouse IL-2, PE conjugated, clone JES6 BD Biosciences 554428

Anti-mouse/rat Foxp3, eFluor 450 conjugated, clone FJK16S EBioscience 48-5773-82

Anti-mouse Helios, PE conjugated, clone 22F6 BioLegend 137206

Anti-mouse GITR, PE-Cy7 conjugated, clone DTA-1 EBioscience 25-5874-80

Anti-mouse CD25, APC conjugated, clone PC61.5 Tonbo Biosciences 20-0251

Anti-mouse CD62L, PE conjugated, clone MEL14 Tonbo Biosciences 50-0621

Anti-mouse CD44, APC conjugated, clone IM7 Tonbo Biosciences 20-0441

Anti-mouse/human Ki-67, PE-Cy7 conjugated, clone B56 BD Biosciences 561283

Anti-mouse CD103, PE conjugated, clone 2E7 EBioscience 12-1031082

Anti-mouse Ly6C APC conjugated, clone HK1.4 EBioscience 17-593280

Anti-mouse PD-1, PE conjugated, clone J43.1 Tonbo Biosciences 50-9985

Anti-mouse Klrg1, APC conjugated, clone 2F1 Tonbo Biosciences 20-5893

Polyclonal anti-C-Rel, unconjugated, clone sc71 Santa Cruz c-Rel SC-71

Polyclonal anti-RelA p65, unconjugated, clone sc70 Santa Cruz RelA SC-70

Monoclonal anti-mouse GAPDH, unconjugated Fitzgerald 10R-G109a

In vivo mAb anti-mouse PD-1, clone RMP1-14 BioXCell BE0146

In vivo mAb anti-mouse CD8, clone YTS.169-4 BioXCell BE0117

In vivo mAb anti-mouse CD3, clone 145-2C11 BioXCell BE0001-1

Anti-mouse CD28, Na/Le BioLegend 102102

In vivo mAb anti-mouse PD-L1, clone 10F.9G2 BioXCell BE0101

Chemicals, Peptides, and Recombinant Proteins

Lipofectamine 2000 Invitrogen 11668-019

Pentoxifylline, powder Sigma P1784

Mouse Interleukin-2 Peprotech 212-12A

PMA salt Sigma P8139

IT-603 EMD Millipore 530654

Cremophor EL EMD Millipore 238470

Golgi Plug protein transport inhibitor BD Biosciences 555029

Collagenase type IV form C.Histolyticum Sigma C5138
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REAGENT or RESOURCE SOURCE IDENTIFIER

DNase I from bovine pancreas Sigma DN25

gp100/pmel 17 peptide NeoBiolabs 58686

Superscript IV reverse transcriptase Invitrogen 18090050

Veriquet Fast SYBR Fluor Affymetrix 75675

Ionomycin salt Sigma 10634

Critical Commercial Assays

Magnisort mouse CD4 T cells enrichment kit Invitrogen 8804-6821

Cell Trace Violet Cell proliferation kit Life technologies C34557

QIAGEN RNEasy MiniKit QIAGEN 74106

Deposited Data

RNA-seq data: WT, p65KO, cRelKO rTregs, aTregs https://www.ncbi.nlm.nih.gov/geo/ N/A

RNA-seq data: stimulated WT+H2O/PTXF and crelKO Tregshttps://www.ncbi.nlm.nih.gov/geo/ N/A

Experimental Models: Cell Lines

Human Phenix-ECO ATCC CRL-3214

Mouse B16-F1 ATCC CRL-6323

Mouse B16-F10 ATCC CRL-6475

Mouse CT-26.WT ATCC CRL-2638

Mouse Braf.V600E.PtenKO This paper N/A

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Jackson Laboratories 000664

Mouse: RAG1-deficient Jackson Laboratories 002216

Mouse: Foxp3-YFP-CRE Jackson Laboratories 016959

Mouse: Balb/cJ Jackson Laboratories 000651

Mouse: BRafCA, PtenloxP, TyrᙵCreERT2 Jackson Laboratories 013590

Mouse: c-Rel-Flox (Ulf Klein) Heise et al., 2014 N/A

Mouse: RelA-Flox (Roland Schmid) Algul et al., 2007 N/A

Mouse: Foxp3-eGFP Jackson Laboratories 016959

Mouse: Foxp3-RFP Jackson Laboratories 016959

Mouse: CD45.1 Ptprca Pepcb/BoyJ Jackson Laboratories 016959

Oligonucleotides

Cblb F CCATGCTTGACTTGGACGATGAC N/A

Cblb R TGGCGATGTGACTGGTGAGTTC N/A

Ccl22 F GTGGAAGACAGTATCTGCTGCC N/A

Ccl22 R AGGCTTGCGGCAGGATTTTGAG N/A

Ccl4 F ACCCTCCCACTTCCTGCTGTTT N/A

Ccl4 R CTGTCTGCCTCTTTTGGTCAGG N/A

Ccr7 F GCCCAGATGGTTTTTGGGTTC N/A

Ccr7 R GCAAGGTACGGATGATAATGAGG N/A

Cd4 F GTTCAGGACAGCGACTTCTGGA N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cd4 R GAAGGAGAACTCCGCTGACTCT N/A

Cd8a F ACTACCAAGCCAGTGCTGCGAA N/A

Cd8a R ATCACAGGCGAAGTCCAATCCG N/A

Gapdh F TTCACCACCATGGAGAAGGC N/A

Gapdh R GGCATGGACTGTGGTCATGA N/A

Gzmb F CAGGAGAAGACCCAGCAAGTCA N/A

Gzmb R CTCACAGCTCTAGTCCTCTTGG N/A

H2-Aa F TGGGCACCATCTTCATCATTC N/A

H2-Aa R GGTCACCCAGCACACCACTT N/A

Ifng F ATCAACGCTACACTGCATCTTGGCTT N/A

Ifng R CCTCAAACTTGGCTACTCATGAATGC N/A

Il1r2 F CCCCTGGAGACAATACCAGC N/A

Il1r2 R TTAGCCAACCACCACACAATG N/A

Il2 F TGAGCAGGATGGAGAATTACAGG N/A

Il2 R GTCCAAGTTCATCTTCTAGGCAC N/A

Itga2b F TGGACTCAGCCCTTCACTCT N/A

Itga2b R ACCTCAACCGAGACGGCTAT N/A

Itga5 F GTCCTATCCAGTGCACCACC N/A

Itga5 R TACTCCACAGGCTCCTCTCC N/A

Itgav F TTGCCCTCCTTCTACAATCC N/A

Itgav R ATTCGCCGTGGACTTCTTC N/A

Itgb1 F CAGGAAACCAGTTGCAAATTC N/A

Itgb1 R ACACCGACCCGAGACCCT N/A

Itgb3 F CGCCTCGTGTGGTACAGAT N/A

Itgb3 R AGTGGCCGGGACAACTCT N/A

Itih5 F GAATTGTGACGAGAGCCTCC N/A

Itih5 R AAACCTCCCTCCTCTACCCA N/A

Nkg7 F CCACAGGTCCTCACTTCTCTGC N/A

Nkg7 R CAGCCAGGATACAGAAGCTCTG N/A

Pdcd1 F CGGTTTCAAGGCATGGTCATTGG N/A

Pdcd1 R TCAGAGTGTCGTCCTTGCTTCC N/A

Pde3b F GAGGTCATCGTCTGTGTCACTG N/A

Pde3b R GTTAGAGAGCCAGCAGACACTG N/A

Prf1 F ACACAGTAGAGTGTCGCATGTAC N/A

Prf1 R GTGGAGCTGTTAAAGTTGCGGG N/A

Ptprc F CTTCAGTGGTCCCATTGTGGTG N/A

Ptprc R TCAGACACCTCTGTCGCCTTAG N/A

Satb1 F TCACAGGCAGTATTTGCACGCG N/A

Satb1 R CGAAGGTTTACCAGCAGAGACTG N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Tbx21 F CCTCTTCTATCCAACCAGTAT N/A

Tbx21 R CTCCGCTTCATAACTGTGT N/A

Tgfb1 F CCCTATATTTGGAGCCTGGA N/A

Tgfb1 R CTTGCGACCCACGTAGTAGA N/A

Tnf F CTGGGACAGTGACCTGGACTGT N/A

Tnf R ACTCTCCCTTTGCAGAACTCAGG N/A

Tnfrsf8 F ACTACGTCAATGAAGACGGGA N/A

Tnfrsf8 R TCACAGATTCGAGGAGAGTTCC N/A

Recombinant DNA

MIG(F)-CRel N/A Addgene 26984

MIGR1 (ctrl GFP vector) N/A Addgene 27490

Software and Algorithms

FlowJo https://www.flowjo.com N/A

Graphpad Prism http://www.graphpad.com/scientific-software/prismN/A

DESEq2 (1.14.1) http://bioconductor.org/packages/release/bioc/html/DESeq2.htmlN/A

GenomicAlignments (1.10.1) https://bioconductor.org/packages/release/bioc/html/GenomicAlignments.htmlN/A

GenomicFeatures (1.26.4) http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.htmlN/A

sva (3.18.0) https://bioconductor.org/packages/release/bioc/html/sva.htmlRRID:SCR_012836

TxDb.Mmusculus.UCSC.mm9.knownGene (3.4.0) http://bioconductor.org/packages/release/data/annotation/html/TxDb.Mmusculus.UCSC.mm9.knownGene.htmlN/A

R (3.3.3) http://www.r-project.org/ RRID:SCR 001905

Gene Set Enrichment Analysis Software http://software.broadinstitute.org/gsea/index.jspN/A

Ingenuity Pathway Analysis https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/N/A

Morpheus https://software.broadinstitute.org/morpheus/N/A

Other

GEO accession number (RNaseq data) GEO: GSE82008 N/A
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