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Abstract 

 

Locating and classifying damaged fasteners, such as bolts, in large engineering structures 

is vital in many health monitoring applications. Whilst traditional signal processing 

methods are often used to identify the presence of such fasteners, accurately estimating 

their location remains an ongoing challenge. In recent years, image detection (or the 

location of objects within images) using deep learning algorithms, such as convolutional 

neural networks (CNNs), has seen substantial improvements. This is largely due to the 

abundant database of images provided by internet search engines, as well as significant 

advances in computing power. Moreover, advances in digital imaging technology mean 

that affordable computer vision systems are now more readily available than ever before. 

 

In this paper, a CNN architecture is proposed for the task of detecting damaged bolts in 

engineering structures. The new architecture forms part of a regional convolutional neural 

network (R-CNN), which applies a bounding box regression algorithm for bolt location 

alongside a softmax classifier for damage classification. A dedicated training set is also 

developed, which combines internet search engine data with images of a specifically-

designed bolt rig. The new images extend the current dataset with the purpose of 

developing a bolt detector that is invariant to camera angle and location, as well as 

environmental factors such as lighting and shadows. 

 

1.  Introduction 
 

Although small in size, fasteners, such as bolts and rivets, play a vital role in the 

performance of many engineering structures. Damage occurs due to a variety of factors 

such as corrosion, general wear and tear and external loading, which can lead to an overall 

reduction in performance or even complete failure. It is for this reason that visual 

inspection of fasteners is an essential operation in many engineering applications. Most 

commonly, visual inspection is performed by human experts, which can be expensive, 

dangerous and subjective. Therefore, automated visual inspection of fasteners, using 

image recognition algorithms, is of great interest to both academic and industrial 

engineers alike.  

 

1.1 Image recognition  

 

Image recognition is a collective term used to refer to several image processing and 

machine learning tasks, including but not limited to: image classification, where a single 

label is assigned to an image from a fixed set of classes, object localisation, where a 

bounding box is fitted around a single object within in image, and object detection, where 

bounding boxes are fitted around several objects from various classes within an image. 
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In 2010, The Stanford Vision Lab launched the ImageNet Largescale Visual Recognition 

Challenge (ILSVRC) with the intention of improving current capabilities in image 

recognition. As part of ILSVRC, the organisers released the largest publically available 

dataset for image recognition, which includes over 10 million labelled images with 1 

million hand annotations (bounding boxes) split over 1000 classes. Since then, there has 

been dramatic improvements in image recognition accuracy, largely due to the 

reintroduction of convolutional neural networks (CNNs).  

 

A CNN is a type of deep, feed-forward artificial neural network, that has been adapted 

specifically for use with large three-dimensional (colour) images. Similarly to traditional 

neural networks, CNNs extract features, that were traditionally hand engineered, using a 

set of learnable parameters. However, the networks use convolution to reduce the number 

of parameters compared to a fully connected network, a characteristic which also makes 

them shift (or location) invariant i.e. the same features are extracted over the whole image. 

Many variations on the basic CNN have been submitted to ILSVRC, however, AlexNet 

[1] was the first to receive substantial attention.  

 

AlexNet was submitted to ILSVRC in 2012 and achieved a top-5 classification accuracy 

rate of 84.7% (top-5 classification accuracy is where the correct class label is one of 5 

highest classification probabilities), a considerable increase in accuracy when compared 

to previous state-of-the-art classifiers. The network also achieved a top-1 accuracy of 

60.3%. The improvement was largely a result of the introduction of several non-

conventional machine learning methods. AlexNet was the first CNN to use the rectified 

linear units (ReLU) activation function to introduce non-linearity, moreover, it was the 

first CNN to be trained using dropout, where connections between layers are randomly 

set to zero during training, in order to reduce overfitting. More recent submissions to 

ILSVRC have achieved top-5 classification accuracy rates as high as 97% [2]. 

 

CNNs have also been applied to image detection, most notably in the form of the regional 

convolutional neural network (R-CNN) [3]. An R-CNN contains three separate modules. 

Firstly, a fixed number of regions of interest (ROIs), or areas that are most likely to 

contain a single object, are proposed using the edge boxes algorithm [4]. Each ROI is 

then passed through a CNN to transform it into a fixed length feature vector.  The feature 

vector is then passed into a classifier, which assigns a label to each ROI, and a parallel 

bounding box regressor, which fits a box around the object in each ROI. The R-CNN has 

since been adapted to improve training and test times [5]. 

  
2.2 Image recognition for (damaged) bolt detection 

 

One of the main applications of automated damaged fastener detection is in railway track 

inspection.  Marino et al. [6] used a multi-layer perception neural network to classify 

missing hexagonal bolts in railway tracks, whilst Yang et al. [7] used the principal 

components of a wavelet transform as features, before applying a linear discriminant 

analysis to classify bolts as present or missing. More recently, Feng et al. [8] used the 

line-segment detection algorithm to locate railway tracks and sleepers, and indirectly 

locate the fasteners, before applying a probabilistic damage classification method. 

 



 3 

The current paper looks to apply the recent advances in CNNs, and more specifically R-

CNNs, to the problem of detecting damaged fasteners in engineering structures, and is 

organised as follows. Firstly, a new, specifically-designed, dataset is presented in Section 

2, before a more detailed introduction to R-CNN theory in Section 3.  In Section 4, a new 

CNN architecture for damaged bolt classification is discussed, and in Section 5, this is 

adapted for damaged bolt detection. Finally, conclusions from this work are drawn in 

Section 6.   

 

2.  A new dataset 
 

The dataset used in this paper is a combination of ILSVRC data, and a newly-developed 

dataset for the specific purpose of damage detection in hexagonal bolt heads. The 

ILSVRC dataset contains a bolt subset consisting of 1177 labelled images from internet 

search engines. The images ae all in the red-green-blue (RGB) colour space, and range in 

size from Ͳ ൈ60ൈ3 pixels to 2048ൈ1456ൈ3 pixels. The images range from photographs 

of bolts in-use to bolts for sale online, they also include a small subset of corroded bolts. 

A selection of the images can be seen in Figure 1. 

 

 

 
Figure 1: A selection of images from the ILSVRC dataset. 

Whilst the ILSVRC dataset is extensive, it lacks variance in environmental conditions 

such as lighting conditions and shadows, as well as camera angle and depth. Moreover, 

the dataset contains very few damaged bolts. Therefore, a new dataset was collected to 

extend the ILSVRC dataset. A steel plate was used to house 50 M8 bolts in a regular grid 

pattern. Images were then taken at a range of depths and angles, before changing the 

lighting and repeating the same images.  

 

Damage was then induced into the bolts by grinding flat edges of different sizes onto the 

heads at random locations. The image acquisition process was then repeated. The images 

were annotated by drawing ground truth bounding boxes around the bolt heads, which 

later act as target variables for bounding box regression. A selection of the annotated 

images can be seen in Figure 2. A separate test set was also captured that contains a 

mixture of damaged and undamaged bolts in random locations.  
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Figure 2: A selection of image from new dataset: green bounding boxes indicate undamaged bolts whilst red indicate 

damage. 

 

3.  Regional convolutional neural networks - theory 
 

The input to any CNN is a 3-dimensional image of size ܆ א Թ௪ሾబሿൈሾబሿൈௗሾబሿ  , where ݓሾሿ 
is the width of the image, ݄ሾሿ is its height, and ݀ሾሿ ൌ ͵ is its depth. Throughout this 

paper, superscripts with square brackets are used to denote the layer number. A CNN 

maps the input image to some output ݕො, in the case of classification this is a vector of 

class probabilities, and in object detection this is a vector describing a bounding box. An 

R-CNN involves both classification and bounding box regression. The classifier must be 

able to classify an input as positive (i.e. undamaged bolt or damaged bolt) or negative 

(background). Therefore, when training the classifier for an R-CNN, negative examples 

must be included in the training set. Instead of passing the whole image through the CNN, 

small regions of the image which may or may not contain an object are used as individual 

training examples. Therefore, a single training image ݔ, is associated with a set of ground 

truth bounding boxes (hand annotations) ݃, and their corresponding class labels ݕ, 

 ݃ א Թீൈସ ൌ ݃ଵ௫ ݃ଵ௬ ݃ଵ௪ ݃ଵڭ ڭ ڭ ௫ீ݃ڭ ݃௬ீ ݃௪ீ ݃ீ     and     ݕ א Թீൈଵ  ܿீܿڭ ൩ ሺͳሻ 

 

Where ܩ is the total number of bounding boxes in image ݔ, ݃௫ is the ݔ-coordinate of the 

centre of bounding box ݅, ݃௬ is the ݕ-coordinate of the centre of bounding box ݅, ݃௪ is 

the width of bounding box ݅, ݃ is the height of bounding box ݅, and ܿ א ሼͳǡ ǥ  ሽ is theܥ

class label of the ݅௧ bounding box. In the case of a damaged bolt detector, ܥ ൌ ʹ. 

 

The image is passed through a region proposal algorithm such as the edge boxes 

algorithm, which outputs a fixed number of regions of interest (ROIs) . Each of these 

regions of interest must then be assigned a class label ( ܿ) and a single bounding box 

ground truth label (݃). This is achieved by calculating the intersection over union (IOU) 

with all ground truth bounding boxes in ݃.  The intersection of union (IOU) is given by, 

 IOU൫ǡ ݃൯ ൌ Area of overlapArea of union ሺʹሻ 
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Then,  is assigned the target class ܿ and target bounding box ݃ with which it has the 

highest IOU, so long as the IOU is greater than 0.7.  Also, if the IOU of  with all ݃ is 

less than 0.3,  is labelled as a negative example (ܿ ൌ Ͳ)  and given no bounding box. 

All other ROIs are discarded. Therefore, each training example for an R-CNN consists of ሺݔሻ, the pixel values in the region , a class label ܿ (which may contain an object ܿ  Ͳ or may not ܿ ൌ Ͳ), and a ground truth bounding box ݃ ൌ ൣ݃௫ǡ ݃௬ǡ ݃௪ǡ ݃൧Ǥ   Each of 

the layers that make up an R-CNN is now discussed in turn.  

 

3.1 Convolutional layers 

 

A convolutional layer replaces the traditional hidden layer in a neural network; it takes as 

input the activation from the previous layer ۯሾିଵሿ א Թ௪ሾషభሿൈሾషభሿൈሾషభሿ
 and transforms 

this into a new activation map ۯሾሿ א Թ௪ሾሿൈሾሿൈሾሿ
. The layer consists of a set of ܭሾሿ 

learnable filters ܅ሾሿ א Թሾሿൈሾሿൈሾషభሿ
 and biases ܾሾሿ א Թ. The spatial size of these filters 

is usually much smaller than the input (݂ሾሿ ا  ሾିଵሿ); however, they must extendݓ

through the full depth of the input. This paper assumes that all filters are square, however, 

this is not necessary. A forward pass consists of convolving each of the filters with the 

input volume i.e. each filter is slid across the width and height of the input and the sum 

of the elementwise product calculated at each location. As a 3D filter is moved around 

the input volume, a 2D activation map is produced that gives the responses of the filter at 

every spatial position.  The activation maps from each filter are then stacked on top of 

one another before applying an activation function, such as the ReLU function (fሺݔሻ ൌmaxሺͲǡ  ሻ). Therefore, the output of any convolutional layer has a depth equal to theݔ

number of filters in that layer; this can be seen in Figure 3.  

 

A 2D convolutional process can be seen in Figure 4, where the red matrix is the input, 

blue is the filter and green is the resultant activation map. The input is usually padded 

with zeros so that each neuron (pixel) in the input is connected to the same number of 

neurons in the output, but it is also used to preserve the spatial size of the input i.e. the 

hyperparameter ሾሿ is usually chosen so that the width and height of the output matches 

that of the input. Another hyperparameter that controls the spatial size of the output is the 

stride ݏሾሿ or the step size with which the filter is moved around the input (in practice this 

value is usually either 1 or 2). Therefore, it can be shown that the activation map of a 

convolutional layer has spatial dimensions, 

ሾሿݓ  ൌ ௪ሾషభሿାଶሾሿିሾሿ௦ሾሿ  ͳ  and  ݄ሾሿ ൌ ሾషభሿାଶሾሿିሾሿ௦ሾሿ  ͳ ሺʹሻ   

 

The complete forward pass of a convolutional layer is given by, 

ǡݔሾሿሺ܈  ǡݕ ݇ሻ ൌ    ሾሿ܅ ൈ ҧݔሾିଵሿሺۯ  ܽǡ തݕ  ܾǡ ܿሻሾషభሿ


ሾሿ


ሾሿ
  ܾሾሿ ሺ͵ሻ ۯሾሿ ൌ ݃ሾሿ൫܈ሾሿ൯ ሺͶሻ 
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Where ൈ denotes the elementwise multiplication and ݃ሾሿ is the activation function of 

layer ݈, ݔҧ ൌ ሺݔ െ ͳሻ݂ሾሿ  തݕ ሾሿ andݏ ൌ ሺݕ െ ͳሻ݂ሾሿ   ሾሿ The backward pass is thenݏ

given by, 

ሾሿ܈߲  ൌ ሿܔሾۯ߲ ൈ ݃Ԣሾሿ൫܈ሾሿ൯ ሺͷሻ ߲܅ሾሿ ൌ   ҧǣݔሾିଵሿ൫ۯ ҧݔ  ݂ሾሿǡ തǣݕ തݕ  ݂ሾሿǡ ǣ ൯ ൈ ǡݔሾሿሺ܈߲ ǡݕ ݇ሻሾሿ
௬

௪ሾሿ
௫ ሺሻ 

ܾሾሿ ൌ   ሾሿሺ݅ǡ܈߲ ݆ǡ ݇ሻሾሿ


௪ሾሿ
 ሺሻ 

ҧǣݔሾିଵሿ൫ۯ߲ ҧݔ  ݂ሾሿǡ തǣݕ തݕ  ݂ሾሿǡ ǣ ൯ ൌ  ሾሿ܅ ൈ ǡݔሾሿሺ܈߲ ǡݕ ݇ሻሾሿ
 ሺͺሻ 

 

Where the superscript Ԣ denotes the first derivative.  

 

 
Figure 3: Diagram detailing the dimensions of a simple convolutional neural network with a single convolutional 

layer followed by a single pooling layer. 

 
Figure 4: A 2D convolution process 
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3.2 Pooling layers 

 

Convolutional layers are often followed a pooling layer, which is used to subsample the 

activation maps, and can dramatically reduce both training and test times. Since pooling 

layers reduce the number of parameters, they are also used to reduce overfitting. A 

pooling layer works by partitioning a 2D activation map into a set of non-overlapping 

rectangles, and applying a non-linear pooling function to each matrix. The pooling 

function is applied to each dimension separately so that the output of any pooling layer 

has the same dimension as the input (Figure 3).  The most common pooling functions are 

the maximum or average functions, and this paper will only make use of the maximum, 

 ݂ሺݔሻ ൌ maxሺݔሻ ሺͻሻ 
 

The size of the output is again controlled by a set of hyperparameters. This paper assumes 

that each rectangle is a square of size ݂ሾሿ ൌ ʹ and the pooling is applied with a stride of ݏሾሿ ൌ ʹ i.e. the maximum function is applied to every 2x2 square in the input so that 

every neuron in the input is connected to exactly one neuron in the output, as is shown in 

Figure 5.  

 
Figure 5: A 2D max pooling operation 

A complete forward pass of a max pooling layer is given by, 

ǡݔሾሿሺ܈  ǡݕ ݇ሻ ൌ ǡݔሾሿሺۯ ǡݕ ݇ሻ ൌ maxאǡא ሾିଵሿሺ݅ǡۯ ݆ǡ ݇ሻ ሺͳͲሻ 

 

Where ܺ ൌ ሼ݅ݏݔሾሿǣ ሾሿݏݔ݅  ݂ሾሿሽ and ܻ ൌ ሼ݆ݏݕሾሿǣ ሾሿݏݕ݆  ݂ሾሿሽ. In practice, a mask is 

cached during the forward pass so as to remember which neurons in the input were 

selected by the max function, since only the neurons that pass through the pooling layer 

contribute to the loss, and only these neurons should be included in the parameter update. 

The backward pass is then given by, 

ሾሿ܈߲  ൌ ሾିଵሿאǡאۯ߲ ሾሿ ሺͳͳሻۯ߲ ሺ݅ǡ ݆ǡ ݇ሻ ൌ ቊͲ                        if maskሾሿሺ݅ǡ ݆ǡ ݇ሻ ൌ Ͳ߲܈ሾሿሺݔǡ ǡݕ ݇ሻ   if maskሾሿሺ݅ǡ ݆ǡ ݇ሻ ൌ ͳ ሺͳʹሻ 

 
3.3 Dropout layers 

 

Overfitting is a serious problem in deep learning, due to the vast number of learnable 

parameters, and an often limited amount of training data. Alongside the common 

regularisation methods such as L2 regularisation, data augmentation and early stopping, 
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a common method to deal with overfitting in CNNs is to include a number of dropout 

layers within a network. The idea behind dropout is to randomly drop (set equal to zero) 

neurons, with some probability ݍሾሿ, during training. The purpose of this is to stop the 

neurons from co-adapting and becoming dependent on one another.   

 

In practice, this is implemented by creating a random binary mask (maskሾሿ) with the 

same size as the input ۯሾିଵሿ. The number of ones and zeros in the mask is ݍሾሿ times the 

total size of ۯሾିଵሿ. Then, a forward pass is completed by calculating,  

ሾሿۯ  ൌ ሾሿ܈ ൌ maskሾሿ ڄ ሾିଵሿۯ ሺͳ͵ሻ 

 

With corresponding backward pass, 

ሾሿ܈߲  ൌ ǡݔሾିଵሿሺۯ߲ ሾሿ ሺͳͶሻۯ߲ ǡݕ ݇ሻ ൌ ቊͲ                        if maskሾሿሺݔǡ ǡݕ ݇ሻ ൌ Ͳ߲܈ሾሿሺݔǡ ǡݕ ݇ሻ   if maskሾሿሺݔǡ ǡݕ ݇ሻ ൌ ͳ ሺͳͷሻ 

 

3.4 Fully-connected layers 

 

Towards the end of the network, the activation map is vectorised (ۯሾିଵሿ ՜ ܽሾିଵሿ) and 

passed through one or more fully-connected layers. As with a standard neural network, 

each neuron in a fully connected layer is connected to every activation in the previous 

layer via a set of learnable weights Wሾሿ and biases ܾሾሿ. The purpose of these layers is to 

reduce the size of the activation map to that required by the classification or regression 

output. The forward pass is given by, 

 zሾ୪ሿ ൌ Wሾሿaሾିଵሿ  ܾሾሿ ሺͳሻ aሾሿ ൌ ݃ሾሿ൫zሾሿ൯ ሺͳሻ 

 

Whilst the backward pass is given by, 

 ߲zሾሿ ൌ ߲aሾሿ݃ᇱሾሿ൫ݖሾሿ൯ ሺͳͺሻ ߲Wሾሿ ൌ ߲zሾሿሺaሾିଵሿሻ் ሺͳͻሻ ߲ܾሾሿ ൌ ߲zሾሿ ሺʹͲሻ 

 

3.5 Softmax Regression  

 

The activation function applied to the final fully-connected layer of a multi-class 

classification R-CNN is usually the Softmax function, such that, 

ොݕ  ൌ ܽሾሿ ൌ ݁௭ሾಽሿσ ݁௭ሾಽሿ ሺʹͳሻ 

 

Where ݕො are the normalised class probabilities. For training purposes the class label ( ܿ) 

for a single training example  is transformed into a binary vector ݕ of length C+1 
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(where a 1 indicates the correct class). Therefore the the loss function for a single training 

example (ሺݔሻ,ݕ) is given by, ࣦ൫ݕො ǡ ൯ݕ ൌ െ  ݕ log ොݕ
ୀଵ ሺʹʹሻ 

The corresponding cost function for all ݊ ROIs in all ݉ training examples is the given 

by,  

ܬ  ቀ܅ଵሾଵሿǡ ܾଵሾଵሿǡ ǥ ቁ ൌ ͳ݉  ݊   ࣦቀݕොሺሻǡ ሺሻቁݕ



  ʹሺ݉ߣ  ݊ሻ   ቛ܅ሾሿቛிଶ

ሾሿ



ୀଵ ሺʹ͵ሻ 

 

Where ߣ is the classification regularisation parameter, and ԡ ԡி is the Frobenius norm.  

 

3.6 Bounding Box Regression  

 

The bounding box regressor(s) acts separately to the classifier, and is usually connected 

to the final convolutional, pooling, or dropout layer via a series of fully-connected layers. 

The final fully-connected layer performs a parameterised transformation of the activation 

map from the previous layer ܽሾିଵሿ into an output bounding box ො݃. Such that, 

 ො݃ ௫ ൌ ௪W௫்ܽሾିଵሿ  ௫ ሺʹͶሻ ො݃ ௬ ൌ W௬்ܽሾିଵሿ  ௬ ሺʹͷሻ ො݃௪ ൌ ௪exp൫W௪்ܽሾିଵሿ൯ ሺʹሻ ො݃ ൌ exp ቀW்ܽሾିଵሿቁ ሺʹሻ 

 

Where W* are class specific vectors of length 4. The loss function for a single training 

example (ሺݔሻ,݃) is then given by, 

 ࣦ൫ ො݃ ǡ ݃൯ ൌ ฮ݃ െ ො݃ฮଶଶ ሺʹͺሻ 

 

Where ԡ ԡଶ is the ܮଶ norm. The corresponding cost function for all ݊ ROIs in all ݉ 

training examples is then given by: ܬ ቀ܅ଵሾଵሿǡ ܾଵሾଵሿǡ ǥ ቁ ൌ ͳ݉  ݊   ࣦቀݕොሺሻǡ ሺሻቁݕ



  ʹሺ݉ߣ  ݊ሻ   ቛ܅ሾሿቛிଶ

ሾሿ



ୀଵ ሺʹͻሻ 

 

4.  Classification of damage in bolt heads 
 

The first step in designing a damaged bolt detector is to construct and train a convolutional 

neural network that can classify bolts as damaged or undamaged (as well as classify 

background images). The main body of the classification CNN is then used to train a 

bounding box regressor.  
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One of the difficulties in training a deep CNN, besides the time constraint, is the vast 

number of hyperparameters, in particular, the architectural hyperparameters. In order to 

reduce the number of architectural hyperparameters a CNN was constructed as follows. 

The main bulk of the CNN contains ܰ blocks of convolutional layers, with each layer 

within a block having ܰ convolutional layers. Standard practice is to have the number of 

filters in each convolutional layer increase throughout the network. Therefore, all 

convolutional layers in the first block contained ܭሾଵሿ filters, whilst all layers in the second 

block contained ʹܭሾሿ, and all layers in the final convolutional block contained ܰܭሾሿ 
filters. The parameters ܰ, ܰ, and ܭሾሿ are left as hyperparameters to be tuned.   

 

Within each of the convolutional layers, stride was set to one so that each neuron in the 

input is connected to the same number of neurons in the output. Moreover, as is common, 

padding in all convolutional layers is set so that the output volume has the same spatial 

dimensions as the input, this is commonly referred to as 'same' padding.  Also, the filter 

size in all convolutional layers is set to a single hyperparameter ݂ሾሿ ൌ ݂ to be tuned. 

 

Each of the convolutional blocks was followed by a max-pooling layer with 

hyperparameters ݂ሾሿ ൌ ʹ and ݏሾሿ ൌ ʹ fixed. Each of the max-pooling layers was 

followed by a dropout layer with a probability hyperparameter ሾሿ ൌ  to be tuned. The 

final convolutional/pool/dropout block was followed by a single fully connected layer 

which reduced the activation map to a vector of size 3, before applying the softmax 

function to output the normalised class probability.  

 

The classifier was trained using mini-batch gradient descent with momentum, which 

updates the parameters with the following update rule: 

܅ఋݒ  ؔ ܅ఋݒߚ   ሺͳ െ ఋݒ    and   ܅ሻ߲ߚ ؔ ఋݒߚ  ሺͳ െ ሻ߲ܾߚ ሺ͵Ͳሻ ܅ ؔ ܅ െ ܾ   ݀݊ܽ    ܅ఋݒߙ ؔ ܾ െ  ఋ ሺ͵ͳሻݒߙ

 

Where ߚ, the momentum, and ߙ, the learning rate, are also hyperparameters to be tuned. 

Therefore, the network has a total of 8 hyperparameters, 5 structural ( ܰ ǡ ܰǡ ሾଵሿǡܭ ݂ǡ  (

and 3 learning (ߣǡ ǡߚ  .that were tuned using Bayesian optimisation ,(ߙ

 

4.1 Bayesian optimisation 

 

In order to tune the set of hyperparameters, the test set, described in section 2, was split 

randomly into two subsets so as to produce a cross validation and test set. The 

hyperparameters can then be tuned by comparing the error on the cross validation set. 

Since the function that maps the hyperparameters to the validation error (or objective 

function) is unknown, a black box optimisation method is required to minimise the 

objective function.  

 

Bayesian optimisation works by iteratively constructing a Gaussian function that 

approximates the mapping from hyperparameters to validation error. Initially, a small 

number of hyperparameter combinations are evaluated (i.e. the CNN is trained and 

validation error calculated) before constructing the Gaussian process. The optimum 
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configuration, based on the current model, is then evaluated before updating the Gaussian 

process.  

 

The optimisation algorithm was performed over the following hyperparameter space: 

 ௗܰ ൌ ሼͳǣ Ͷሽǡ ଵܰ ൌ ሼͳǣ ͵ሽǡ ݂ ൌ ሼ͵ǣ ሽǡ ሾଵሿܭ ൌ ʹͲǣ Ͳǡ  ൌ ሼͲǣ ͳሽǡ  ߚ ൌ ሼͲǤͺǣ ͳሽǡ ߙ ൌ ሼͲǤͲͳǣ ͲǤͲͲͳሽǡ ߣ ൌ ሼͳ݁ିହǣ ͳ݁ିଶሽ  

 

Before finding an optimum configuration of:  

 ௗܰ ൌ ͵ǡ ଵܰ ൌ ʹǡ ݂ ൌ ͵ǡ ሾଵሿܭ ൌ ͵ͺǡ  ൌ ͲǤͲͳǡ ߚ ൌ ͲǤͺͺǡߙ ൌ ͲǤͲͲͶ͵ǡ ߣ ൌ ͳǤͳ݁ିହ  
 

After optimisation, the CNN achieved a classification accuracy of 92.3% on the validation 

set, and an accuracy of 91.7% on the unseen test set. A selection of the test results can be 

seen in Figure 6. 

 
Figure 6: A selection of classification test results 

 

5.  Detection of damaged bolt heads 
 

The bolt detector shares the feature extraction layers (i.e. convolutional, pooling, and 

dropout) with the classifier. Therefore, in order to train the bounding box regressors for 

the damaged and undamaged classes, the learning rate ߙ for these layers was set to zero. 

A randomly initialised fully connected layer was then attached to the feature extraction 

layers, which reduced the size of the activation map to 4. This was followed by the 

bounding box regressor. Therefore, there are no architectural hyperparameters to tune 

when training the bounding box regressors. However, the learning hyperparameters ሺߚǡ ǡߙ and ߣ ) must still be tuned using Bayesian optimisation.  
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The accuracy of an object detector is commonly measured by the mean average precision 

(mAP) metric, which is given by the mean of the average precision (AP) for each class. 

Where the average precision for a particular class is the area under the precision-recall 

curve, and  precisionሺ݃ǡ ො݃ሻ ൌ Area of intersecionArea of ො݃   and   recallሺ݃ǡ ො݃ሻ ൌ Area of intersecionArea of ݃ ሺ͵ʹሻ 

 

Therefore, the hyperparameters were tuned using Bayesian optimisation to minimise the 

error in the mAP metric i.e. 1-mAP. Having used the same hyperparameter space for the 

learning hyperparameters in Eq. (32), the optimum parameters were found to be: 

ߚ  ൌ ͲǤͺͺǡ ߙ ൌ ͲǤͲͲͶ͵ǡ ߣ ൌ ͳǤͳ݁ିହ  
 

After optimisation, the R-CNN achieved a mAP on the validation set of 60.5%, whilst 

achieving 57.5% on the unseen test set. Whilst the classification results presented in this 

paper are particularly promising, the regression results require significant improvement. 

The R-CNN achieved a top-1 classification result of 60.3%, on the much more difficult 

ILSVRC test set. This is significantly lower than the R-CNN bolt detector.  However, it 

also achieved a mAP of 53.3% on the same test set, a result comparable with the bolt 

detector.  The regression results of the R-CNN damaged bolt detector may be improved 

by relaxing the constraint on the learning rate ߙ during the regression training.  

 

6.  Conclusion 
 

The automated detection of damaged fasteners, such as bolts, has application in many 

structural health monitoring problems. Recent advances in deep learning for image 

recognition have led to significant advances in the field.  This paper has presented the 

theory and application of regional convolutional neural networks in a specific SHM 

context. An R-CNN has been trained and optimised for the purpose of detecting damaged 

bolts in engineering structures. Moreover, a novel deep dataset has been presented, which 

combines images from the ImageNet large scale visual recognition challenge with a set 

of new, specifically acquired, images.   
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