
This is a repository copy of Convolutional neural networks for the detection of damaged
fasteners in engineering structures.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/138024/

Version: Published Version

Proceedings Paper:
Gibbons, T.J. orcid.org/0000-0002-5041-7053, Pierce, S., Worden, K.
orcid.org/0000-0002-1035-238X et al. (1 more author) (2018) Convolutional neural
networks for the detection of damaged fasteners in engineering structures. In: Proceedings
of the 9th European workshop on structural health monitoring (EWSHM 2019). 9th
European Workshop on Structural Health Monitoring, 10-13 Jul 2018, Manchester, UK.
NDT.net .

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC)
licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new
works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative
works on the same terms. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

9th European Workshop on Structural Health Monitoring

July 10-13, 2018, Manchester, United Kingdom

Creative Commons CC-BY-NC licence https://creativecommons.org/licenses/by-nc/4.0/

Convolutional neural networks for the detection of damaged fasteners
in engineering structures

Tom J Gibbons1, Gareth Pierce2, Keith Worden1 and Ifigeneia Antoniadou1

1 Dynamics Research Group (DRG), The University of Sheffield, The Department of

Mechanical Engineering, UK, t.gibbons@sheffield.ac.uk

2 Centre for Ultrasound Engineering (CUE), University of Strathclyde, Glasgow, UK

Abstract

Locating and classifying damaged fasteners, such as bolts, in large engineering structures

is vital in many health monitoring applications. Whilst traditional signal processing

methods are often used to identify the presence of such fasteners, accurately estimating

their location remains an ongoing challenge. In recent years, image detection (or the

location of objects within images) using deep learning algorithms, such as convolutional

neural networks (CNNs), has seen substantial improvements. This is largely due to the

abundant database of images provided by internet search engines, as well as significant

advances in computing power. Moreover, advances in digital imaging technology mean

that affordable computer vision systems are now more readily available than ever before.

In this paper, a CNN architecture is proposed for the task of detecting damaged bolts in

engineering structures. The new architecture forms part of a regional convolutional neural

network (R-CNN), which applies a bounding box regression algorithm for bolt location

alongside a softmax classifier for damage classification. A dedicated training set is also

developed, which combines internet search engine data with images of a specifically-

designed bolt rig. The new images extend the current dataset with the purpose of

developing a bolt detector that is invariant to camera angle and location, as well as

environmental factors such as lighting and shadows.

1. Introduction

Although small in size, fasteners, such as bolts and rivets, play a vital role in the

performance of many engineering structures. Damage occurs due to a variety of factors

such as corrosion, general wear and tear and external loading, which can lead to an overall

reduction in performance or even complete failure. It is for this reason that visual

inspection of fasteners is an essential operation in many engineering applications. Most

commonly, visual inspection is performed by human experts, which can be expensive,

dangerous and subjective. Therefore, automated visual inspection of fasteners, using

image recognition algorithms, is of great interest to both academic and industrial

engineers alike.

1.1 Image recognition

Image recognition is a collective term used to refer to several image processing and

machine learning tasks, including but not limited to: image classification, where a single

label is assigned to an image from a fixed set of classes, object localisation, where a

bounding box is fitted around a single object within in image, and object detection, where

bounding boxes are fitted around several objects from various classes within an image.

M
or

e
in

fo
 a

bo
ut

 th
is

 a
rt

ic
le

:
ht

tp
://

w
w

w
.n

dt
.n

et
/?

id
=

23
27

6

https://creativecommons.org/licenses/by-nc/4.0/

 2

In 2010, The Stanford Vision Lab launched the ImageNet Largescale Visual Recognition

Challenge (ILSVRC) with the intention of improving current capabilities in image

recognition. As part of ILSVRC, the organisers released the largest publically available

dataset for image recognition, which includes over 10 million labelled images with 1

million hand annotations (bounding boxes) split over 1000 classes. Since then, there has

been dramatic improvements in image recognition accuracy, largely due to the

reintroduction of convolutional neural networks (CNNs).

A CNN is a type of deep, feed-forward artificial neural network, that has been adapted

specifically for use with large three-dimensional (colour) images. Similarly to traditional

neural networks, CNNs extract features, that were traditionally hand engineered, using a

set of learnable parameters. However, the networks use convolution to reduce the number

of parameters compared to a fully connected network, a characteristic which also makes

them shift (or location) invariant i.e. the same features are extracted over the whole image.

Many variations on the basic CNN have been submitted to ILSVRC, however, AlexNet

[1] was the first to receive substantial attention.

AlexNet was submitted to ILSVRC in 2012 and achieved a top-5 classification accuracy

rate of 84.7% (top-5 classification accuracy is where the correct class label is one of 5

highest classification probabilities), a considerable increase in accuracy when compared

to previous state-of-the-art classifiers. The network also achieved a top-1 accuracy of

60.3%. The improvement was largely a result of the introduction of several non-

conventional machine learning methods. AlexNet was the first CNN to use the rectified

linear units (ReLU) activation function to introduce non-linearity, moreover, it was the

first CNN to be trained using dropout, where connections between layers are randomly

set to zero during training, in order to reduce overfitting. More recent submissions to

ILSVRC have achieved top-5 classification accuracy rates as high as 97% [2].

CNNs have also been applied to image detection, most notably in the form of the regional

convolutional neural network (R-CNN) [3]. An R-CNN contains three separate modules.

Firstly, a fixed number of regions of interest (ROIs), or areas that are most likely to

contain a single object, are proposed using the edge boxes algorithm [4]. Each ROI is

then passed through a CNN to transform it into a fixed length feature vector. The feature

vector is then passed into a classifier, which assigns a label to each ROI, and a parallel

bounding box regressor, which fits a box around the object in each ROI. The R-CNN has

since been adapted to improve training and test times [5].

2.2 Image recognition for (damaged) bolt detection

One of the main applications of automated damaged fastener detection is in railway track

inspection. Marino et al. [6] used a multi-layer perception neural network to classify

missing hexagonal bolts in railway tracks, whilst Yang et al. [7] used the principal

components of a wavelet transform as features, before applying a linear discriminant

analysis to classify bolts as present or missing. More recently, Feng et al. [8] used the

line-segment detection algorithm to locate railway tracks and sleepers, and indirectly

locate the fasteners, before applying a probabilistic damage classification method.

 3

The current paper looks to apply the recent advances in CNNs, and more specifically R-

CNNs, to the problem of detecting damaged fasteners in engineering structures, and is

organised as follows. Firstly, a new, specifically-designed, dataset is presented in Section

2, before a more detailed introduction to R-CNN theory in Section 3. In Section 4, a new

CNN architecture for damaged bolt classification is discussed, and in Section 5, this is

adapted for damaged bolt detection. Finally, conclusions from this work are drawn in

Section 6.

2. A new dataset

The dataset used in this paper is a combination of ILSVRC data, and a newly-developed

dataset for the specific purpose of damage detection in hexagonal bolt heads. The

ILSVRC dataset contains a bolt subset consisting of 1177 labelled images from internet

search engines. The images ae all in the red-green-blue (RGB) colour space, and range in

size from Ͳ ൈ60ൈ3 pixels to 2048ൈ1456ൈ3 pixels. The images range from photographs

of bolts in-use to bolts for sale online, they also include a small subset of corroded bolts.

A selection of the images can be seen in Figure 1.

Figure 1: A selection of images from the ILSVRC dataset.

Whilst the ILSVRC dataset is extensive, it lacks variance in environmental conditions

such as lighting conditions and shadows, as well as camera angle and depth. Moreover,

the dataset contains very few damaged bolts. Therefore, a new dataset was collected to

extend the ILSVRC dataset. A steel plate was used to house 50 M8 bolts in a regular grid

pattern. Images were then taken at a range of depths and angles, before changing the

lighting and repeating the same images.

Damage was then induced into the bolts by grinding flat edges of different sizes onto the

heads at random locations. The image acquisition process was then repeated. The images

were annotated by drawing ground truth bounding boxes around the bolt heads, which

later act as target variables for bounding box regression. A selection of the annotated

images can be seen in Figure 2. A separate test set was also captured that contains a

mixture of damaged and undamaged bolts in random locations.

 4

Figure 2: A selection of image from new dataset: green bounding boxes indicate undamaged bolts whilst red indicate

damage.

3. Regional convolutional neural networks - theory

The input to any CNN is a 3-dimensional image of size ܆ א Թ௪ሾబሿൈሾబሿൈௗሾబሿ , where ݓሾሿ
is the width of the image, ݄ሾሿ is its height, and ݀ሾሿ ൌ ͵ is its depth. Throughout this

paper, superscripts with square brackets are used to denote the layer number. A CNN

maps the input image to some output ݕො, in the case of classification this is a vector of

class probabilities, and in object detection this is a vector describing a bounding box. An

R-CNN involves both classification and bounding box regression. The classifier must be

able to classify an input as positive (i.e. undamaged bolt or damaged bolt) or negative

(background). Therefore, when training the classifier for an R-CNN, negative examples

must be included in the training set. Instead of passing the whole image through the CNN,

small regions of the image which may or may not contain an object are used as individual

training examples. Therefore, a single training image ݔ, is associated with a set of ground

truth bounding boxes (hand annotations) ݃, and their corresponding class labels ݕ,

 ݃ א Թீൈସ ൌ ݃ଵ௫ ݃ଵ௬ ݃ଵ௪ ݃ଵڭ ڭ ڭ ௫ீ݃ڭ ݃௬ீ ݃௪ீ ݃ீ and ݕ א Թீൈଵ ܿீܿڭ ൩ ሺͳሻ

Where ܩ is the total number of bounding boxes in image ݔ, ݃௫ is the ݔ-coordinate of the

centre of bounding box ݅, ݃௬ is the ݕ-coordinate of the centre of bounding box ݅, ݃௪ is

the width of bounding box ݅, ݃ is the height of bounding box ݅, and ܿ א ሼͳǡ ǥ ሽ is theܥ

class label of the ݅௧ bounding box. In the case of a damaged bolt detector, ܥ ൌ ʹ.

The image is passed through a region proposal algorithm such as the edge boxes

algorithm, which outputs a fixed number of regions of interest (ROIs) . Each of these

regions of interest must then be assigned a class label (ܿ) and a single bounding box

ground truth label (݃). This is achieved by calculating the intersection over union (IOU)

with all ground truth bounding boxes in ݃. The intersection of union (IOU) is given by,

 IOU൫ǡ ݃൯ ൌ Area of overlapArea of union ሺʹሻ

 5

Then, is assigned the target class ܿ and target bounding box ݃ with which it has the

highest IOU, so long as the IOU is greater than 0.7. Also, if the IOU of with all ݃ is

less than 0.3, is labelled as a negative example (ܿ ൌ Ͳ) and given no bounding box.

All other ROIs are discarded. Therefore, each training example for an R-CNN consists of ሺݔሻ, the pixel values in the region , a class label ܿ (which may contain an object ܿ Ͳ or may not ܿ ൌ Ͳ), and a ground truth bounding box ݃ ൌ ൣ݃௫ǡ ݃௬ǡ ݃௪ǡ ݃൧Ǥ Each of

the layers that make up an R-CNN is now discussed in turn.

3.1 Convolutional layers

A convolutional layer replaces the traditional hidden layer in a neural network; it takes as

input the activation from the previous layer ۯሾିଵሿ א Թ௪ሾషభሿൈሾషభሿൈሾషభሿ
 and transforms

this into a new activation map ۯሾሿ א Թ௪ሾሿൈሾሿൈሾሿ
. The layer consists of a set of ܭሾሿ

learnable filters ܅ሾሿ א Թሾሿൈሾሿൈሾషభሿ
 and biases ܾሾሿ א Թ. The spatial size of these filters

is usually much smaller than the input (݂ሾሿ ا ሾିଵሿ); however, they must extendݓ

through the full depth of the input. This paper assumes that all filters are square, however,

this is not necessary. A forward pass consists of convolving each of the filters with the

input volume i.e. each filter is slid across the width and height of the input and the sum

of the elementwise product calculated at each location. As a 3D filter is moved around

the input volume, a 2D activation map is produced that gives the responses of the filter at

every spatial position. The activation maps from each filter are then stacked on top of

one another before applying an activation function, such as the ReLU function (fሺݔሻ ൌmaxሺͲǡ ሻ). Therefore, the output of any convolutional layer has a depth equal to theݔ

number of filters in that layer; this can be seen in Figure 3.

A 2D convolutional process can be seen in Figure 4, where the red matrix is the input,

blue is the filter and green is the resultant activation map. The input is usually padded

with zeros so that each neuron (pixel) in the input is connected to the same number of

neurons in the output, but it is also used to preserve the spatial size of the input i.e. the

hyperparameter ሾሿ is usually chosen so that the width and height of the output matches

that of the input. Another hyperparameter that controls the spatial size of the output is the

stride ݏሾሿ or the step size with which the filter is moved around the input (in practice this

value is usually either 1 or 2). Therefore, it can be shown that the activation map of a

convolutional layer has spatial dimensions,

ሾሿݓ ൌ ௪ሾషభሿାଶሾሿିሾሿ௦ሾሿ ͳ and ݄ሾሿ ൌ ሾషభሿାଶሾሿିሾሿ௦ሾሿ ͳ ሺʹሻ

The complete forward pass of a convolutional layer is given by,

ǡݔሾሿሺ܈ ǡݕ ݇ሻ ൌ ሾሿ܅ ൈ ҧݔሾିଵሿሺۯ ܽǡ തݕ ܾǡ ܿሻሾషభሿ

ሾሿ

ሾሿ
 ܾሾሿ ሺ͵ሻ ۯሾሿ ൌ ݃ሾሿ൫܈ሾሿ൯ ሺͶሻ

 6

Where ൈ denotes the elementwise multiplication and ݃ሾሿ is the activation function of

layer ݈, ݔҧ ൌ ሺݔ െ ͳሻ݂ሾሿ തݕ ሾሿ andݏ ൌ ሺݕ െ ͳሻ݂ሾሿ ሾሿ The backward pass is thenݏ

given by,

ሾሿ܈߲ ൌ ሿܔሾۯ߲ ൈ ݃Ԣሾሿ൫܈ሾሿ൯ ሺͷሻ ߲܅ሾሿ ൌ ҧǣݔሾିଵሿ൫ۯ ҧݔ ݂ሾሿǡ തǣݕ തݕ ݂ሾሿǡ ǣ ൯ ൈ ǡݔሾሿሺ܈߲ ǡݕ ݇ሻሾሿ
௬

௪ሾሿ
௫ ሺሻ

ܾሾሿ ൌ ሾሿሺ݅ǡ܈߲ ݆ǡ ݇ሻሾሿ

௪ሾሿ
 ሺሻ

ҧǣݔሾିଵሿ൫ۯ߲ ҧݔ ݂ሾሿǡ തǣݕ തݕ ݂ሾሿǡ ǣ ൯ ൌ ሾሿ܅ ൈ ǡݔሾሿሺ܈߲ ǡݕ ݇ሻሾሿ
 ሺͺሻ

Where the superscript Ԣ denotes the first derivative.

Figure 3: Diagram detailing the dimensions of a simple convolutional neural network with a single convolutional

layer followed by a single pooling layer.

Figure 4: A 2D convolution process

 7

3.2 Pooling layers

Convolutional layers are often followed a pooling layer, which is used to subsample the

activation maps, and can dramatically reduce both training and test times. Since pooling

layers reduce the number of parameters, they are also used to reduce overfitting. A

pooling layer works by partitioning a 2D activation map into a set of non-overlapping

rectangles, and applying a non-linear pooling function to each matrix. The pooling

function is applied to each dimension separately so that the output of any pooling layer

has the same dimension as the input (Figure 3). The most common pooling functions are

the maximum or average functions, and this paper will only make use of the maximum,

 ݂ሺݔሻ ൌ maxሺݔሻ ሺͻሻ

The size of the output is again controlled by a set of hyperparameters. This paper assumes

that each rectangle is a square of size ݂ሾሿ ൌ ʹ and the pooling is applied with a stride of ݏሾሿ ൌ ʹ i.e. the maximum function is applied to every 2x2 square in the input so that

every neuron in the input is connected to exactly one neuron in the output, as is shown in

Figure 5.

Figure 5: A 2D max pooling operation

A complete forward pass of a max pooling layer is given by,

ǡݔሾሿሺ܈ ǡݕ ݇ሻ ൌ ǡݔሾሿሺۯ ǡݕ ݇ሻ ൌ maxאǡא ሾିଵሿሺ݅ǡۯ ݆ǡ ݇ሻ ሺͳͲሻ

Where ܺ ൌ ሼ݅ݏݔሾሿǣ ሾሿݏݔ݅ ݂ሾሿሽ and ܻ ൌ ሼ݆ݏݕሾሿǣ ሾሿݏݕ݆ ݂ሾሿሽ. In practice, a mask is

cached during the forward pass so as to remember which neurons in the input were

selected by the max function, since only the neurons that pass through the pooling layer

contribute to the loss, and only these neurons should be included in the parameter update.

The backward pass is then given by,

ሾሿ܈߲ ൌ ሾିଵሿאǡאۯ߲ ሾሿ ሺͳͳሻۯ߲ ሺ݅ǡ ݆ǡ ݇ሻ ൌ ቊͲ if maskሾሿሺ݅ǡ ݆ǡ ݇ሻ ൌ Ͳ߲܈ሾሿሺݔǡ ǡݕ ݇ሻ if maskሾሿሺ݅ǡ ݆ǡ ݇ሻ ൌ ͳ ሺͳʹሻ

3.3 Dropout layers

Overfitting is a serious problem in deep learning, due to the vast number of learnable

parameters, and an often limited amount of training data. Alongside the common

regularisation methods such as L2 regularisation, data augmentation and early stopping,

 8

a common method to deal with overfitting in CNNs is to include a number of dropout

layers within a network. The idea behind dropout is to randomly drop (set equal to zero)

neurons, with some probability ݍሾሿ, during training. The purpose of this is to stop the

neurons from co-adapting and becoming dependent on one another.

In practice, this is implemented by creating a random binary mask (maskሾሿ) with the

same size as the input ۯሾିଵሿ. The number of ones and zeros in the mask is ݍሾሿ times the

total size of ۯሾିଵሿ. Then, a forward pass is completed by calculating,

ሾሿۯ ൌ ሾሿ܈ ൌ maskሾሿ ڄ ሾିଵሿۯ ሺͳ͵ሻ

With corresponding backward pass,

ሾሿ܈߲ ൌ ǡݔሾିଵሿሺۯ߲ ሾሿ ሺͳͶሻۯ߲ ǡݕ ݇ሻ ൌ ቊͲ if maskሾሿሺݔǡ ǡݕ ݇ሻ ൌ Ͳ߲܈ሾሿሺݔǡ ǡݕ ݇ሻ if maskሾሿሺݔǡ ǡݕ ݇ሻ ൌ ͳ ሺͳͷሻ

3.4 Fully-connected layers

Towards the end of the network, the activation map is vectorised (ۯሾିଵሿ ՜ ܽሾିଵሿ) and

passed through one or more fully-connected layers. As with a standard neural network,

each neuron in a fully connected layer is connected to every activation in the previous

layer via a set of learnable weights Wሾሿ and biases ܾሾሿ. The purpose of these layers is to

reduce the size of the activation map to that required by the classification or regression

output. The forward pass is given by,

 zሾ୪ሿ ൌ Wሾሿaሾିଵሿ ܾሾሿ ሺͳሻ aሾሿ ൌ ݃ሾሿ൫zሾሿ൯ ሺͳሻ

Whilst the backward pass is given by,

 ߲zሾሿ ൌ ߲aሾሿ݃ᇱሾሿ൫ݖሾሿ൯ ሺͳͺሻ ߲Wሾሿ ൌ ߲zሾሿሺaሾିଵሿሻ் ሺͳͻሻ ߲ܾሾሿ ൌ ߲zሾሿ ሺʹͲሻ

3.5 Softmax Regression

The activation function applied to the final fully-connected layer of a multi-class

classification R-CNN is usually the Softmax function, such that,

ොݕ ൌ ܽሾሿ ൌ ݁௭ሾಽሿσ ݁௭ሾಽሿ ሺʹͳሻ

Where ݕො are the normalised class probabilities. For training purposes the class label (ܿ)

for a single training example is transformed into a binary vector ݕ of length C+1

 9

(where a 1 indicates the correct class). Therefore the the loss function for a single training

example (ሺݔሻ,ݕ) is given by, ࣦ൫ݕො ǡ ൯ݕ ൌ െ ݕ log ොݕ
ୀଵ ሺʹʹሻ

The corresponding cost function for all ݊ ROIs in all ݉ training examples is the given

by,

ܬ ቀ܅ଵሾଵሿǡ ܾଵሾଵሿǡ ǥ ቁ ൌ ͳ݉ ݊ ࣦቀݕොሺሻǡ ሺሻቁݕ

 ʹሺ݉ߣ ݊ሻ ቛ܅ሾሿቛிଶ

ሾሿ

ୀଵ ሺʹ͵ሻ

Where ߣ is the classification regularisation parameter, and ԡ ԡி is the Frobenius norm.

3.6 Bounding Box Regression

The bounding box regressor(s) acts separately to the classifier, and is usually connected

to the final convolutional, pooling, or dropout layer via a series of fully-connected layers.

The final fully-connected layer performs a parameterised transformation of the activation

map from the previous layer ܽሾିଵሿ into an output bounding box ො݃. Such that,

 ො݃ ௫ ൌ ௪W௫்ܽሾିଵሿ ௫ ሺʹͶሻ ො݃ ௬ ൌ W௬்ܽሾିଵሿ ௬ ሺʹͷሻ ො݃௪ ൌ ௪exp൫W௪்ܽሾିଵሿ൯ ሺʹሻ ො݃ ൌ exp ቀW்ܽሾିଵሿቁ ሺʹሻ

Where W* are class specific vectors of length 4. The loss function for a single training

example (ሺݔሻ,݃) is then given by,

 ࣦ൫ ො݃ ǡ ݃൯ ൌ ฮ݃ െ ො݃ฮଶଶ ሺʹͺሻ

Where ԡ ԡଶ is the ܮଶ norm. The corresponding cost function for all ݊ ROIs in all ݉

training examples is then given by: ܬ ቀ܅ଵሾଵሿǡ ܾଵሾଵሿǡ ǥ ቁ ൌ ͳ݉ ݊ ࣦቀݕොሺሻǡ ሺሻቁݕ

 ʹሺ݉ߣ ݊ሻ ቛ܅ሾሿቛிଶ

ሾሿ

ୀଵ ሺʹͻሻ

4. Classification of damage in bolt heads

The first step in designing a damaged bolt detector is to construct and train a convolutional

neural network that can classify bolts as damaged or undamaged (as well as classify

background images). The main body of the classification CNN is then used to train a

bounding box regressor.

 10

One of the difficulties in training a deep CNN, besides the time constraint, is the vast

number of hyperparameters, in particular, the architectural hyperparameters. In order to

reduce the number of architectural hyperparameters a CNN was constructed as follows.

The main bulk of the CNN contains ܰ blocks of convolutional layers, with each layer

within a block having ܰ convolutional layers. Standard practice is to have the number of

filters in each convolutional layer increase throughout the network. Therefore, all

convolutional layers in the first block contained ܭሾଵሿ filters, whilst all layers in the second

block contained ʹܭሾሿ, and all layers in the final convolutional block contained ܰܭሾሿ
filters. The parameters ܰ, ܰ, and ܭሾሿ are left as hyperparameters to be tuned.

Within each of the convolutional layers, stride was set to one so that each neuron in the

input is connected to the same number of neurons in the output. Moreover, as is common,

padding in all convolutional layers is set so that the output volume has the same spatial

dimensions as the input, this is commonly referred to as 'same' padding. Also, the filter

size in all convolutional layers is set to a single hyperparameter ݂ሾሿ ൌ ݂ to be tuned.

Each of the convolutional blocks was followed by a max-pooling layer with

hyperparameters ݂ሾሿ ൌ ʹ and ݏሾሿ ൌ ʹ fixed. Each of the max-pooling layers was

followed by a dropout layer with a probability hyperparameter ሾሿ ൌ to be tuned. The

final convolutional/pool/dropout block was followed by a single fully connected layer

which reduced the activation map to a vector of size 3, before applying the softmax

function to output the normalised class probability.

The classifier was trained using mini-batch gradient descent with momentum, which

updates the parameters with the following update rule:

܅ఋݒ ؔ ܅ఋݒߚ ሺͳ െ ఋݒ and ܅ሻ߲ߚ ؔ ఋݒߚ ሺͳ െ ሻ߲ܾߚ ሺ͵Ͳሻ ܅ ؔ ܅ െ ܾ ݀݊ܽ ܅ఋݒߙ ؔ ܾ െ ఋ ሺ͵ͳሻݒߙ

Where ߚ, the momentum, and ߙ, the learning rate, are also hyperparameters to be tuned.

Therefore, the network has a total of 8 hyperparameters, 5 structural (ܰ ǡ ܰǡ ሾଵሿǡܭ ݂ǡ (

and 3 learning (ߣǡ ǡߚ .that were tuned using Bayesian optimisation ,(ߙ

4.1 Bayesian optimisation

In order to tune the set of hyperparameters, the test set, described in section 2, was split

randomly into two subsets so as to produce a cross validation and test set. The

hyperparameters can then be tuned by comparing the error on the cross validation set.

Since the function that maps the hyperparameters to the validation error (or objective

function) is unknown, a black box optimisation method is required to minimise the

objective function.

Bayesian optimisation works by iteratively constructing a Gaussian function that

approximates the mapping from hyperparameters to validation error. Initially, a small

number of hyperparameter combinations are evaluated (i.e. the CNN is trained and

validation error calculated) before constructing the Gaussian process. The optimum

 11

configuration, based on the current model, is then evaluated before updating the Gaussian

process.

The optimisation algorithm was performed over the following hyperparameter space:

 ௗܰ ൌ ሼͳǣ Ͷሽǡ ଵܰ ൌ ሼͳǣ ͵ሽǡ ݂ ൌ ሼ͵ǣ ሽǡ ሾଵሿܭ ൌ ʹͲǣ Ͳǡ ൌ ሼͲǣ ͳሽǡ ߚ ൌ ሼͲǤͺǣ ͳሽǡ ߙ ൌ ሼͲǤͲͳǣ ͲǤͲͲͳሽǡ ߣ ൌ ሼͳ݁ିହǣ ͳ݁ିଶሽ

Before finding an optimum configuration of:

 ௗܰ ൌ ͵ǡ ଵܰ ൌ ʹǡ ݂ ൌ ͵ǡ ሾଵሿܭ ൌ ͵ͺǡ ൌ ͲǤͲͳǡ ߚ ൌ ͲǤͺͺǡߙ ൌ ͲǤͲͲͶ͵ǡ ߣ ൌ ͳǤͳ݁ିହ

After optimisation, the CNN achieved a classification accuracy of 92.3% on the validation

set, and an accuracy of 91.7% on the unseen test set. A selection of the test results can be

seen in Figure 6.

Figure 6: A selection of classification test results

5. Detection of damaged bolt heads

The bolt detector shares the feature extraction layers (i.e. convolutional, pooling, and

dropout) with the classifier. Therefore, in order to train the bounding box regressors for

the damaged and undamaged classes, the learning rate ߙ for these layers was set to zero.

A randomly initialised fully connected layer was then attached to the feature extraction

layers, which reduced the size of the activation map to 4. This was followed by the

bounding box regressor. Therefore, there are no architectural hyperparameters to tune

when training the bounding box regressors. However, the learning hyperparameters ሺߚǡ ǡߙ and ߣ) must still be tuned using Bayesian optimisation.

 12

The accuracy of an object detector is commonly measured by the mean average precision

(mAP) metric, which is given by the mean of the average precision (AP) for each class.

Where the average precision for a particular class is the area under the precision-recall

curve, and precisionሺ݃ǡ ො݃ሻ ൌ Area of intersecionArea of ො݃ and recallሺ݃ǡ ො݃ሻ ൌ Area of intersecionArea of ݃ ሺ͵ʹሻ

Therefore, the hyperparameters were tuned using Bayesian optimisation to minimise the

error in the mAP metric i.e. 1-mAP. Having used the same hyperparameter space for the

learning hyperparameters in Eq. (32), the optimum parameters were found to be:

ߚ ൌ ͲǤͺͺǡ ߙ ൌ ͲǤͲͲͶ͵ǡ ߣ ൌ ͳǤͳ݁ିହ

After optimisation, the R-CNN achieved a mAP on the validation set of 60.5%, whilst

achieving 57.5% on the unseen test set. Whilst the classification results presented in this

paper are particularly promising, the regression results require significant improvement.

The R-CNN achieved a top-1 classification result of 60.3%, on the much more difficult

ILSVRC test set. This is significantly lower than the R-CNN bolt detector. However, it

also achieved a mAP of 53.3% on the same test set, a result comparable with the bolt

detector. The regression results of the R-CNN damaged bolt detector may be improved

by relaxing the constraint on the learning rate ߙ during the regression training.

6. Conclusion

The automated detection of damaged fasteners, such as bolts, has application in many

structural health monitoring problems. Recent advances in deep learning for image

recognition have led to significant advances in the field. This paper has presented the

theory and application of regional convolutional neural networks in a specific SHM

context. An R-CNN has been trained and optimised for the purpose of detecting damaged

bolts in engineering structures. Moreover, a novel deep dataset has been presented, which

combines images from the ImageNet large scale visual recognition challenge with a set

of new, specifically acquired, images.

ACKNOWLEDGEMENTS

This research was funded through the EPSRC grant (EP/N018427/1) Autonomous

Inspection in Manufacturing and Remanufacturing (AIMaReM).

7. References

[1] A. Krizhevsky, I. Sutskever and G. Hinton, “ImageNet Classification with Deep
Convolutional Neural Netowrks,” Advances in neural information processing

systems, pp. 1097-1105, 2012.

[2] K. He, X. Zhang, S. Ren and J. & Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016.

 13

[3] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014.

[4] C. L. Zitnick and P. Dollar, “Edge Boxes: Locating Object Proposals from Edges,”
Computer Vision-ECCV, pp. 391-405, 2014.

[5] S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” Advances in Neural Information

Processing Systems 28 , pp. 91-99, 2015.

[6] F. Marino, A. Distante, P. L. Mazzeo and E. Stella, “A real-time visual inspection

system for railway maintenance: automatic hexagonal-headed bolts detection.,” in
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 2007.

[7] J. Yang, W. Tao, M. Liu, Y. Zhang, H. Zhang and H. Zhao, “An efficient direction
field-based method for the detection of fasteners on high-speed railways,” Sensors,

pp. 7364-7381, 2011.

[8] H. Feng, Z. Jiang, F. Xie, P. Yang, J. Shi and L. Chen, “Automatic fastener
classification and defect detection in vision-based railway inspection systems,” IEEE

transactions on instrumentation and measurement, pp. 877-888, 2014.

