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Abstract. Remanufacturing of high-value engineering structures is set to become 

an important aspect of the future manufacturing industry. However, this depends on 

the ability to accurately, and rapidly inspect used components for damage, such as 

corrosion. Visual inspection in both manufacturing and remanufacturing is often 

performed manually, which is a time-consuming, subjective process. This paper 

looks at the application of machine learning to the automation of visual inspection 

for remanufacturing. A Gaussian mixture model is trained on a novel set of image 

features, specifically designed for the task of corrosion detection in used parts. The 

probabilistic model is used to segment images of automotive engine components 

into corroded and non-corroded areas. It is possible that the uncertainty in this 

segmentation may be used to automate further inspection.  

Keywords. Corrosion Detection, Automation, Image Processing, Remanufacturing.  

1. Introduction 

In recent years there has been a significant push towards a low carbon, circular economy, 

in which remanufacturing helps to reduce waste by repairing and reusing components. 

Corrosion can prevent remanufactured parts from meeting product standards, and must 

be detected and removed during (dis)assembly. Since robotic (dis)assembly is now 

commonplace, the automated detection of corrosion using computer vision methods will 

play a vital role in the remanufacturing pipeline.  

This paper presents a Gaussian mixture model (GMM) for automated corrosion 

detection. The GMM is used to segment corroded areas in images of automotive engines 

during the disassembly process. One of the difficulties, specific to corrosion detection in 

remanufacturing, is the inherent contamination of components with dirt. Therefore, in 

order to reduce the sensitivity to dirt, a novel set of image features, which include the 

L*a*b* colour space and Gabor texture features, are used to train the GMM. Moreover, 

the GMM is capable of assigning each pixel in an image with a probability of corrosion. 

This is used to produce an uncertainty map, which may, in future work, be used to 

automatically guide further inspection of areas with high uncertainty. 

Previous research in this area has focused on the use of wavelet energy and entropy 

[1], the HIS colour space and the co-occurrence matrix [2], and HSV colour space [3]  to 

classify corrosion. However, none of these works have looked at image segmentation. 

2. Feature Extraction 

The input data to the corrosion detection problem is a set of 25, 9 mega-pixel images in 

the RBG colour space. The dataset is randomly split into training, cross-validation, and 

test sets with a ratio of 60:20:20 % respectively. The training set is used to learn the 

parameters of the Gaussian Mixture Model (GMM), the cross-validation set is used to 
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tune the hyperparameters of the GMM, and the test set is used to test the accuracy of the 

final model. The images in both the cross-validation and test sets were annotated by hand, 

labelling each pixel as either corrosion or non-corrosion (background).  

Each of the three colour channels constitutes a single feature (or variable), with each 

pixel in the images an observation of those variables. Whilst detecting corrosion in the 

RGB feature space can produce satisfactory results, the accuracy can be improved by 

extracting features specific to the remanufacturing corrosion detection task.  

2.1. Colour Features 

The L*a*b* colour space contains all perceivable colours on three axes, namely 

Luminosity (L*), red-green (a*), and yellow-blue (b*). The advantage of this colour 

space in corrosion detection, is the separate luminosity and colour features. Consider 

Figure 1, which shows an example image from the test set in various feature spaces. It is 

clear from Figure 1(a) that the engine images contain areas of very dark pixels contrasted 

with areas of light, metallic and highly reflective pixels, which distort the true colour of 

the engine. Once luminosity (Figure 1(b)) is removed, the individual colour features 

contain information about the true colour of the engine. It can be seen from Figure 1(c) 

that environmental lighting has little or no effect on the colour channels (a* and b*), and 

that areas of corrosion become more prominent. Therefore, each of the engine images 

was transformed into the L*a*b* feature space, and the luminosity channel ignored, thus 

reducing the dataset to a two dimensional feature space.   

 

  
(a) Original Image (b) Luminosity (c) Colour a* 

Figure 1. An exemplar engine image comparing the RGB space with the luminosity and colour channels of 

the L*a*b* space.  

Figure 2 shows the same image displayed on the a*-b* plane, with each point 

corresponding to a single pixel. Whilst the image contains some tight clusters, there is 

still considerable overlap between corroded and non-corroded pixels, which can be 

attributed to both the noisy colour variation in corroded areas, and the dirt contamination. 

Therefore, in order to train a corrosion detector that can distinguish between corroded 

and non-corroded pixels in used components, the feature space must be extended. 

 

Figure 2. Scatter diagram comparing corroded and non-corroded pixels in the a*b* colour space.  
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2.2. Texture Features 

It has been proposed [4] and since verified [5], that the human visual system interprets 

texture by decomposing the retinal image into a set of filtered images, each of which 

contain intensity values in a narrow frequency and orientation bandwidth. The real part 

of the Gabor filter, can be seen as a numerical approximation to these biological filters 

[6]. The 2D Gabor filter consists of a sinusoidal wave of frequency 𝜔0 and orientation 𝜃 , modulated by a Gaussian envelope with standard deviation 𝜎  and, in the spatial 

domain, is given by: 𝑔(𝑥, 𝑦) = exp {− 𝑥2 + 𝑦22𝜎2 } cos(2𝜋𝜔0(𝑥 cos 𝜃 + 𝑦 sin 𝜃)) (1) 

 

By varying the parameters 𝜔0, 𝜃, and 𝜎, the filters can extract texture information at 

different frequencies, orientations, and over different regions of the image. A Gabor filter 

bank was constructed, with 4 frequencies 𝜔0 = {2√2, 24√2, 27√2, 210√2} 

[pixels/cycle], and four orientations 𝜃 = {0, 45, 90, 135} [degrees], as demonstrated in 

[6], giving a total of 16 filters. In each case, the standard deviation was set to 𝜎 =ℎ𝑦𝑝𝑜𝑡(𝑋,𝑌)2𝜔0 , where X and Y are the width and height of the image. Each filter was applied 

to the image dataset in turn to give a further 16 features.  

2.3. Principal Component Analysis 

In order to reduce the dimensionality of the GMM, and in turn reduce the training time, 

a principal component analysis (PCA) was performed. PCA uses an orthogonal transform 

to map the image data to a lower dimensional feature space, whilst retaining the highest 

possible variance. The first three principal components are shown in Figure 3, where it 

can be seen that the corroded areas become particularly prominent in the second and third 

principal components. The number of principal components to include in the GMM was 

optimised via cross validation, which is discussed further in section 3.3. 

 

(a) Principal Component 1 (b) Principal Component 2 (c) Principal Component 3 

Figure 3. First three principal components 

3. Gaussian Mixture Model 

The GMM is used for cluster analysis here: clustering is a form of unsupervised learning, 

whereby each pixel (and its corresponding feature vector 𝐱𝑛) is assigned to a single class 

based on its location in the feature space. This is achieved by partitioning the data into K 

clusters of pixels. The distances between pixels are estimated and used as a measure 

when creating sets of clusters. The GMM is initialised using the K-means algorithm.  



3.1. K-means 

The K-means algorithm is the simplest clustering method and works by learning a set of 𝐾 cluster centres 𝜇𝑘, where 𝜇𝑘 is defined as the mean of all points in the 𝑘𝑡ℎ cluster. The 

cluster centres are learned using a form of the expectation-maximisation (EM) algorithm, 

as demonstrated in Figure 4(a)-(c). After randomly initialising the cluster centres (+), 

each pixel is assigned to the cluster with the closest centre (E-step), before the centres 

are re-calculated (M-Step). The algorithm works by minimising an objective function, 

and repeats until the improvement in the objective function falls below some pre-defined 

threshold. K-means clustering is a form of hard clustering in that each pixel is assigned 

to exactly one non-overlapping cluster, and no consideration is given to pixels that share 

features with two or more clusters.  

 

   
(a) Initialisation (k-means) (b) E-step (k-means) (b) M-step (k-means) 

   
(d) Initialisation (GMM) (e) E-step (GMM) (f) M-step (GMM) 

Figure 4. The expectation-maximisation (EM) algorithm for K-means and Gaussian mixture model (GMM) 

3.2. Gaussian Mixture Model 

A Gaussian mixture model, a form of soft clustering, partitions the dataset into 𝐾 distinct 

multivariate Gaussian distributions, each with different means 𝜇𝑘 and covariances Σ𝑘. 

Instead of assigning a pixel to a single distribution, the posterior probability that a pixel 

belongs to each cluster (𝑝(𝑧𝑘 = 1|𝐱𝑛)) is calculated, then the pixel is assigned to the 

cluster with the highest probability. A GMM is again learned using the EM algorithm, 

as seen in Figure 4(d)-(e). The 𝐾 distributions are initialised with the means from the K-

means algorithm, then the posterior probabilities for each pixel are calculated (E-step), 

before the Gaussian distribution parameters (𝜇𝑘, Σ𝑘) are updated (M-step).  Figure 4(d)-

(e) represents the posterior probability using colour, whereby the proportion of red and 

blue for each point is given by its posterior probabilities. A pixel that belongs to cluster 

1 with probability 1 is plotted in blue, whilst a pixel that belongs to cluster 1 with a 

probability of 0.5 is plotted in purple. The EM algorithm for GMMs is detailed in Figure 

5.  

 



 
Figure 5.  The expectation-maximisation (EM) algorithm for Gaussian Mixture Models 

3.3. Cross-validation 

The number of clusters, 𝐾, and the number of principal components, 𝑁𝑝𝑐, used in training 

can have a significant effect on the accuracy of the results. Therefore, these 

hyperparameters are tuned using the labelled cross-validation set. For all combinations 

of 𝐾 = {1,2, … ,10}  and 𝑁𝑐 = {1,2, … ,10} , a GMM was trained and the accuracy 

determined by calculating the F1-score on the cross-validation set. The F1-score is the 

harmonic mean of the of precision (P) and recall (R) and is given by: 

 𝐹1 = 𝑃𝑅𝑃+𝑅   where   𝑃 = 𝑡𝑝𝑡𝑝+𝑓𝑝    and    𝑅 = 𝑡𝑝𝑡𝑝+𝑓𝑛 (2)  

 

and 𝑡𝑝 is equal to the number of pixels correctly assigned to the corrosion cluster, 𝑓𝑝 is 

the number of pixels falsely assigned to the corrosion cluster, 𝑓𝑛 is the number of pixels 

falsely assigned to a non-corrosion cluster, and the corrosion cluster is defined as the 

cluster that contains the highest number of pixels hand labelled as corrosion.  

3.4. Results  

The GMM with 𝐾 = 2 and 𝑁𝑐 = 6 achieved an F1-score of 0.87 on the cross-validation 

set, and a score of 0.85 on the test set, outperforming all other hyperparameter 

combinations. The results of this GMM applied to the test image in Figure 1 are shown 

in Figure 6. The diagram in Figure 6(a) displays each of the 6 clusters using different 

colours, with the corrosion cluster in green. It also demonstrates the importance of correct 

feature selection, as the corroded pixels have now formed a relatively tight cluster when 

compared to Figure 2. Figure 6(b) demonstrates the accuracy of the results, showing the 

pixels in the corrosion cluster, transformed into the image plane. As discussed above, the 



posterior probability that each pixel belongs to the corrosion cluster is calculated, and 

these probabilities are plotted in Figure 6(c). These probabilities can be considered as a 

measure of uncertainty of corrosion and used to guide further automated inspection. It is 

proposed that such an uncertainty map may be used to optimise further camera locations 

and lens parameters.  

 

 
 

 

(a) Cluster Diagram (b) Pixels in Corrosion Cluster (c) Uncertainty Map 

Figure 6. Results of the Gaussian mixture model for corrosion detection 

4. Conclusion  

This paper has presented a method for the automated detection of corrosion in 

remanufacturing. A new set of features, namely colour, texture, and grid features, have 

been proposed for the specific task of detecting corrosion in components contaminated 

with dirt. A Gaussian mixture model was trained to segment corrosion on the new feature 

set, and all hyperparameters tuned via cross-validation. It has also been proposed that the 

posterior probabilities of the Gaussian mixture model may be used to automate further 

inspection.  
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