
This is a repository copy of Statistical Analysis of Series of N-of-1 Trials Using R.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/137967/

Version: Published Version

Monograph:
Marinho de Araujo, A.A. orcid.org/0000-0003-1419-4208 (2018) Statistical Analysis of 
Series of N-of-1 Trials Using R. Report. (Unpublished) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 

 

 

 

Statistical Analysis of Series of N-of-1 Trials 

Using R 

 

 

Artur Araujo 

 

 

September 2018





 

iii 

 

Acknowledgements 

I would like to thank especially Dr. Stephen Senn for giving me the opportunity to work on the 

IDEAL project with him. I would like to acknowledge with thanks the helpful suggestions made by Dr. 

Stephen Senn and Dr. Steven A. Julious, during the revision of this document. Many thanks for the 

Luxembourg Institute of Health for receiving me so well during the first three years of my postgraduate 

studies and research. I would like to thank Boehringer Ingelheim GmbH for having paid my tuition fees 

at the University of Sheffield for the first three academic years. Special thanks to the Luxembourgish 

taxpayers and the Luxembourgish State through the CEDIES (Centre de Documentation et 

d'Information sur l'Enseignement Supérieur) for providing financial aid during my postgraduate 

studies at the Luxembourg Institute of Health and at the University of Sheffield. This project has 

received funding from the European Union�s Seventh Framework Programme for research, 

technological development, and demonstration under grant agreement no 602552 (IDEAL - Integrated 

Design and Analysis of small population group trials).





 

v 

 

Abstract 

The statistical analysis of series of n-of-1 trials in which the treatments were randomized in 

cycles is described. Version 3.2 of the R statistical software is used for the analysis. It is not guaranteed 

that older versions of the R software produce equal results to the ones presented. Some of the code 

presented here might not run on older versions of the R software. Therefore, versions of R equal or 

superior to version 3.2 are recommended when running the code presented. 
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1 Defining directories and reading data 

Before starting any analysis within R it is often useful to define the working directory to the 

one where all the files related to the analysis are placed. This way, relative paths instead of full paths 

can be used to tell R where the files are located. The �setwd� function with a character string defining 

the full path to the working directory as argument can be used. 

> # de f i ne  wor ki ng di r e c t or y 

> whi l e  (  ! " nof 1_r a nd_c yc l e s . c s v"  %i n% l i s t . f i l e s ( ) )  {  

+   f i l e  <-  f i l e . c hoos e ( ) ; # c hoos e  t h i s  f i l e 

+   Wor ki ngDi r   <-  di r na me ( f i l e ) ; # ge t  pa t h t o f i l e 

+   s e t wd( di r =Wor ki ngDi r ) ;  # de f i ne  wor ki ng di r e c t or y  

+   r m( f i l e ,  Wor ki ngDi r ) ;  # r e move  ob j e c t s 

+ }  

In this example, four statements are contained within a �while� loop. There is a condition in this 

�while� loop, where the existence of the file �nof 1_r a nd_c yc l e s . c s v� is checked in the working 

directory. The purpose is to check that the working directory is correctly defined. If the file 

�nof 1_r a nd_c yc l e s . c sv� is not present in the working directory, then the �file.choose� function is 

executed. The �file.choose� function prompts the user the select a file. After the user selects the file, 

the working directory is determined from the name of this file through the �dirname� function. 

Afterwards, the �setwd� function defines the working directory to the one determined in the previous 

statement. In the last statement from the �while� loop, the objects �file� and �WorkingDir� created in 

the previous statements, are removed from the R environment. After the four statements are 

executed, the condition from the �while� loop is checked again, and the loop is exited if the condition 

is false. If the condition is true, the process is repeated again. The loop may continue indefinitely, until 

the user selects a file contained within a directory, which itself contains the �nof 1_r a nd_c yc l e s . c s v� 

file. The �nof 1_r a nd_c yc l e s . c s v� file contains the data required for the analysis. When the �setwd� 

function succeeds, it does not return any visible value or error message. The �getwd� function can be 

called without any argument to query the current working directory and check that it is defined as 

desired: 

> ge t wd( );  

[ 1]  " E: / nof 1_R_na l ys i s " 

A single element character vector displaying the full path to the working directory is returned, 

confirming that the working directory is correctly defined. 

The user can list all the files located within the working directory by calling the �list.files� 

function without arguments. 
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> l i s t . f i l e s ( ) ;  

[ 1]  " ~$f 1_r a nd_c yc l e s . doc x"  " nof 1_r a nd_c yc l e s . c s v"   " nof 1_r a nd_c yc l e s . doc x" 

[ 4]  " nof 1_r a nd_c yc l e s . R" 

The �list.files� function returns a character vector of the names of the files placed inside the working 

directory. 

The data are stored within a �csv� file. To proceed with the analysis of the data, it must be 

imported to the R software. The �read.csv� function can be used to carry out this task: 

> # i mpor t  da t a 

> nda t a  <-  r e a d. c s v( 

+   f i l e =" . / nof 1_r a nd_c yc l e s . c s v" , 

+   he a de r =TRUE, 

+   c ol Cl a s s e s =c ( 

+     " f a c t or " ,  # Pa t i e nt  a s  f a c t or 

+     " f a c t or " ,  # Tr e a t me nt  a s  f a c t or 

+     " f a c t or " ,  # Cyc l e  a s  f a c t or 

+     " f a c t or " ,  # Pa i r  a s  f a c t or 

+     " nume r i c "  # Y a s  nume r i c 

+   )  

+ ) ;  

In this example, the �file� parameter specifies the path to the file being imported. Both full and relative 

paths can be used. Here a relative path is used. By preceding the filename with the set of characters 

�./� one can define the path to the file as the working directory. When no path is specified, R looks 

into the working directory, so specifying the filename works as well. The �header=TRUE� parameter 

instructs the �read.csv� function to read the variable names from the header of the file into the R 

object. The colClasses argument defines the type of variable inside the R object being saved. In the 

present situation, five variables are defined being the first four of type �factor� and the last one of 

type �numeric�. Within the R software environment, categorical variables can be stored inside �factor� 

objects, and continuous or discrete ones can be stored inside �numeric� objects. The data is saved to 

a data.frame object named �ndata�. 

The contents of a data.frame can be viewed by calling the �print� function with the data.frame 

name as argument. Since in this case the data.frame has a large number of rows, the output of the 

print would occupy a large space of this document, so it will not be displayed here. Instead, the �head� 

and �tail� functions can be used to display a desired number of rows of the �data.frame�. In the next 

example, the first six rows of the �ndata� data.frame are shown: 
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> he a d( nda t a ,  n=6) ; 

  Pa t i e nt  Tr e a t me nt  Cyc l e  Pa i r     Y 

1       1         A     1  1 1  2394 

2       1         B     1  1 1  2686 

3       1         A     2  1 2  2515 

4       1         B     2  1 2  2675 

5       1         A     3  1 3  2583 

6       1         B     3  1 3  2802 

The last six rows of the �ndata� object can be print by calling the �tail� function as in the example that 

follows: 

> t a i l ( nda t a ,  n=6) ; 

   Pa t i e nt  Tr e a t me nt  Cyc l e  Pa i r     Y 

67      12         A     1 12 1 2627 

68      12         B     1 12 1 2759 

69      12         A     2 12 2 2712 

70      12         B     2 12 2 2698 

71      12         A     3 12 3 2572 

72      12         B     3 12 3 2826 

Listing the structure of the data.frame can be very informative for the data analyst. This can 

be achieved by calling the �str� function with the desired data.frame name as argument. 

> s t r ( nda t a ) ; 

' da t a . f r a me ' : 72 obs .  of   5  va r i a bl e s : 

 $ Pa t i e nt   :  Fa c t or  w/  12 l e ve l s  " 1" , " 10" , " 11" , . . :  1 1 1 1 1 1 5 5  5 5 . . . 

 $ Tr e a t me nt :  Fa c t or  w/  2 l e ve l s  " A" , " B" :  1 2 1 2 1 2 1 2 1 2 . . . 

 $ Cyc l e     :  Fa c t or  w/  3 l e ve l s  " 1" , " 2" , " 3" :  1 1 2 2 3 3 1 1 2 2 . . .  

 $ Pa i r      :  Fa c t or  w/  36 l e ve l s  " 1 1" , " 1 2" , " 1 3" ,. . :  1 1 2 2 3 3  13 13 14 14 . . . 

 $ Y        :  num  2394 2686 2515 2675 2583 . . . 

This output gives the following useful information. The �ndata� object is a data.frame object, which 

contains five variables with 72 observations each. The variable �Patient� is a factor with 12 levels; the 

variable �Treatment� is a factor with two levels; the variable �Cycle� is defined as a factor with three 

levels; the variable �Pair� is a factor with 36 levels; and finally the variable �Y� is a numeric one. 

Knowing that the data was collected from a series of n-of1 trials, from this information the data analyst 

can deduce that two treatments were randomized in a maximum of 3 cycles within a total of 12 

patients. It is obvious that the outcome variable is identified by �Y�. It can be observed that the �Pair� 

variable results from the concatenation of the �Patient� and �Cycle� variables, so it can be considered 

redundant in this data set.
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2 Naïve estimation of individual treatment effects 

One of the purposes of running clinical trials is to estimate a mean treatment difference. For 

a series of n-of-1 trials design where two treatments are randomized in cycles, if there is no missing 

information, there should be an outcome observation for each of the two treatments administered to 

each individual under each cycle. In such a case, a new outcome variable can be obtained by 

differencing the outcome variable registered under both treatments for each cycle. A new dataset can 

be obtained with half as many observations as the original dataset. A proper statistical analysis can be 

carried out on the recoded smaller dataset. Some statistical methods give exactly the same results 

when applied to each of the mentioned datasets, if the necessary modifications are done to these 

methods. 

Before proceeding with the dataset recoding, the levels of the �Patient� factor are reordered 

in the original dataset. Levels of a factor can be any character string. Since in this case the factor levels 

are actual numbers encoded as character strings, the factor levels can be ordered. In this case, the 

factor levels are ordered by increasing order. The next lines of code accomplish this. 

> # r e or de r  f a c t or  l e ve l s  on o r i g i na l  da t a s e t 

> nda t a $Pa t i e nt  <-  f a c t or (  

+   x=nda t a $Pa t i e nt , 

+   l e ve l s =l e ve l s ( nda t a $Pa t i e n t ) [ 

+     or de r (  a s . nume r i c (  l e ve l s ( nda t a $Pa t i e nt )  )  ) 

+   ]  

+ ) ;  

Note that changing the order of the factor levels within a data.frame modifies an attribute of the 

factor but does not modify the data contained within. Reordering the levels of the �Patient� factor 

ensures that the levels are processed in the desired order in subsequent code. The usefulness of this 

reordering of factor levels is more evident below where plots of the data are demonstrated. 

Next, the R code that leads to the smaller dataset is presented without entering into details 

as regards each line of code. 
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> # c omput e  d i f f e r e nc e s 
> nc yc l e s  <-  nr ow(  un i que ( nda t a [ , c ( " Pa t i e nt " ,  " Cyc l e " ) ] )  ) ;  # c yc l e  numbe r 

> dda t a  <-  da t a . f r a me ( 

+   " Pa t i e nt " =nume r i c ( nc yc l e s ) , 

+   " Cyc l e " =nume r i c ( nc yc l e s ) , 

+   " YA" =nume r i c ( nc yc l e s ) , 

+   " YB" =nume r i c ( nc yc l e s ) , 

+   " dY" =nume r i c ( nc yc l e s ) 

+ ) ;  

>  

> i nde x <-  1;  

> f or  (  pa t i e nt  i n l e ve l s ( nda t a $Pa t i e nt )  )  {  # pa t i e nt s  l oop 

+   f or  (  c yc l e  i n l e ve l s ( nda t a $Cyc l e )  )  {  # c yc l e s  l oop 

+     i nde xA <-  wi t h(  

+       nda t a , 

+       whi c h(  

+         Pa t i e nt ==pa t i e nt 

+         & Cyc l e ==c yc l e 

+         & Tr e a t me nt ==l e ve l s ( Tr e a t me nt ) [ 1] 

+       )  

+     ) ;  

+     i nde xB <-  wi t h(  

+       nda t a , 

+       whi c h(  

+         Pa t i e nt ==pa t i e nt 

+         & Cyc l e ==c yc l e 

+         & Tr e a t me nt ==l e ve l s ( Tr e a t me nt ) [ 2] 

+       )  

+     ) ;  

+     i f  ( l e ngt h( i nde xB) ==0 & l e ngt h( i nde xA) ==0)  ne xt ;  # unba l a nc e d da t a 

+     i f  ( l e ngt h( i nde xB) ==0)  { 

+       wa r ni ng( 

+         " An  obs e r va t i on unde r  s ubj e c t  " , 

+         pa t i e nt , 

+         " ,  c yc l e  " ,  

+         c yc l e ,  

+         "  a nd t r e a t me nt  " , 

+         l e ve l s ( nda t a $Tr e a t me nt ) [ 2] , 

+         "  i s  not  a va i l a bl e  t o de f i ne  a  poi nt !\ nI gnor i ng. " 

+       ) ;  

+       ne xt ;  # ne xt  l oop 

+     }  

+     e l s e  i f  ( l e ngt h ( i nde xA) ==0)  { 

+       wa r ni ng( 

+         " An  obs e r va t i on unde r  s ubj e c t  " , 

+         pa t i e nt , 

+         " ,  c yc l e  " ,  

+         c yc l e ,  

+         "  a nd t r e a t me nt  " , 

+         l e ve l s ( nda t a $Tr e a t me nt ) [ 1] , 

+         "  i s  not  a va i l a bl e  t o de f i ne  a  poi nt !\ nI gnor i ng. " 

+       ) ;  
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+       ne xt ;  # ne xt  l oop 

+     }  

+     dda t a $Pa t i e nt [ i nde x]  <-  pa t i e nt ; 

+     dda t a $Cyc l e [ i nde x]  <-  c yc l e ;  

+     dda t a $YA[ i nde x]  <-  nda t a $Y[ i nde xA] ; 

+     dda t a $YB[ i nde x]  <-  nda t a $Y[ i nde xB] ; 

+     dda t a $dY[ i nde x]  <-  nda t a $Y[ i nde xB]- nda t a $Y[ i nde xA] ; 

+     i nde x <-  i nde x+1;  # i nc r e a s e  i nde x f or  ne xt  l oop 

+   }  

+ }  

>  

> # c oe r c e  ' Pa t i e nt '  a nd ' Cyc l e '  wi t h i n ' dda t a '  t o  f ac t or  

> dda t a  <-  wi t h i n(  

+   dda t a , 

+   {  

+     Pa t i e nt  <-  f a c t or ( Pa t i e n t ) ; 

+     Cyc l e  <-  f a c t or ( Cyc l e ) ; 

+   }  

+ ) ;  

>  

> # r e or de r  f a c t or  l e ve l s  on r e c ode d da t a s e t 

> dda t a $Pa t i e nt  <-  f a c t or (  

+   x=dda t a $Pa t i e nt , 

+   l e ve l s =l e ve l s ( dda t a $Pa t i e n t ) [ 

+     or de r (  a s . nume r i c (  l e ve l s ( dda t a $Pa t i e nt )  )  ) 

+   ]  

+ ) ;  

At this stage, it is important to remind the reader that comments in R code are preceded by a hash 

�#� character. Comments are not interpreted by the R software while running the code. After running 

the above code, the recoded data.frame named �ddata� is obtained and accessible for subsequent 

use. The first six rows of �ddata� contain data on the first two patients. 

> he a d( dda t a ,  n=6) ; 

  Pa t i e nt  Cyc l e    YA   YB  dY 

1       1     1 2394 2686 292 

2       1     2 2515 2675 160 

3       1     3 2583 2802 219 

4       2     1 2746 2726 - 20 

5       2     2 2592 2867 275 

6       2     3 2743 2742  - 1  

In the recoded data.frame, five variables can be identified. There is a categorical variable indicating 

the patient and a categorical variable indicating the cycle and then three continuous variables, one 

each for outcome under treatments A and B and one for the difference. The column �YA� contains the 

values of outcome variable measured under treatment labelled as �A�, and the column �YB� contains 

the values of outcome variable registered under treatment �B� in the original dataset. The column 
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�dY� is obtained as the difference of the elements of the column �YB� and the elements of the column 

�YA� in the same row. The variables �YA� and �YB� are retained for informative purposes, and should 

not be needed for the statistical analysis of the recoded dataset. Note that cycles should be regarded 

as being �nested within� patients. That is to say, that although the same cycle numbers appear for 

every patient there is no implication that cycle 3 for patient 1 is the same as cycle 3 for patient 2. To 

refer to a given cycle it is necessary to refer not only to the cycle number but also to the patient. 

The number of observations can be read from the output given by the �str� function as shown 

above. Since there are as many observations as rows in �ddata�, the number of observations can 

alternatively be obtained from the �nrow� function. 

> nr ow( dda t a ) ; 

[ 1]  36 

As mentioned above the recoded dataset contains half the observations of the full dataset. There are 

72 observations in the original dataset and 36 in the recoded one. 

The means of the outcome difference under the two treatments can be obtained for each 

patient as follows: 
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> # s umma r y c ont r a s t s  pe r  pa t i e nt 

> s dda t a  <-  by(  

+   da t a =dda t a $dY, 

+   I NDI CES=dda t a $Pa t i e nt , 

+   FUN=me a n 

+ ) ;  

>  

> # di s pl a y pe r  pa t i e nt  me a n o f  out c ome  di f f e r e nc e 

> pr i nt ( s dda t a ) ; 

dda t a $Pa t i e nt :  1 

[ 1]  223. 6667 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

dda t a $Pa t i e nt :  2 

[ 1]  84. 66667 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

dda t a $Pa t i e nt :  3 

[ 1]  60 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

dda t a $Pa t i e nt :  4 

[ 1]  348 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

dda t a $Pa t i e nt :  5 

[ 1]  259. 3333 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

dda t a $Pa t i e nt :  6 

[ 1]  50 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

dda t a $Pa t i e nt :  7 

[ 1]  175 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

dda t a $Pa t i e nt :  8 

[ 1]  153. 6667 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

dda t a $Pa t i e nt :  9 

[ 1]  324. 3333 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

dda t a $Pa t i e nt :  10 

[ 1]  247. 6667 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

dda t a $Pa t i e nt :  11 

[ 1]  214. 3333 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

dda t a $Pa t i e nt :  12 

[ 1]  124 

At first the �by� function applies the �mean� function to the variable �dY� over each factor of the 

�Patient� variable contained within the �ddata� data.frame. The �by� function returns an R object that 

is saved under the name �sddata�. Afterwards the �print� function prints the contents of �sddata� on 

screen. It can easily be observed that the minimum per patient mean difference values range between 

50 and 348 units. For datasets with large numbers of individuals, this can become hard to identify. 

Fortunately, there is the �range� function: 

> r a nge ( s dda t a ) ; 

[ 1]   50 348 

The �which.min� and �which.max� functions can be used to determine which index elements 

of a vector contain the minimum and maximum values respectively. Since in this case the levels of the 

�Patient� factor are ordered and equal to the index of �ddata�, these functions can help determine 

which patients registered the minimum mean and the maximum mean. 

> # whi c h pa t i e nt  r e g i s t e r e d t he  mi ni mum me a n 

> whi c h. mi n( s dda t a ) ; 

6  

6  

>  

> # whi c h pa t i e nt  r e g i s t e r e d t he  ma xi mum me a n 

> whi c h. ma x( s dda t a ) ; 

4  

4 

The answer is that the minimum mean difference of outcome was registered for patient number 6, 

and the maximum mean difference of outcome was registered for patient identified by number 4. 

Here two lines with equal numbers are returned. The first line is the name of the vector element and 

the second line is the index of the vector element where either the minimum or the maximum values 

are observed inside the vector given as argument. Given that, the elements of vector �sddata� are 

named after the patient labels that are identified by numbers in increasing order in the dataset from 

which this vector was computed, the vector element names are equal to the vector indexes in this 

case. 

The minimum, first quantile, median, mean, third quantile and maximum can be obtained 

from a single function call. 



Naïve estimation of individual treatment effects 11 

 

> s umma r y( s dda t a ) 

   Mi n.  1s t  Qu.   Me di a n    Me a n 3r d Qu.     Ma x.   

   50. 0   114 . 2   194 . 7   188. 7   250 . 6   348. 0  

The individual means of outcome variable difference are shortly referred in the n-of-1 trial 

literature as individual treatment effects. The method of estimation of the individual treatments 

effects that is described in this section can be considered a simple and naïve one, and is not 

recommended. The individual treatment effects can be estimated more precisely using more 

advanced statistical techniques that are presented below. 
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3 The paired t-test 

The paired t-test assumes the data as independent and normally distributed. The 

independency assumption is questionable for any measurement taken from the same individual as is 

done for n-of-1 trials. However, a justification can be provided in terms of testing the point null 

hypothesis that the treatments are identical for any individual. In that case, under the null hypothesis 

at least and given randomisation (which will vary the order of the A and B treatments) the differences 

per pair can be treated as if they were independent. The t-test can be performed on both datasets 

presented above. The following example considers a two sided paired t-test performed on the full 

dataset. 

> t . t e s t ( 

+   f or mul a =Y~Tr e a t me nt , 

+   da t a =nda t a , 

+   a l t e r na t i ve =" t wo. s i de d" , 

+   mu=0, 

+   va r . e qua l =TRUE, 

+   c onf . l e ve l =0. 95 

+ ) ;  

 

 Pa i r e d t- t e s t  

 

da t a :   Y by Tr e a t me nt 

t  = - 7. 111,  d f  = 35,  p- va l ue  = 2. 749e- 08 

a l t e r na t i ve  hypot he s i s :  t r ue  d i f f e r e nc e  i n me a ns  i s not  e qua l  t o 0 

95 pe r c e nt  c onf i de nc e  i nt e r va l : 

 - 242. 6002 - 134. 8443 

s a mpl e  e s t i ma t e s : 

me a n of  t he  d i f f e r e nc e s   

              - 188. 7222  

In this function call, the �data� argument inputs the �ndata� data.frame to the �t.test� function. The 

�formula� argument tells the function to perform the test on the values of the variable �Y� for each 

factor of the variable �Treatment�. The purpose here is to compare the means of the outcome variable 

under the two treatments labelled �A� and �B� in the data.frame. By specifying the argument �mu� 

equal to zero and a two sided test as specified by argument �alternative�, the alternative hypothesis 

is defined as �true difference in means is not equal to 0� as printed in the output. In this case, the null 

hypothesis is defined, as �true difference in means is equal to zero�. The �paired=TRUE� specifies a 

paired t-test. The �conf.level� argument defines both the level of significance for the test and the 

coverage of the confidence interval of the mean of differences. Here a 95% confidence interval and a 

5% level of significance are specified. The p-value is significantly lower than the 0.05 level of 
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significance, leading to the rejection of the null hypothesis. There is statistical evidence that the 

treatments are significantly different when considering all the patients recruited into the trial. 

The paired t-test can be performed on the smaller dataset where the outcome is defined as 

the difference of outcome under each of the two treatments studied. Now the cycles define the pair. 

> t . t e s t ( x=dda t a $dY,  a l t e r na t i ve =" t wo. s i de d" ,  mu=0, c onf . l e ve l =0. 95) ; 

 

 One  Sa mpl e  t- t e s t  

 

da t a :   dda t a $dY 

t  = 7. 111,  df  = 35,  p- va l ue  = 2. 749e- 08 

a l t e r na t i ve  hypot he s i s :  t r ue  me a n i s  not  e qua l  t o 0 

95 pe r c e nt  c onf i de nc e  i nt e r va l : 

 134. 8443 242. 6002 

s a mpl e  e s t i ma t e s : 

me a n of  x  

 188. 7222 

Unlike in the previous example there is no need to specify the �paired� parameter. The results are 

similar to the results of the t-test performed on the full dataset. The difference resides in the signs of 

the t statistic, the estimate and the lower and upper bounds of the confidence interval. The results 

are however the same in absolute value. In the t-test performed on the full dataset the mean of 

outcome under treatment �A� minus the mean of outcome under treatment �B� is estimated. While 

for the t-test when performed on the recoded dataset, the mean of outcome under treatment �B� 

comes before the mean of outcome under treatment �A� in the difference. The p-value obtained is 

the same. Moreover, the conclusions are the same as above. 
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4 A summary measures approach 

An alternative consists in performing the t-test on the summary data saved earlier under the 

R object named �sddata�. In this example, the same alternative hypothesis as the one exemplified in 

section 3 is tested. To compare the results the significance level is kept at 0.05. 

> t . t e s t ( x=s dda t a ,  a l t e r na t i ve =" t wo. s i de d" ,  mu=0,  conf . l e ve l =0. 95) ; 

 

 One  Sa mpl e  t- t e s t  

 

da t a :   s dda t a 

t  = 6. 649,  df  = 11,  p- va l ue  = 3. 616e- 05 

a l t e r na t i ve  hypot he s i s :  t r ue  me a n i s  not  e qua l  t o 0 

95 pe r c e nt  c onf i de nc e  i nt e r va l : 

 126. 2500 251. 1945 

s a mpl e  e s t i ma t e s : 

me a n of  x  

 188. 7222  

The degrees of freedom are equal to 11 instead of 35. This is due to the lower number of observations 

present in the latter dataset. There is one observation per patient in this dataset. The mean estimate 

is the same as in the second example presented in section 3. However, the bounds of the confidence 

interval of the mean are wider suggesting a larger standard error of the mean. The p-value is higher, 

but is still very low when compared to the significance level. This result suggests the rejection of the 

null hypothesis and the same conclusion as in the t-test examples presented above. 

An advantage of this approach is as regards the calculation of the confidence interval. As 

mentioned before, under the strict null hypothesis that the treatments are identical for every patient, 

the matched pairs t-test is valid. However, as soon as one considers the possibility that the treatment 

effect is not zero, which is what is done by calculating a confidence interval, then the strict null is 

abandoned. It becomes plausible to believe that the treatment effect might vary from patient to 

patient. The summary measures approach makes allowance for this. 
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5 Analysis of variance 

In the next example, an analysis of variance considering the cycle within patients as block 

structure is performed on the full dataset. 

> a ov0 <-  a ov( f or mul a =Y~Tr e a t me nt +Er r or ( Pa t i e nt / Cyc l e ) ,  da t a =nda t a ) ; 

> pr i nt ( a ov0) ; 

 

Ca l l :  

a ov( f or mul a  = Y ~ Tr e a t me nt  + Er r or ( Pa t i e nt / Cyc l e ) , da t a  = nda t a ) 

 

Gr a nd Me a n:  2720. 111 

 

St r a t um 1:  Pa t i e nt 

 

Te r ms : 

                Re s i dua l s 

Sum of  Squa r e s     1458791 

De g.  of  Fr e e dom        11 

 

Re s i dua l  s t a nda r d e r r or :  364. 1667 

 

St r a t um 2:  Pa t i e nt : Cyc l e 

 

Te r ms : 

                Re s i dua l s 

Sum of  Squa r e s    316884. 7 

De g.  of  Fr e e dom        24 

 

Re s i dua l  s t a nda r d e r r or :  114. 9066 

 

St r a t um 3:  Wi t hi n 

 

Te r ms : 

                Tr e a t me nt  Re s i dua l s 

Sum of  Squa r e s    641089. 4  443735. 6 

De g.  of  Fr e e dom         1        35 

 

Re s i dua l  s t a nda r d e r r or :  112. 5973 

Es t i ma t e d e f f e c t s  a r e  ba l a nc e d 

Note how the Cycle within Patient is specified in the �Error� term of the formula parameter. Here the 

purpose is to test the difference of the mean of outcome under the two treatments, hence the 

Treatment term outside the �Error� term of the formula parameter. The �aov� function returns an 

object that is saved under the name �aov0�. Then this object can be used as argument to other 

functions as is seen next. The �summary� of �aov0� follows. 
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> s umma r y( a ov0) ; 

 

Er r or :  Pa t i e n t 

          Df   Sum Sq Me a n Sq F va l ue  Pr ( >F) 

Re s i dua l s  11 1458791  132617                

 

Er r or :  Pa t i e n t : Cyc l e 

          Df  Sum Sq Me a n Sq F va l ue  Pr ( >F) 

Re s i dua l s  24 316885   13204                

 

Er r or :  Wi t hi n 

          Df  Sum Sq Me a n Sq F va l ue    Pr ( >F)      

Tr e a t me nt   1 641089  641089   50. 57 2 . 75e- 08 ***  

Re s i dua l s  35 443736   12678                      

- - -  

Si gni f .  c ode s :   0 ‘ ** * ’  0. 001 ‘ ** ’  0. 01 ‘ * ’  0. 05 ‘ . ’  0. 1 ‘  ’  1  

As can be seen from the output, a table containing the sum of squares, the mean of squares and the 

degrees of freedom for each error term is displayed on screen. Note the same degrees of freedom 

and p-value as in the paired t-test and equivalent one sample t-test exemplified above. Note also that 

the F statistic obtained here equals the square of the t statistic obtained in the referred t-tests. The F 

test considers a null hypothesis of equality of the means estimated under the two factors against an 

alternative hypothesis of difference of the means. The p-value resulting from the F test is significantly 

lower than the usual 0.05 significance level, suggesting that the means estimated under the two 

treatments are different. One treatment should be preferred over the other. The table of means 

indicates which treatment should be preferred. 

> pr i nt ( mode l . t a bl e s ( x=a ov0,  t ype =" me a ns " ) ,  d i g i t s =3) ;  

Ta bl e s  of  me a ns 

Gr a nd me a n 

          

2720. 111  

 

 Tr e a t me nt   

Tr e a t me nt 

   A    B  

2626 2814  

Therefore, if the patient feels better when the outcome variable registers higher values, the treatment 

�B� should be preferred over treatment �A�. If it is the case that the quality of life of the patient is 

better when lower values of outcome variable are observed, then the choice should fall over 

treatment �A�. 

The following example prints the coefficients under each treatment and the standard 

deviation. 
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> pr i nt ( mode l . t a bl e s ( x=a ov0,  t ype =" e f f e c t s " ,  s e =TRUE) ,  di g i t s =3) ;  

Ta bl e s  of  e f f e c t s 

 

 Tr e a t me nt   

Tr e a t me nt 

    A     B  

- 94. 4  94. 4  

 

St a nda r d e r r o r s  of  e f f e c t s 

        Tr e a t me nt 

             18. 8 

r e pl i c .         36 

The analysis of variance considering the cycle and treatment within patient can be performed 

by adding the Treatment variable to the �Error� term as in the following example. 
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> a ov1 <-  a ov(  

+   f or mul a =Y~Tr e a t me nt +Er r or (  Pa t i e n t / ( Tr e a t me nt *Cyc l e )  ) ,  

+   da t a =nda t a 

+ ) ;  

> pr i nt ( a ov1) ;  # pr i n t  r e s ul t s 

 

Ca l l :  

a ov( f or mul a  = Y ~ Tr e a t me nt  + Er r or ( Pa t i e nt / ( Tr e a t me nt  *  Cyc l e ) ) ,   

    da t a  = nda t a ) 

 

Gr a nd Me a n:  2720. 111 

 

St r a t um 1:  Pa t i e nt 

 

Te r ms : 

                Re s i dua l s 

Sum of  Squa r e s     1458791 

De g.  of  Fr e e dom        11 

 

Re s i dua l  s t a nda r d e r r or :  364. 1667 

 

St r a t um 2:  Pa t i e nt : Tr e a t me nt 

 

Te r ms : 

                Tr e a t me nt  Re s i dua l s 

Sum of  Squa r e s    641089. 4  159516. 3 

De g.  of  Fr e e dom         1        11 

 

Re s i dua l  s t a nda r d e r r or :  120. 4221 

Es t i ma t e d e f f e c t s  a r e  ba l a nc e d 

 

St r a t um 3:  Pa t i e nt : Cyc l e 

 

Te r ms : 

                Re s i dua l s 

Sum of  Squa r e s    316884. 7 

De g.  of  Fr e e dom        24 

 

Re s i dua l  s t a nda r d e r r or :  114. 9066 

 

St r a t um 4:  Pa t i e nt : Tr e a t me nt : Cyc l e 

 

Te r ms : 

                Re s i dua l s 

Sum of  Squa r e s    284219. 3 

De g.  of  Fr e e dom        24 

 

Re s i dua l  s t a nda r d e r r or :  108. 8231 

Again, the p-value for testing the difference between the means of outcome estimated under 

the two treatments can be accessed through the �summary� function. 
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> s umma r y( a ov1) ; 

 

Er r or :  Pa t i e n t 

          Df   Sum Sq Me a n Sq F va l ue  Pr ( >F) 

Re s i dua l s  11 1458791  132617                

 

Er r or :  Pa t i e n t : Tr e a t me nt 

          Df  Sum Sq Me a n Sq F va l ue    Pr ( >F)      

Tr e a t me nt   1 641089  641089   44. 21 3 . 62e- 05 ***  

Re s i dua l s  11 159516   14501                      

- - -  

Si gni f .  c ode s :   0 ‘ ** * ’  0. 001 ‘ ** ’  0. 01 ‘ * ’  0. 05 ‘ . ’  0. 1 ‘  ’  1  

 

Er r or :  Pa t i e n t : Cyc l e 

          Df  Sum Sq Me a n Sq F va l ue  Pr ( >F) 

Re s i dua l s  24 316885   13204                

 

Er r or :  Pa t i e n t : Tr e a t me nt : Cyc l e 

          Df  Sum Sq Me a n Sq F va l ue  Pr ( >F) 

Re s i dua l s  24 284219   11842 

It can be noted that the p-value and degrees of freedom obtained in this example are the same as the 

ones obtained from the one sample t-test of the summary measures data presented above. While the 

obtained F statistic is equal to the square of the t statistic obtained in the summary measures 

approach. The p-value remains relatively low and the conclusion drawn from the above analysis of 

variance table remains. 

The overall mean and the mean under each treatment rounded to three decimal places follow. 

> pr i nt ( mode l . t a bl e s ( x=a ov1,  t ype =" me a ns " ) ,  d i g i t s =3) ;  

Ta bl e s  of  me a ns 

Gr a nd me a n 

          

2720. 111  

 

 Tr e a t me nt   

Tr e a t me nt 

   A    B  

2626 2814 

Note that the mean values are the same as the ones resulting from the analysis of variance without 

the treatment by patient interaction in the �Error� term. 

The standard error of the Treatment dummy variable coefficient is obtained next. 
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> pr i nt ( mode l . t a bl e s ( x=a ov1,  t ype =" e f f e c t s " ,  s e =TRUE) ,  di g i t s =3) ; 

Ta bl e s  of  e f f e c t s 

 

 Tr e a t me nt   

Tr e a t me nt 

    A     B  

- 94. 4  94. 4  

 

St a nda r d e r r o r s  of  e f f e c t s 

        Tr e a t me nt 

             20. 1 

r e pl i c .         36 

Note a slight increase in the standard error. 
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6 Preparing to use linear mixed-effects models 

Linear mixed-effects models can be fitted within R after loading the required packages [1-3]. 

Both the �lme� function provided by �nlme� package and the �lmer� function provided by �lme4� 

package can be used [2, 3]. The �nlme� package is included with the R base distribution available for 

the Microsoft Windows operating system. Function �lmer� provides a flexible way of specifying the 

formula parameter that is unavailable in the �lme� function, so �lmer� function from package �lme4� 

is used to fit linear mixed-effect models in all the examples given below. Package �lme4� can be 

downloaded and installed by calling �install.packages� from the R console. It should work when a 

viable internet connection is available. The output may vary depending on the operating system and 

particular system configuration. The following output was obtained on the test machine. 

> # i ns t a l l  pa c ka ge  i f  not i ns t a l l e d 

> i f  (  ! " l me 4"  %i n% i ns t a l l e d. pa c ka ge s ( )  )  { 

+   i ns t a l l . pa c ka ge s ( " l me 4" ) ; 

+ }  

I ns t a l l i ng pa c ka ge  i n t o ‘ C: / Us e r s / a a r a uj o/ Doc ume nt s/ R/ wi n- l i br a r y/ 3 . 2’  

( a s  ‘ l i b ’  i s  uns pe c i f i e d) 

t r y i ng URL ' h t t ps : / / c r a n. r s t ud i o. c om/ bi n/ wi ndows / c ont r i b/ 3 . 2/ lme 4_1. 1- 10. z i p '  

Cont e nt  t ype  ' a ppl i c a t i on/ z i p '  l e ngt h  4787883 byt e s ( 4. 6 MB)  

downl oa de d 4. 6 MB 

 

pa c ka ge  ‘ l me 4 ’  s uc c e s s f ul l y unpa c ke d a nd MD5 s ums  che c ke d 

 

The  downl oa de d bi na r y  pa c ka ge s  a r e  i n 

 C: \ Us e r s\ a a r a uj o\ AppDa t a\ Loc a l \ Te mp\ Rt mpUF4Ar z\ downl oa de d_pa c ka ge s 

The code checks if package �lme4� is installed, and if not then �install.packages� is called in order to 

install the package. 

The covariance matrix of the fixed effects and the likelihood ratio tests that are currently 

implemented in package �lme4� are based on asymptotic approximations. Package �pbkrtest� 

provides Kenward-Roger and parametric bootstrap based methods for linear mixed-effects model 

comparison [4, 5]. These two methods do not rely on asymptotic approximations, therefore being 

expected to behave better for smaller samples. Package �pbkrtest� was developed as an extension to 

package �lme4�, so the functions implemented in package �pbkrtest� expect objects returned by 

�lmer� function from package �lme4�. If package �pbkrtest� is not already available on the local 

machine, it can be downloaded and installed as follows. 
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> # i ns t a l l  pa c ka ge  i f  not  i ns t a l l e d 

> i f  (  ! " pbkr t e s t "  %i n% i ns t a l l e d. pa c ka ge s ( )  )  { 

+   i ns t a l l . pa c ka ge s ( " pbkr t e s t " ) ; 

+ }  

I ns t a l l i ng pa c ka ge  i n t o ‘ C: / Us e r s / a a r a uj o/ Doc ume nt s / R/ wi n- l i br a r y/ 3 . 2’  

( a s  ‘ l i b ’  i s  uns pe c i f i e d) 

t r y i ng URL ' h t t ps : / / c r a n. r s t ud i o. c om/ bi n/ wi ndows / c ont r i b/ 3 . 2/ pbkr t e s t _0. 4- 2. z i p '  

Cont e nt  t ype  ' a ppl i c a t i on/ z i p '  l e ngt h  205618 byt e s  ( 200 KB)  

downl oa de d 200 KB 

 

pa c ka ge  ‘ pbkr t e s t ’  s uc c e s s f ul l y unpa c ke d a nd MD5 s ums  c he c ke d 

 

The  downl oa de d bi na r y  pa c ka ge s  a r e  i n 

 C: \ Us e r s\ a a r a uj o\ AppDa t a\ Loc a l \ Te mp\ Rt mpELbc c B\ downl oa de d_pa c ka ge s 

To access all the functions implemented for linear mixed-effects model analysis, the �lme4� 

and �pbkrtest� packages must be loaded into the R software. Some of the functions presented below 

in this document use parallel computation, so package �parallel� must be loaded as well [6]. The 

�library� function with the package name as argument can be used to accomplish this task. 

> # l oa d l me 4 pa c ka ge 
> l i br a r y( l me 4) ; 

Loa di ng r e qui r e d pa c ka ge :  Ma t r i x 

>  

> # l oa d pbkr t e s t  pa c ka ge 

> l i br a r y( pbkr t e s t ) ; 

>  

> #l oa d pa r a l l e l  pa c ka ge 

> l i br a r y( pa r a l l e l ) ; 
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7 Linear mixed-effects model 

After installing and loading the required packages, the mixed-model analysis can commence. 

A model with the Treatment as fixed and a Patient random term, a random Treatment by Patient 

interaction and a random Cycle by Patient interaction, is fitted in the next example [1, 7-9]. 

> f i t 0 <-  l me r (  

+   f or mul a =Y~Tr e a t me nt +( 1| Pa t i e nt ) +( 1| Pa t i e nt : Cyc le ) +( 1| Pa t i e nt : Tr e a t me nt ) , 

+   da t a =nda t a , 

+   REML=TRUE 

+ ) ;  

> pr i nt ( f i t 0) ;  

Li ne a r  mi xe d mode l  f i t  by REML [ ' l me r Mod' ]  

For mul a :  Y ~ Tr e a t me nt  + ( 1 |  Pa t i e nt )  + ( 1 |  Pa t i en t : Cyc l e )  + ( 1 |  Pa t i e nt : Tr e a t me nt ) 

   Da t a :  nda t a 

REML c r i t e r i on a t  c onve r ge nc e :  893. 7924 

Ra ndom e f f e c t s : 

 Gr oups             Na me         St d. De v. 

 Pa t i e nt : Cyc l e      ( I nt e r c e pt )   26. 09    

 Pa t i e nt : Tr e a t me nt  ( I nt e r c e pt )   29. 77    

 Pa t i e nt            ( I nt e r c e pt )  139. 50    

 Re s i dua l                       108. 82    

Numbe r  of  obs :  72,  gr oups :   Pa t i e nt : Cyc l e ,  36;  Pa t ie nt : Tr e a t me nt ,  24;  Pa t i e nt ,  12 

Fi xe d Ef f e c t s : 

( I nt e r c e pt )    Tr e a t me nt B   

     2625. 8        188. 7 

The model is fitted on the full dataset. The �REML=TRUE� argument instructs the function to fit the 

model using restricted maximum likelihood, a method of estimation that provides unbiased estimates 

of the variance parameters of the model. In this example, the �lmer� function returns an object that 

is saved under the name �fit0�. Afterwards the �fit0� object is printed on screen. Here the coefficients 

of the fixed effects part of the model and the standard deviations pertaining to the random part of 

the model are displayed. 

7.1 Estimation and inference on the overall treatment effect 

The fixed effects coefficients can also be extracted from the �fit0� object using the �fixef� 

function. 

> f i xe f ( f i t 0) ;  

( I nt e r c e pt )   Tr e a t me nt B  

  2625. 7500    188. 7222 
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Therefore, the estimated intercept of the model equals 2625.7500 units of outcome variable. The 

estimate of the difference of the means of outcome under treatment �B� and treatment �A� assumes 

the value 188.7222 units. This quantity is also shortly referred to in the medical statistics literature as 

the overall treatment effect. 

The variance components of the linear mixed-effects model can be saved under an object 

returned from a call to �VarCorr� with object �fit0� as argument. 

> vf i t 0 <-  Va r Cor r ( f i t 0) ;  

Then the �vfit0� object as returned from �VarCorr� can be displayed on screen for analysis. To display 

the variances and standard errors, a call to �print� can be run as in the following example. 

> pr i nt (  x=vf i t 0,  c omp=c ( " Va r i a nc e " , " St d. De v" )  ) ;  

 Gr oups             Na me         Va r i a nc e  St d. De v. 

 Pa t i e nt : Cyc l e      ( I nt e r c e pt )    680. 53  26. 087  

 Pa t i e nt : Tr e a t me nt  ( I nt e r c e pt )    886. 34  29. 771  

 Pa t i e nt            ( I nt e r c e pt )  19459. 14 139. 496  

 Re s i dua l                       11842. 47 108. 823 

The variance and standard error of the cycle by patient, the treatment by patient, the patient and the 

residual errors are displayed in this order. 

The covariance matrix of the fixed effects plays an important role when making inferences on 

these. It can be computed and displayed through a call to �vcov� with an object returned by �lmer� 

function as argument. 

> vc ov( f i t 0) ;  

2 x 2 Ma t r i x of  c l a s s  " dpoMa t r i x" 

            ( I nt e r c e p t )  Tr e a t me nt B 

( I nt e r c e pt )    2043. 3177  - 402. 8189 

Tr e a t me nt B    - 402. 8189   805. 6377 

Of particular interest is the variance of the difference in means obtained under each treatment, which 

in the present case equals 805.6377 units. At the time of writing this document, �vcov� returns an 

asymptotic approximation of the covariance of the fixed effects, which can be biased for unbalanced 

data, but is unbiased for balanced data. The dataset used as example in this document is balanced for 

the variables �Patient and Treatment within Patient. This means that all the levels of the factor 

�Patient� have an equal number of observations. Moreover, all the levels of the �Treatment� factor 

have the same number of observations for each level of factor �Patient�. An alternative approach was 

developed by Kenward and Roger that attempts to minimize the bias of the covariance matrix of the 

fixed effects in a mixed-effects model [5]. It can be obtained by calling the �vcovAdj� function with an 

object returned by function �lmer� as argument. 
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> vc ovAdj ( f i t 0) ;  

2 x 2 Ma t r i x of  c l a s s  " dge Ma t r i x" 

            ( I nt e r c e p t )  Tr e a t me nt B 

( I nt e r c e pt )    2043. 3177  - 402. 8189 

Tr e a t me nt B    - 402. 8189   805. 6377 

The dataset used to fit the mixed-effects model is balanced so the Kenward-Roger covariance matrix 

of the fixed effects is exactly equal to the asymptotic one. For unbalanced data, the Kenward-Roger 

and asymptotic results are expected to differ. 

To make inferences on the mean of outcome difference between the two treatments one 

must proceed by fitting two models, one with the Treatment factor in the fixed effects term and 

another without. The two models must be fitted by maximum likelihood instead of restricted 

maximum likelihood. Both models can then be compared by the likelihood ratio test. Likelihood ratio 

tests of nested models with different fixed-effects fitted by restricted maximum likelihood are not 

meaningful. For this reason, maximum likelihood is used to fit both models. 

> # Mode l  wi t h Tr e a t me nt 

> f i t 00 <-  r e f i t ML( f i t 0) ;  

>  

> # Mode l  wi t hout  Tr e a t me nt 

> f i t 01 <-  upda t e ( f i t 00,  f or mu l a =~.- Tr e a t me nt ) ; 

>  

> # Li ke l i hood r a t i o t e s t 

> a nova ( f i t 00 ,  f i t 01) ; 

Da t a :  nda t a 

Mode l s :  

f i t 01:  Y ~ ( 1  |  Pa t i e nt )  + ( 1 |  Pa t i e nt : Cyc l e )  + ( 1 |  Pa t i e nt : Tr e a t me nt ) 

f i t 00:  Y ~ Tr e a t me nt  + ( 1 |  Pa t i e nt )  + ( 1 |  Pa t i e nt: Cyc l e )  + ( 1 |  Pa t i e nt : Tr e a t me nt ) 

      Df     AI C    BI C  l ogLi k  de vi a nc e   Chi s q Chi  Df  Pr (>Chi s q)      

f i t 01  5 940. 95 952. 33 - 465. 47    930. 95                              

f i t 00  6 923. 59 937. 25 - 455. 80    911. 59 19. 359      1  1. 083e- 05 ** *  

- - -  

Si gni f .  c ode s :   0 ‘ ** * ’  0. 001 ‘ ** ’  0. 01 ‘ * ’  0. 05 ‘ . ’  0. 1 ‘  ’  1  

One starts by fitting a model with the intercept and the Treatment in the fixed effect part, a Patient, 

Cycle by Patient interaction and a Treatment by Patient interaction in the random effects part. Such a 

model has been previously fitted by restricted maximum likelihood and an object exists under the 

name �fit0�. It suffices to refit the model by maximum likelihood with function �refitML�. The object 

resulting from the maximum likelihood fit is saved under the name �fit00�. A second model is fitted 

with the same fixed and random effect terms as the previous one, except the Treatment in the fixed 

effects term. The easiest way to accomplish this in R is to use the �update� function to update the 

�fit00� object with the variable being removed in the formula. Note the dot �.� character in the 

formula argument. The dot �.� character represents all the terms present in the formula of the object 
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being updated, in this case �fit00�. By placing the minus �-� character and the desired variable after 

the dot �.� character in the formula argument, a new model without that variable is fitted to the same 

dataset. The �update� function returns an object saved under the name �fit01�. Finally, a call to 

�anova� is made with objects �fit00� and �fit01� as arguments. The �anova� function returns an object 

that is printed on screen displaying a table with the results of the likelihood ratio test. The likelihood 

ratio statistic equals twice the difference between the log likelihoods of the full model and the reduced 

model. Under the null hypothesis, it follows asymptotically a chi square distribution with a number of 

degrees of freedom equal to the difference between the degrees of freedom of the full model and the 

reduced one. In the case at hand, the likelihood ratio statistic equals 19.359 units with one single 

degree of freedom. The probability of getting a likelihood ratio statistic that is superior to the observed 

one is the p-value. A very low p-value indicates that the log likelihood of the full model is significantly 

superior to the log likelihood of the reduced model. In other words, the full model fits better to the 

data than the reduced one. At a significance level of 0.05, the null hypothesis that the reduced model 

fits better to the data than the full model should be rejected. The full model is preferred over the 

reduced one. Here the likelihood ratio test suggests that the coefficient of the Treatment factor should 

be retained and that the treatments being compared are significantly different one from the other. So 

one treatment should be preferred over the other. The choice of treatment now depends on the order 

of the levels of the Treatment factor in the data, the sign of the coefficient of the Treatment factor in 

the model and on the preference of the patient for higher or lower values of outcome variable. 

The likelihood ratio test provided by the �anova� function is based on the asymptotic chi-

square distribution of the test statistic, and as such can be considered an approximation when applied 

to small samples. A parametric bootstrap approach simulates the distribution of the test statistic. As 

such is expected to result in a more accurate p-value depending on the number of bootstrap 

simulations. Being that higher numbers of bootstrap simulations provide results that are more 

accurate. The following example performs a parametric bootstrap likelihood ratio test between the 

full model and the model reduced by removing the �Treatment� factor. 
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> # s e e d f or  RNG 

> i s e e d <-  r e p( x=12345,  t i me s =6) ; 

>  

> # c r e a t e  c l us t e r 

> c l  <-  ma ke Cl us t e r ( s pe c =r e p( " l oc a l hos t " ,  2) ,  t ype =" PSOCK" );  

>  

> # s e t  RNG s e e d on c l us t e r 

> c l us t e r Se t RNGSt r e a m( c l =c l ,  i s e e d=i s e e d) ; 

>  

> # c ompa r e  mode l s  us i ng pa r a me t r i c  boot s t r a p me t hod 

> PBmodc omp( l a r ge Mode l =f i t 00,  s ma l l Mode l =f i t 01,  ns im=10000,  c l =c l ) ; 

Pa r a me t r i c  boot s t r a p t e s t ;  t i me :  186. 61 s e c ;  s a mpl es :  10000 e xt r e me s :  0; 

l a r ge  :  Y ~ Tr e a t me nt  + ( 1 |  Pa t i e nt )  + ( 1 |  Pa t i e nt : Cyc l e )  + ( 1 |  Pa t i e nt : Tr e a t me nt ) 

s ma l l  :  Y ~ ( 1 |  Pa t i e nt )  + ( 1  |  Pa t i e nt : Cyc l e )  + (1 |  Pa t i e nt : Tr e a t me nt ) 

         s t a t  df    p. va l ue      

LRT    19. 359   1 1. 083e- 05 ***  

PBt e s t  19. 359     9. 999e- 05 ***  

- - -  

Si gni f .  c ode s :   0 ‘ ** * ’  0. 001 ‘ ** ’  0. 01 ‘ * ’  0. 05 ‘ . ’  0. 1 ‘  ’  1  

>  

> # s t op c l us t e r 

> s t opCl us t e r ( c l =c l ) ; 

Five lines of code are run in this example. At first, a vector with six elements is created and saved 

under the name �iseed�. This vector provides the seed for the random number generator used to 

simulate the bootstrap samples. Afterwards a parallel cluster with two R sessions named �cl� is 

created. Here the �makeCluster� function opens two R sessions on the local machine to be run in 

parallel. In this case, if the central processing unit present on the local machine has at least two cores, 

the two R sessions will run one on each core in parallel. In the third line, the seed for the random 

number generator is set on the cluster of parallel R sessions. In the fourth line, the �PBmodcomp� 

function is called to perform the parametric bootstrap comparison between the mentioned full and 

reduced models. In the �PBmodcomp� function, the �largeModel� parameter specifies the R object 

holding the full model; the �smallModel� argument defines the R object holding the reduced model; 

the �nsim� parameter is used to specify the number of bootstrap simulations; and the �cl� argument 

provides the cluster for parallel computation. Finally, the �stopCluster� function ends all the running 

R sessions present in the cluster supplied as argument. A seed is used to make sure that anyone 

running these very same lines of code obtains exactly the same results displayed here. The number of 

bootstrap simulations performed is unusually high so the results can be considered accurate enough. 

In the output of the �PBmodcomp� function, the results of the approximate likelihood ratio test and 

the parametric bootstrap likelihood ratio test are displayed. The p-values obtained from both methods 

differ but the conclusions remain the same as before. 
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Comparison of nested models can also be performed through an F-test based on a Kenward-

Roger approximation. 

> KRmodc omp( l a r ge Mode l =f i t 00,  s ma l l Mode l =f i t 01) ; 

F- t e s t  wi t h Ke nwa r d- Roge r  a ppr oxi ma t i on;  c omput i ng  t i me :  0 . 11 s e c . 

l a r ge  :  Y ~ Tr e a t me nt  + ( 1 |  Pa t i e nt )  + ( 1 |  Pa t i e nt : Cyc l e )  + ( 1 |  Pa t i e nt : Tr e a t me nt ) 

s ma l l  :  Y ~ ( 1 |  Pa t i e nt )  + ( 1  |  Pa t i e nt : Cyc l e )  + (1 |  Pa t i e nt : Tr e a t me nt ) 

        s t a t     ndf     ddf  F. s c a l i ng   p. va l ue      

Ft e s t  44. 209  1. 000 11. 000         1 3. 616e- 05 ***  

- - -  

Si gni f .  c ode s :   0 ‘ ** * ’  0. 001 ‘ ** ’  0. 01 ‘ * ’  0. 05 ‘ . ’  0. 1 ‘  ’  1  

The F-test method presented here requires that both models being compared share the same 

covariance structure, so it cannot be used to compare nested models with distinct random effect 

terms. Unlike in the likelihood ratio test both models can be fit through restricted maximum likelihood. 

Note that the test statistic and the p-value are very close to the values obtained from the analysis of 

variance considering the cycle and treatment within patient presented above. The p-value obtained 

leads to the conclusion that the two treatments are significantly different one from the other, as 

explained numerous times above. 

The significance of the random effect terms of the model can also be tested by means of 

likelihood ratio tests. To test the significance of the random effects of the original model fit by 

maximum likelihood, the �update� function can be used to refit new models without the desired 

random effects terms. 

> # r e move  Tr e a t me nt  by Pa t i e n t  i nt e r a c t i on 

> f i t 02 <-  upda t e (  f i t 00,  f or mul a =~.- ( 1| Pa t i e nt : Tr e a t me nt )  ) ; 

>  

> # r e move  Cyc l e  by Pa t i e nt  i n te r a c t i on 

> f i t 03 <-  upda t e (  f i t 02,  f or mul a =~.- ( 1| Pa t i e nt : Cyc l e )  ) ; 

>  

> # Li ke l i hood r a t i o t e s t 

> a nova ( f i t 00 ,  f i t 02,  f i t 03) ; 

Da t a :  nda t a 

Mode l s :  

f i t 03:  Y ~ Tr e a t me nt  + ( 1 |  Pa t i e nt ) 

f i t 02:  Y ~ Tr e a t me nt  + ( 1 |  Pa t i e nt )  + ( 1 |  Pa t i e n t: Cyc l e )  

f i t 00:  Y ~ Tr e a t me nt  + ( 1 |  Pa t i e nt )  + ( 1 |  Pa t i e nt: Cyc l e )  + ( 1 |  Pa t i e nt : Tr e a t me nt ) 

      Df     AI C    BI C  l ogLi k  de vi a nc e   Chi s q Chi  Df  Pr (>Chi s q) 

f i t 03  4 919. 68 928. 79 - 455. 84    911. 68                          

f i t 02  5 921. 64 933. 03 - 455. 82    911. 64 0. 0342      1     0. 8533 

f i t 00  6 923. 59 937. 25 - 455. 80    911. 59 0. 0541      1     0. 8161 

In the first line of code presented on the last example, a call to �update� is made with the object 

relative to the full model as argument. The formula argument instructs the function to refit a new 
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model without the treatment by patient interaction random term. The object returned is saved under 

the name �fit02� for later use. On the second line of code a new mixed effects model refit is done on 

�fit02� where the random cycle by patient interaction term is removed. Therefore, �fit03� is an object 

relative to a further reduced model without both the treatment by patient interaction and the cycle 

by patient interaction random terms. Finally, the three models are compared by the likelihood ratio 

test through a call to �anova� function, where the objects relative to the three nested models are used 

as arguments. A table with four rows including the header row is displayed on screen. The fourth row 

in the table contains the results of the comparison between the full model, saved under �fit00�, and 

the model reduced by removing the treatment by patient interaction random term saved under 

�fit02�. The third row contains the results of the comparison of the later model contained in object 

�fit02�, and the model without both interaction random terms contained in object �fit03�. By 

successively removing, each of the interaction random error terms there is a very small decrease in 

the log likelihood, which implies very small likelihood ratio statistics and very high p-values. One can 

conclude that the treatment by patient interaction and the cycle by patient interaction are both non-

significant. Despite the observed non-significance of the cycle by patient interaction, it reflects the 

randomization procedure used in the trial, so there is interest in keeping it in the model. The treatment 

by patient interaction implies important design considerations and is of particular interest for series 

of n-of-1 trials. It should not in any case be left out of a linear mixed-effects regression model when 

the purpose is to apply that model to data arising from a series of n-of-1 trials. 

Confidence intervals for the parameters of the model can be obtained through a call to 

�confint� with an object returned by an �lmer� fit as first parameter. 

> c onf i nt ( f i t 0,  l e ve l =0. 95) ; 

Comput i ng pr o f i l e  c on f i de nc e  i nt e r va l s  . . . 

                 2. 5 %     97. 5 % 

. s i g01         0. 00000   83. 21930 

. s i g02         0. 00000   85. 94658 

. s i g03        83. 69249  220. 42530 

. s i gma         84. 02994  135. 87619 

( I nt e r c e pt )  2534. 84191 2716. 65809 

Tr e a t me nt B   130. 89839  246. 54606 

Wa r ni ng me s s a ge : 

I n opt wr a p( op t i mi z e r ,  pa r  = s t a r t ,  f n  = f unc t i on( x ) dd( mkpa r ( npa r 1,   : 

  c onve r ge nc e  c ode  3 f r om bobyqa :  bobyqa  - -  a  t r us t  r e gi on  s t e p f a i l e d t o r e duc e  q 

Here 95 percentage confidence intervals for the parameters of the linear mixed effects model are 

displayed. The �level� argument accepts any value between zero and unity to specify the desired 

confidence level. The �confint� function has an argument �method� to define one of three possible 

methods of estimation. When �method� is not specified, profile confidence intervals are estimated 
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and displayed. In this case, a table with five rows and two columns is displayed. There is a row for each 

parameter of the model and the first column contains the lower bound of the confidence interval, 

being the upper bound located in the second column. In the last row of the table, the confidence 

interval for the mean of difference between the treatments is located. The fact that the confidence 

interval for the mean of difference does not contain zero is consistent with the significance of the 

respective coefficient found earlier. The row identified by �(Intercept)� contains the confidence 

interval for the intercept of the model. The �.sigma� row is relative to the confidence interval for the 

standard error of the residual random term. The identification of the remaining three rows becomes 

somewhat difficult. One must criticize package �lme4� developers for their choice of row names here. 

Without any information provided, users must act as detectives and try to guess which row relates to 

which parameter. There is the possibility that the parameters are displayed here in the same order as 

they are displayed in the print of the model object. 

> pr i nt ( f i t 0) ;  

Li ne a r  mi xe d mode l  f i t  by REML [ ' l me r Mod' ] 

For mul a :  Y ~ Tr e a t me nt  + ( 1 |  Pa t i e nt )  + ( 1 |  Pa t i en t : Cyc l e )  + ( 1 |  Pa t i e nt : Tr e a t me nt ) 

   Da t a :  nda t a 

REML c r i t e r i on a t  c onve r ge nc e :  893. 7924 

Ra ndom e f f e c t s : 

 Gr oups             Na me         St d. De v. 

 Pa t i e nt : Cyc l e      ( I nt e r c e pt )   26. 09    

 Pa t i e nt : Tr e a t me nt  ( I nt e r c e pt )   29. 77    

 Pa t i e nt            ( I nt e r c e pt )  139. 50    

 Re s i dua l                       108. 82    

Numbe r  of  obs :  72, gr oups :   Pa t i e nt : Cyc l e ,  36;  Pa t i e nt : Tr e a t me nt ,  24;  Pa t i e nt ,  12 

Fi xe d Ef f e c t s : 

( I nt e r c e pt )    Tr e a t me nt B   

     2625. 8        188. 7 

So following the mentioned possibility, row �.sig01� would contain the confidence interval for the 

standard error of the cycle by patient interaction. Row �.sig02� would contain the confidence interval 

for the standard error of the treatment by patient interaction. The last row that remains to be 

identified �.sig03� would contain the confidence interval for the standard error of the patient random 

term in the model. Confidence intervals displayed in rows �.sig01� and �.sig02� contain the value 0, 

suggesting the non-significance of their respective random terms. A fact that is consistent with the 

conclusions of the analysis of variance and the likelihood ratio tests presented above. Therefore, it is 

very likely that the rows were correctly attributed to the model parameters. The relative magnitudes 

of the estimates of the standard errors of the random terms of the model also point in that direction. 

Approximate confidence intervals for the fixed effects parameters of the model can be 

obtained by the �Wald� method. 
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> c onf i nt ( f i t 0,  l e ve l =0. 95,  me t hod=" Wa l d" ) ; 

                2. 5 %    97. 5 % 

. s i g01             NA        NA 

. s i g02             NA        NA 

. s i g03             NA        NA 

. s i gma              NA        NA 

( I nt e r c e pt )  2537. 1536 2714. 3464 

Tr e a t me nt B   133. 0911  244. 3534 

This method does not estimate confidence intervals for the parameters of the random effects so the 

corresponding elements are returned as �NA� meaning �Not Available�. 

Confidence intervals for the model parameters can also be estimated through bootstrap 

methods as in the following example. 
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> # c r e a t e  c l us t e r 
> c l  <-  ma ke Cl us t e r ( s pe c =r e p( " l oc a l hos t " ,  2) ,  t ype =" PSOCK" );  

>  

> # s e t  RNG s e e d on c l us t e r 

> c l us t e r Se t RNGSt r e a m( c l =c l ,  i s e e d=i s e e d) ; 

>  

> # pa r a me t r i c  boot s t r a p c onf i de nc e  i nt e r va l s 

> c onf i nt (  

+   f i t 0,  

+   l e ve l =0. 95, 

+   me t hod=" boot " , 

+   ns i m=10000, 

+   boot . t ype =" pe r c " , 

+   t ype =" pa r a me t r i c " , 

+   c l =c l  

+ ) ;  

Comput i ng boo t s t r a p c onf i de nc e  i nt e r va l s  . . . 

Wa r ni ng me s s a ge s : 

1:  I n c he c kConv( a t t r ( opt ,  " de r i vs " ) ,  opt $pa r ,  c t r l  = c ont r ol $c he c kConv,   : 

  una bl e  t o e va l ua t e  s c a l e d gr a di e nt 

2:  I n c he c kConv( a t t r ( opt ,  " de r i vs " ) ,  opt $pa r ,  c t r l  = c ont r ol $c he c kConv,   : 

  Mode l  f a i l e d t o c onve r ge :  de ge ne r a t e   He s s i a n wi t h 1 ne ga t i ve  e i ge nva l ue s 

                 2. 5 %     97. 5 % 

. s i g01         0. 00000   79. 00614 

. s i g02         0. 00000   80. 12621 

. s i g03        64. 05394  202. 76604 

. s i gma         76. 32105  126. 74377 

( I nt e r c e pt )  2536. 58251 2714. 83184 

Tr e a t me nt B   133. 28439  244. 03765 

Wa r ni ng me s s a ge s : 

1:  I n c he c kConv( a t t r ( opt ,  " de r i vs " ) ,  opt $pa r ,  c t r l  = c ont r ol $c he c kConv,   : 

  una bl e  t o e va l ua t e  s c a l e d gr a di e nt 

2:  I n c he c kConv( a t t r ( opt ,  " de r i vs " ) ,  opt $pa r ,  c t r l  = c ont r ol $c he c kConv,   : 

  Mode l  f a i l e d t o c onve r ge :  de ge ne r a t e   He s s i a n wi t h 1 ne ga t i ve  e i ge nva l ue s 

>  

> # s t op c l us t e r 

> s t opCl us t e r ( c l =c l ) ; 

In this example, a cluster of two R sessions for parallel computation is opened on the local machine. 

The seed for the random number generator is set on the parallel cluster. Afterwards the �confint� 

function is called to compute the confidence interval of the model parameters by bootstrap using 

parallel computation. Finally, the cluster of parallel R sessions is closed. Now let us look more carefully 

to the arguments of the �confint� function. By supplying the �boot� string to the �method� argument 

a bootstrap method is defined. The �nsim� argument accepts integer values defining the number of 

bootstrap samples. To increase the precision of estimation this value should be increased. A choice of 

10000 samples leads to reasonably precise estimates but the computation can be time consuming. 

The percentile is used to find the lower and upper bounds of the confidence interval as defined in the 
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�boot.type� argument. The �type� argument defines the type of bootstrap, which is a parametric 

bootstrap in this example. The �cl� argument defines the cluster of R sessions for parallel computation. 

Bootstrap methods can take a very long time to compute. Parallel computation can significantly 

decrease the time needed to complete a computation depending on the number of cores present on 

the local machine and on the frequency of each core. 

7.2 Estimation and inference on individual treatment effects 

Linear mixed-effects models can be used to obtain an overall treatment effect as well as 

individual treatment effects [10, 11]. The estimates of the individual treatment effects obtained in this 

way are generally more precise than estimates obtained through equivalent fixed effect only linear 

models. Individual treatment effect estimates obtained through linear mixed-effect modelling are 

closer to the overall treatment effect than estimates obtained through fixed effect only linear models, 

and that�s why individual linear mixed-effect model estimates  are referred to as shrunk estimates in 

the statistical literature [12]. An individual treatment effect is defined as the expected difference of 

outcome variable registered under two treatments for a given individual while keeping additional 

variables constant. As such for linear mixed-effects models, individual treatment effects depend only 

on the fixed effects and on random effects that contain both the patient and the treatment categorical 

variables simultaneously. 

Before computing the individual treatment effects, a data.frame containing all the variables 

used to fit the linear mixed-effects model must be defined. This data.frame must contain the values 

of the �Patient� and �Treatment� factors for which predictions are desired. 

> # pr e di c t i on da t a . f r a me 

> pr e d_ne wda t a 0 <-  e xpa nd. gr i d ( 

+   uni que ( nda t a $Tr e a t me nt ) , 

+   uni que ( nda t a $Pa t i e nt ) 

+ ) ;  

The �pred_newdata0� data.frame that has just been created contains two rows for each patient, one 

row for each treatment. Since the individual treatment effects do not depend on variables other than 

the �Patient� and �Treatment�, any additional variable used to fit the linear mixed-effects model must 
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be arbitrarily kept constant at any of the values it can assume. In this case, the �Cycle� factor is set to 

the reference level for any patient and treatment. 

> # a dd ' Cyc l e '  f a c t o r  t o da t a . f r a me 

> pr e d_ne wda t a 0 <-  c b i nd(  

+   pr e d_ne wda t a 0, 

+   r e p( 

+     x=l e ve l s ( nda t a $Cyc l e ) [ 1] ,  # t he  r e f e r e nc e  l e ve l  

+     t i me s =nr ow( pr e d_ne wda t a 0) 

+   )  # not e  t ha t  a dd i t i ona l  va r i a bl e s a r e  ke pt  c ons t a nt 

+ ) ;  

These lines of code essentially add a column to the �pred_newdata0� data.frame and define all of the 

elements in this column to the reference level of the �Cycle� factor. To finalize the definition of the 

prediction data.frame, its variables must be named correctly. 

> # na me  va r i a bl e s  i n  pr e di c t i on da t a . f r a me 

> na me s ( pr e d_ne wda t a 0)  <-  na me s ( nda t a ) [ c ( 2,  1,  3) ] ; 

Here the names of the columns of �pred_newdata0� are set to the names of columns number 2, 1 and 

3 of the dataset used to fit the linear mixed-effects model. To check that the prediction data.frame 

has been correctly defined let us print the first six rows. 

> # pr i nt  f i r s t  6 r ows  of  da t a . f r a me 

> he a d( pr e d_ne wda t a 0,  n=6) ; 

  Tr e a t me nt  Pa t i e nt  Cyc l e 

1         A       1     1 

2         B       1     1 

3         A       2     1 

4         B       2     1 

5         A       3     1 

6         B       3     1 

To get the individual treatment effects first the predicted values for each patient and 

treatment must be obtained. 

> # c omput e  p r e di c t e d  va l ue s  f or  e a c h  pa t i e nt  a nd tr e a t me nt 

> pr e d0 <-  pr e di c t ( 

+   obj e c t =f i t 0, 

+   ne wda t a =pr e d_ne wda t a 0, 

+   r e . f or m=~( 1| Pa t i e nt ) +( 1| Pa t i e nt : Tr e a t me nt ) 

+ ) ;  

The data contained in the �fit0� object resulting from a previous �lmer� fit is used as argument. The 

predicted values are computed for the values of the variables defined within the �pred_newdata0� 

data.frame supplied to the �newdata� argument. The �re.form� argument instructs the �predict� 
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function to condition on the patient and treatment when computing the predicted values. The 

predicted values are saved under the �pred0� object. To obtain the individual treatment effects one 

must take a predicted value for each patient under treatment �B� and subtract the predicted value for 

treatment �A� computed under the same patient and cycle. The next lines of code do just that. 

> # c omput e  i ndi v i dua l  t r e a t me nt  e f f e c t s 

> n <-  nl e ve l s ( pr e d_ne wda t a 0$Pa t i e nt ) ;  # numbe r  of  pa t i e nts  

> pda t a 0 <-  da t a . f r a me ( 

+   " Pa t i e nt " =nume r i c ( n) , 

+   " Ef f e c t " =nume r i c ( n) 

+ ) ;  

> i nde x <-  1;  

> f or  (  pa t i e nt  i n l e ve l s ( pr e d_ne wda t a 0$Pa t i e nt )  )  {  # l oop t hr ough t he  pa t i e nt s 

+   i nde xB <-  wi t h( pr e d_ne wda t a 0, 

+                  wh i c h( Pa t i e nt ==pa t i e nt  & Tr e a t ment ==" B" )  

+   ) ;  

+   i nde xA <-  wi t h( pr e d_ne wda t a 0, 

+                  wh i c h( Pa t i e nt ==pa t i e nt  & Tr e a t ment ==" A" )  

+   ) ;  

+   pda t a 0$Pa t i e nt [ i nde x]  <-  pa t i e nt ; 

+   pda t a 0$Ef f e c t [ i nde x]  <-  pr e d0[ i nde xB]- pr e d0[ i nde xA] ; 

+   i nde x <-  i nde x+1;  # i nc r e a s e  i nde x f or  ne xt  l oop 

+ }  

> pda t a 0$Pa t i e nt  <-  f a c t or ( pda t a 0$Pa t i e nt ) ; 

>  

> # r e or de r  f a c t or  l e ve l s  on da t a . f r a me 

> pda t a 0$Pa t i e nt  <-  f a c t or (  

+   x=pda t a 0$Pa t i e nt , 

+   l e ve l s =l e ve l s ( pda t a 0$Pa t i e nt ) [ 

+     or de r (  a s . nume r i c (  l e ve l s ( pda t a 0$Pa t i e nt )  )  ) 

+     ]  

+ ) ;  

>  

> pr i nt ( pda t a 0) ;  # pr i nt  r e s ul t s 

   Pa t i e nt    Ef f e c t 

1        1 195. 1297 

2        2 169. 6425 

3        3 165. 1196 

4        4 217. 9276 

5        5 201. 6696 

6        6 163. 2860 

7        7 186. 2061 

8        8 182. 2944 

9        9 213. 5880 

10      10 199. 5303 

11      11 193. 4183 

12      12 176. 8547 
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The individual treatment effects are saved to a data.frame object named �pdata0� where the 

respective patient can be identified. Note that these individual treatment effect estimates are closer 

to the overall treatment effect of 188.7222 units than the naïve individual treatment effect estimates 

presented above. 

> # r a nge  of  s hr unk e s t i ma t e s 

> r a nge ( pda t a 0$Ef f e c t ) ; 

[ 1]  163. 2860 217. 9276 

>  

> # r a nge  of  na i ve  e s t i ma t e s 

> r a nge ( s dda t a ) ; 

[ 1]   50 348 

The shrunk individual treatment effect estimates range between around 163 and 217 units, while the 

naïve individual treatment effect estimates range between 50 and 348 units. Thus, the shrunk 

individual treatment effect estimates exhibit lower variance across all the patients than their naïve 

counterparts. 

Parametric bootstrap estimation of the standard error and confidence interval of each 

individual treatment effect is currently under research. The results of this research will be presented 

in later publications. Instead individual treatment effect standard errors and confidence intervals can 

be obtained using ready available random effect meta-analysis methodology [13]. Package �metafor� 

is required for the next examples and must be installed first [14]. 

> # i ns t a l l  pa c ka ge  i f  not  i ns t a l l e d 

> i f  (  ! " me t a f or "  %i n% i ns t a l l e d. pa c ka ge s ( )  )  { 

+   i ns t a l l . pa c ka ge s ( " me t a f or " ) ; 

+ }  

I ns t a l l i ng pa c ka ge  i n t o ‘ C: / Us e r s / a a r a uj o/ Doc ume nt s/ R/ wi n- l i br a r y/ 3 . 2’  

( a s  ‘ l i b ’  i s  uns pe c i f i e d) 

t r y i ng URL ' h t t ps : / / c r a n. r s t ud i o. c om/ bi n/ wi ndows / c ont r i b/ 3 . 2/ me t a f o r _1. 9- 8 . z i p '  

Cont e nt  t ype  ' a ppl i c a t i on/ z i p '  l e ngt h  2175656 byt e s ( 2. 1 MB)  

downl oa de d 2. 1 MB 

 

pa c ka ge  ‘ me t a f or ’  s uc c e s s f ul l y  unpa c ke d a nd MD5 s ums  c he c ke d 

 

The  downl oa de d bi na r y  pa c ka ge s  a r e  i n 

 C: \ Us e r s\ a a r a uj o\ AppDa t a\ Loc a l \ Te mp\ Rt mp2xhYMy\ downl oa de d_pa c ka ge s 

After �metafor� is installed it must be loaded into the R environment. 

> l i br a r y( me t a f or ) ; 

Loa di ng ' me t a f or '  pa c ka ge  ( ve r s i on 1. 9- 8) .  For  a n ove r vi e w  

a nd i nt r oduc t i on t o t he  pa c ka ge  pl e a s e  t ype :  he l p( me t a f or ) .  
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Next, a random effect meta-analysis model is fitted to the dataset where the outcome variable 

is recoded as the difference of outcome variable registered under the two treatments administered 

to the patients on the same cycle. Remember that this dataset is saved under the name �ddata�. A 

linear mixed effects model of differences can be fitted to this dataset. The variance of the residual 

error of the linear mixed-effect model of differences is twice the variance of the residual error in the 

equivalent full linear mixed-effects model. This implies that the standard deviation of the residual 

error in the latter model must be multiplied by the square root of two to obtain the standard deviation 

of the residual error in the former model. 

> # c omput e  s t a nda r d de vi a t i on of  r e s i dua l  e r r or 

> s i gma 0 <-  s qr t ( 2) *s i gma ( f i t 0 ) ; 

By assuming the same standard deviation for all the patients, the random effect meta-analysis 

behaves like a linear mixed-effect model yielding the exact same individual treatment effects as can 

be seen next. Therefore, the following lines of code compute the individual means of outcome 

difference and their respective standard errors assuming homoscedasticity, i.e. constant variance of 

residual error. 
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> # c omput e  pe r  pa t i e nt  me a n o f  d i f f e r e nc e s 

> n <-  nl e ve l s ( dda t a $Pa t i e nt ) ; 

> mda t a  <-  da t a . f r a me ( 

+   " Pa t i e nt " =nume r i c ( n) , 

+   " k" =nume r i c ( n) ,  

+   " me a n" =nume r i c ( n) , 

+   " s e " =nume r i c ( n) 

+ ) ;  

> i nde x <-  1;  

> f or  (  pa t i e nt  i n l e ve l s ( dda t a $Pa t i e nt )  )  {  # l oop t hr ough t he  pa t i e nt s 

+   s ub <-  dda t a [ dda t a $Pa t i e nt ==pa t i e nt , ] ; 

+   mda t a $Pa t i e nt [ i nde x]  <-  pa t i e nt ; 

+   mda t a $k[ i nde x]  <-  nr ow( s ub) ; 

+   mda t a $me a n[ i nde x]  <-  me a n( s ub$dY) ; 

+   mda t a $s e [ i nde x]  <-  s i gma 0/ s qr t (  n r ow( s ub)  ) ; 

+   i nde x <-  i nde x+1;  # i nc r e a s e  i nde x f or  ne xt  l oop 

+ }  

> pr i nt ( mda t a ) ; 

   Pa t i e nt  k      me a n       s e 

1        1 3 223. 66667 88. 85371 

2        2 3  84. 66667 88. 85371 

3        3 3  60. 00000 88. 85371 

4        4 3 348. 00000 88. 85371 

5        5 3 259. 33333 88. 85371 

6        6 3  50. 00000 88. 85371 

7        7 3 175. 00000 88. 85371 

8        8 3 153. 66667 88. 85371 

9        9 3 324. 33333 88. 85371 

10      10 3 247. 66667 88. 85371 

11      11 3 214. 33333 88. 85371 

12      12 3 124. 00000 88. 85371 

The resulting data are saved on the �mdata� data.frame, which contains four variables; a �Patient� 

variable identifying the patient, a �k� variable holding the number of cycles, a �mean� variable 

containing the naïve individual treatment effect and finally a �se� variable holding its respective 

standard error. The �mdata� data.frame contains all the necessary information for the random effect 

meta-analytic model fit that follows. 

> # f i t  r a ndom e f f e c t  me t a- a na l ys i s  mode l 

> or ma  <-  r ma . uni ( 

+   y i =me a n, 

+   s e i =s e , 

+   we i ght s =k / s um( k) , 

+   da t a =mda t a , 

+   me t hod=" REML" 

+ ) ;  

The �rma.uni� function is used to fit a meta-analysis model through the restricted maximum-likelihood 

estimator as defined in the �method� argument. The �data� argument instructs the function to look 
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into the �mdata� data.frame for the variables. The �yi� argument defines the individual means and 

the �sei� argument their respective standard error. To yield results that are equivalent to a linear 

mixed-effects model analysis the individual means must be weighted by their respective standard 

errors and number of observations. The �weights� argument correctly defines the individual weights 

as the ratio of the respective number of observations to the total number of observations. The random 

effect meta-analytic model is saved under the �orma� object. Finally, the individual treatment effects, 

their standard errors and confidence intervals can be computed. 

> # t he  i ndi v i dua l  t r e a t me nt  e f f e c t s 

> bl up( or ma ,  l e ve l =0. 95) ; 

       pr e d      s e     p i . l b    p i . ub 

1  195. 1297 44. 5523 107. 8087 282. 4507 

2  169. 6425 44. 5523  82. 3215 256. 9635 

3  165. 1196 44. 5523  77. 7986 252. 4406 

4  217. 9276 44. 5523 130. 6066 305. 2486 

5  201. 6696 44. 5523 114. 3486 288. 9905 

6  163. 2860 44. 5523  75. 9650 250. 6070 

7  186. 2061 44. 5523  98. 8851 273. 5271 

8  182. 2944 44. 5523  94. 9734 269. 6154 

9  213. 5880 44. 5523 126. 2670 300. 9090 

10 199. 5303 44. 5523 112. 2093 286. 8513 

11 193. 4183 44. 5523 106. 0973 280. 7393 

12 176. 8547 44. 5523  89. 5337 264. 1757 

The random effect meta-analytic �orma� object is supplied to the �blup� function. Here the �level� 

argument defines a 95% coverage for the confidence interval. Note that the same individual treatment 

effects are obtained as in the linear mixed-effect model displayed in the print of the �pdata� object. 

Also, note that the estimated standard error of the individual treatment effects is about half the 

standard error of the naïve individual treatment effects displayed in the print of the �mdata� 

data.frame. This fact suggests an increased precision of the shrunk estimates relative to the naïve 

ones. Finally, it can also be observed that none of the confidence intervals of the individual treatment 

effects contains zero, suggesting that the treatments are significantly different for each patient at the 

usual 5% significance level. 
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8 Linear mixed-effects model of difference 

A simpler linear mixed-effects model can be fitted to the smaller recoded dataset presented 

above. This model called linear mixed-effects model of difference, can be obtained from the linear 

mixed-effects model by differencing the outcome variable indexed to one treatment and the other on 

the same cycle and patient. Note that the outcome variable in the recoded �ddata� dataset is obtained 

from the full �ndata� dataset by an identical process. In this computation process, the patient and 

cycle random effects are eliminated out of the equation and the treatment by patient and residual 

random effects remain. In the linear mixed effects model of difference there is an effect indexed to 

the patient that is equivalent to the difference of a random treatment by patient interaction indexed 

on the same patient and cycle in the linear mixed-effects model. While the residual error of the same 

linear mixed-effects model of difference equals the difference of the residual errors indexed on the 

same patient and cycle from the linear mixed-effects model. Given that the random effects of the 

linear mixed-effects model are independent by assumption, the variance of the patient effect in the 

linear mixed-effects model of difference equals twice the variance of the random treatment by patient 

interaction effect of the equivalent linear mixed-effect model. While the variance of the residual error 

of the former model equals twice the variance of the residual error in the latter model. The usage of 

the functions present in the following examples is identical to the usage described above when the 

linear mixed effects model is fitted to the full dataset; as such, details of each of the arguments are 

skipped. So one starts by fitting a linear mixed-effects model to the recoded �ddata� dataset using 

restricted maximum-likelihood for estimation. 

> ## Mi xe d mode l  us i ng di f f e r e nc e s  ## 

> f i t 1 <-  l me r ( f or mul a =dY~1+( 1 | Pa t i e n t ) ,  da t a =dda t a ,  REML=TRUE) ;  

> pr i nt ( f i t 1) ;  

Li ne a r  mi xe d mode l  f i t  by REML [ ' l me r Mod' ] 

For mul a :  dY ~ 1 + ( 1 |  Pa t i e nt ) 

   Da t a :  dda t a 

REML c r i t e r i on a t  c onve r ge nc e :  457. 6782 

Ra ndom e f f e c t s : 

 Gr oups    Na me         St d. De v. 

 Pa t i e nt   ( I n t e r c e pt )   42. 1    

 Re s i dua l              153. 9    

Numbe r  of  obs :  36,  gr oups :   Pa t i e nt ,  12 

Fi xe d Ef f e c t s : 

( I nt e r c e pt )    

      188. 7 
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8.1 Estimation and inference on the overall treatment effect 

In this model, there is only one fixed effect, the intercept, which is equal to the overall 

treatment effect. Also, note that the random effects part of the model contains a patient random term 

and the residual error. 

> # e xt r a c t  t he  f i xe d  e f f e c t s 

> f i xe f ( f i t 1) ;  

( I nt e r c e pt )   

   188. 7222 

The variance and standard error of the random effects terms of the model can be obtained as 

above. 

> vf i t 1 <-  Va r Cor r ( f i t 1) ;  

> pr i nt (  x=vf i t 1,  c omp=c ( " Va r i a nc e " ,  " St d. De v" )  ) ; 

 Gr oups    Na me         Va r i a nc e  St d. De v. 

 Pa t i e nt   ( I n t e r c e pt )   1772. 7   42. 103  

 Re s i dua l              23684. 9  153. 899 

The reader can now check the mentioned relationship between the variance of the random terms of 

the linear mixed-effects model and the linear mixed-effects model of difference. The variance 

components of the linear mixed-effects model are printed again to ease the comparison. 

> pr i nt (  x=vf i t 0,  c omp=c ( " Va r i a nc e " ,  " St d. De v" )  ) ; 

 Gr oups             Na me         Va r i a nc e  St d. De v. 

 Pa t i e nt : Cyc l e      ( I nt e r c e pt )    680. 53  26. 087  

 Pa t i e nt : Tr e a t me nt  ( I nt e r c e pt )    886. 34  29. 771  

 Pa t i e nt            ( I nt e r c e pt )  19459. 14 139. 496  

 Re s i dua l                       11842. 47 108. 823  

In this case, the covariance matrix of the fixed effects contains a single element, the estimate 

of the variance of the overall treatment effect. 

> # c ova r i a nc e  ma t r i x  of  t he  f i xe d e f f e c t s 

> vc ov( f i t 1) ;  

1 x 1 Ma t r i x of  c l a s s  " dpoMa t r i x" 

            ( I nt e r c e p t ) 

( I nt e r c e pt )     805. 6378 

The Kenward-Roger approximation of the covariance matrix of the fixed effects can be obtained as 

well. 
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> vc ovAdj ( f i t 1) ;  

1 x 1 Ma t r i x of  c l a s s  " dge Ma t r i x" 

            ( I nt e r c e p t ) 

( I nt e r c e pt )     805. 6378 

Since the �lmer� function cannot fit models without fixed effects, the likelihood ratio test 

cannot be used to test the significance of the intercept term of the linear mixed-effects model of 

difference. Fitting a reduced model without the intercept would leave no fixed effects in the model. 

In this case, function �lmer� always fits an intercept as fixed no matter what is tried. However, the 

confidence interval of the intercept can be used to test its significance as is explained below. 

Parametric bootstrap is used to estimate the confidence intervals of the parameters of the model. 

> # c r e a t e  c l us t e r 
> c l  <-  ma ke Cl us t e r ( s pe c =r e p( " l oc a l hos t " ,  2) ,  t ype =" PSOCK" );  

>  

> # s e t  RNG s e e d on c l us t e r 

> c l us t e r Se t RNGSt r e a m( c l =c l ,  i s e e d=i s e e d) ; 

>  

> # pa r a me t r i c  boot s t r a p  c onf i de nc e  i nt e r va l s 

> c onf i nt (  

+   f i t 1,  

+   l e ve l =0. 95 , 

+   me t hod=" boot " , 

+   ns i m=10000, 

+   boot . t ype =" pe r c " , 

+   t ype =" pa r a me t r i c " , 

+   c l =c l  

+ ) ;  

Comput i ng boot s t r a p c onf i de nc e  i nt e r va l s  . . . 

               2. 5 %   97. 5 % 

. s i g01        0. 0000 109 . 0464 

. s i gma       109. 6905 188 . 7785 

( I nt e r c e pt )  131. 5533 243 . 9363 

Wa r ni ng me s s a ge s : 

1:  I n opt wr a p( obj e c t @opt i nf o$opt i mi z e r ,  f f ,  x0,  l owe r  = l owe r ,  c on t r ol  = c on t r ol $opt Ct r l ,   : 

  c onve r ge nc e  c ode  3 f r om bobyqa :  bobyqa  - -  a  t r us t  r e gi on s t e p f a i l e d t o r e duc e  q 

2:  I n opt wr a p( obj e c t @opt i nf o$opt i mi z e r ,  f f ,  x0,  l owe r  = l owe r ,  c on t r ol  = c on t r ol $opt Ct r l ,   : 

  c onve r ge nc e  c ode  3 f r om bobyqa :  bobyqa  - -  a  t r us t  r e gi on s t e p f a i l e d t o r e duc e  q 

3:  I n opt wr a p( obj e c t @opt i nf o$opt i mi z e r ,  f f ,  x0,  l owe r  = l owe r ,  c on t r ol  = c on t r ol $opt Ct r l ,   : 

  c onve r ge nc e  c ode  3 f r om bobyqa :  bobyqa  - -  a  t r us t  r e gi on s t e p f a i l e d t o r e duc e q  

4:  I n opt wr a p( obj e c t @opt i nf o$opt i mi z e r ,  f f ,  x0,  l owe r  = l owe r ,  c on t r ol  = c on t r ol $opt Ct r l ,   : 

  c onve r ge nc e  c ode  3 f r om bobyqa :  bobyqa  - -  a  t r us t  r e gi on s t e p f a i l e d t o r e duc e  q 

5:  I n opt wr a p( obj e c t @opt i nf o$opt i mi z e r ,  f f ,  x0,  l owe r  = l owe r ,  c on t r ol  = c on t r ol $opt Ct r l ,   : 

  c onve r ge nc e  c ode  3 f r om bobyqa :  bobyqa  - -  a  t r us t  r e gi on s t e p f a i l e d t o r e duc e  q 

6:  I n opt wr a p( obj e c t @opt i nf o$opt i mi z e r ,  f f ,  x0,  l owe r  = l owe r ,  c on t r ol  = c on t r ol $opt Ct r l ,   : 

  c onve r ge nc e  c ode  3 f r om bobyqa :  bobyqa  - -  a  t r us t  r e gi on s t e p f a i l e d t o r e duc e  q 

7:  I n opt wr a p( obj e c t @opt i nf o$opt i mi z e r ,  f f ,  x0,  l owe r  = l owe r ,  c on t r ol  = c on t r ol $opt Ct r l ,   : 

  c onve r ge nc e  c ode  3 f r om bobyqa :  bobyqa  - -  a  t r us t  r e gi on s t e p f a i l e d t o r e duc e  q 

8:  I n opt wr a p( obj e c t @opt i nf o$opt i mi z e r ,  f f ,  x0,  l owe r  = l owe r ,  c on t r ol  = c on t r ol $opt Ct r l ,   : 

  c onve r ge nc e  c ode  3 f r om bobyqa :  bobyqa  - -  a  t r us t  r e gi on s t e p f a i l e d t o r e duc e  q 

>  

> # s t op c l us t e r 

> s t opCl us t e r ( c l =c l ) ; 
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Note that the 95% confidence interval of the intercept does not contain zero, suggesting that the 

overall treatment effect is significantly different from zero at the 5% significance level. There is 

statistical evidence that the treatments differ at a 5% significance level. 

8.2 Estimation and inference on individual treatment effects 

For the linear mixed-effects model of difference, the individual treatment effects can be 

obtained directly from the predicted values. To start, a data.frame with all the levels of the �Patient� 

factor is created. 

> # pr e di c t i on da t a . f r a me 

> pr e d_ne wda t a 1 <-  da t a . f r a me ( 

+   " Pa t i e nt " =uni que ( dda t a $Pa t i e nt ) 

+ ) ;  

Now the predicted values for each individual can be obtained from the �fit1� object resulting from the 

linear mixed-effects model fit to the dataset of outcome differences, and the �pred_newdata1� 

dataset holding the values of the variables for which predictions are to be evaluated. 

> # c omput e  p r e di c t e d  va l ue s  f or  e a c h  pa t i e nt 

> pr e d1 <-  pr e di c t ( 

+   obj e c t =f i t 1, 

+   ne wda t a =pr e d_ne wda t a 1, 

+   r e . f or m=~( 1| Pa t i e nt ) 

+ ) ;  

> pda t a 1 <-  da t a . f r a me ( pr e d_ne wda t a 1,  " Ef f e c t " =pr e d1) ; 

> pr i nt ( pda t a 1) ; 

   Pa t i e nt    Ef f e c t 

1        1 195. 1297 

2        2 169. 6425 

3        3 165. 1196 

4        4 217. 9276 

5        5 201. 6696 

6        6 163. 2860 

7        7 186. 2061 

8        8 182. 2944 

9        9 213. 5880 

10      10 199. 5303 

11      11 193. 4183 

12      12 176. 8547 

The individual treatment effects obtained through the linear mixed-effects model of difference match 

the values resulting from the linear mixed-effects model and the random effects meta-analysis 

approach devised to mimic a linear mixed-effects model. 
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The code written to obtain the standard errors and confidence intervals of the individual 

treatment effects through the random effects meta-analysis is very similar to the one presented above 

in this document. The only difference is that now the standard deviation of the residual error can be 

directly obtained from the linear mixed effects model of difference object. 

> # c omput e  s t a nda r d de vi a t i on  of  r e s i dua l  e r r or 

> s i gma 0 <-  s i gma ( f i t 1) ;  

>  

> # c omput e  pe r  pa t i e nt  me a n o f  d i f f e r e nc e s 

> n <-  nl e ve l s ( dda t a $Pa t i e nt ) ; 

> mda t a  <-  da t a . f r a me ( 

+   " Pa t i e nt " =nume r i c ( n) , 

+   " k" =nume r i c ( n) , 

+   " me a n" =nume r i c ( n) , 

+   " s e " =nume r i c ( n) 

+ ) ;  

> i nde x <-  1;  

> f or  (  pa t i e nt  i n l e ve l s ( dda t a $Pa t i e nt )  )  {  # l oop t hr ough t he  pa t i e nt s 

+   s ub <-  dda t a [ dda t a $Pa t i e nt ==pa t i e nt , ] ; 

+   mda t a $Pa t i e nt [ i nde x]  <-  pa t i e nt ; 

+   mda t a $k[ i nde x]  <-  nr ow( s ub) ; 

+   mda t a $me a n[ i nde x]  <-  me a n( s ub$dY) ; 

+   mda t a $s e [ i nde x]  <-  s i gma 0/ s qr t (  n r ow( s ub)  ) ; 

+   i nde x <-  i nde x+1;  # i nc r e a s e  i nde x f or  ne xt  l oop 

+ }  

> or ma  <-  r ma . uni ( 

+   y i =me a n, 

+   s e i =s e , 

+   we i ght s =k / s um( k) , 

+   da t a =mda t a , 

+   me t hod=" REML" 

+ ) ;  

> bl up( or ma ,  l e ve l =0. 95) ;  # t he  i ndi v i dua l  t r e a t me nt  e f f e c t s 

       pr e d      s e     p i . l b    p i . ub 

1  195. 1297 44. 5523 107. 8087 282. 4507 

2  169. 6425 44. 5523  82. 3215 256. 9635 

3  165. 1196 44. 5523  77. 7986 252. 4406 

4  217. 9276 44. 5523 130. 6066 305. 2486 

5  201. 6696 44. 5523 114. 3486 288. 9906 

6  163. 2860 44. 5523  75. 9650 250. 6070 

7  186. 2061 44. 5523  98. 8851 273. 5271 

8  182. 2944 44. 5523  94. 9734 269. 6154 

9  213. 5880 44. 5523 126. 2670 300. 9090 

10 199. 5303 44. 5523 112. 2093 286. 8513 

11 193. 4183 44. 5523 106. 0973 280. 7393 

12 176. 8547 44. 5523  89. 5337 264. 1757 

The exact same results as for the linear mixed-effects model are obtained. The conclusions are 

obviously the same and are not repeated here. 





 

Statistical Analysis of Series of N-of-1 Trials Using R, by Artur Araujo, September 2018 49 

9 Graphical methods 

Graphical representations provide means to visualize and interpret the data that are far easier 

to understand when compared to some of the statistical methods presented above. In this chapter, 

graphical representations of data arising from n-of-1 trials are demonstrated. As mentioned several 

times above in this document, n-of-1 trials are run when there is suspicion that the subjects respond 

distinctively to treatments, so that a treatment might be recommended for some patients but not for 

others. In the medical statistical parlance, this phenomenon is referred to as treatment by patient 

interaction. Trellis plots are graphical representations that display a variable or the relationship 

between variables, conditioned on one or more variables. Therefore, trellis plots are a particularly 

useful tool for displaying n-of-1 trial data, where the relationship between an outcome variable and 

the treatment categorical variable can be represented conditioned on the subject categorical variable. 

Such plots allow for an observation of the magnitude of the difference of the outcome variable for 

each of the treatments studied within and between the subjects recruited into the trial. This 

advantage of trellis plots is more evident below where the actual plots are presented. The examples 

of trellis plots demonstrated here are only a fraction of what can be done with trellis plots within R. 

For plots not foreseen here and advanced trellis plotting, the consultation of the work of Sarkar [15] 

is suggested. 

Before running the code that draws the trellis plots, it is necessary to load the �lattice� 

package that is supplied with the base R distribution for some operating systems. 

> # l oa d l a t t i c e  pa c ka ge 

> l i br a r y( l a t t i c e ) ; 

9.1 Scatterplots 

The demonstration starts with the plot that is more difficult to code. This way there is an 

opportunity to explain how trellis plotting works with the �lattice� package within the R software. As 

an example, consider a scatterplot of the outcome under both treatments for each patient based on 

the dataset of differences previously presented. Remember that there are twelve patients in this 

dataset, so that twelve Cartesian plots have to be drawn side by side. To accomplish this the developer 

of package �lattice� devised a way that is not that difficult for R programmers! The trellis subplots are 

called panels within R. Therefore; twelve panels are drawn in this case. Package �lattice� provides 

several panel functions that R programmers can use to draw plots on each panel. The following lines 

of code define a panel function that is saved for subsequent use. 
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> # de f i ne  pa ne l  f unc t i on 

> mypa ne l _00 <-  f unc t i on(  

+     x,  

+     y,  

+     s ubs c r i pt s , 

+     gr oups , 

+     . . .  

+ )  {  

+     pa ne l . xypl ot ( 

+         x, 

+         y, 

+         s ubs c r i pt s =s ubs c r i pt s , 

+         gr oups =gr oups , 

+         t ype =" p" ,  #  t ype  of  p l ot  ' p '  f or  poi nt s 

+         c e x=1,  # c ha r a c t e r  s i z e 

+         pc h=16,  # c ha r a c t e r  16 

+         c ol =" bl ue " ,  # c ol or  ' b l ue ' 

+         . . . 

+     ) ;  

+     pa ne l . a bl i ne ( 

+         a =0 ,  # i nt e r c e pt 

+         b=1 ,  # s l ope 

+         l t y=" s ol i d" ,  # l i ne  t ype  ' s ol i d ' 

+         l wd=1,  # l i ne  wi dt h 

+         c ol =" bl a c k"  # c ol or  ' b l a c k'  

+     ) ;  

+     pa ne l . poi nt s ( 

+         x=t a ppl y( X=x,  I NDEX=gr oups [ s ubs c r i pt s ] ,  FUN=me a n) , 

+         y=t a ppl y( X=y,  I NDEX=gr oups [ s ubs c r i pt s ] ,  FUN=me a n) , 

+         c e x=1,  # c ha r a c t e r  s i z e 

+         pc h=8,  # c ha r a c t e r  8 

+         c ol =" r e d" ,  # c ol or  ' r e d' 

+         . . . 

+     ) ;  

+ }  # mypa ne l _00 

The above function has four mandatory arguments, i.e. arguments that must be supplied when calling 

the function. Argument �x� is a vector of x-axis coordinates, and argument �y� is a vector of 

corresponding y-axis coordinates. The �x� and �y� vectors are required to plot points on each panel 

according to the Cartesian coordinate system. The �subscripts� argument defines the indexes of the 

two previous vectors that are actually plotted. Moreover, the �groups� argument can be any 

categorical variable. The set of arguments finishes with three dots ��� meaning that additional 

arguments can be supplied. These additional arguments are passed to the functions called inside 

�mypanel_00�. Within �mypanel_00�, three panel functions are called. Under �lattice� package, 

�xyplot� is used to plot scatterplots. The default panel function for �xyplot� is named �panel.xyplot� 

and it is the first one called inside function �mypanel_00�. It essentially plots points on each panel 
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defined by the levels of a conditioning factor. The second function call �panel.abline�, is used to draw 

the line of equality, which is defined by a zero intercept and a slope equal to unity. The last panel 

function being called is �panel.points�, and it is used here to plot the mean point of the points 

previously drawn by �panel.xyplot�. Arguments of the three panel functions have comments on the 

same line when appropriate. The purpose of these comments is to inform the reader as regards the 

meaning of the corresponding argument. Consequently, there is no need to explain each argument 

here. Also, note the three dots ��� are an argument to each panel function. This ensures that any 

additional arguments supplied to �mypanel_00� function are effectively passed to each panel function 

called inside it. 

A graphical legend under the �lattice� language is called a �key�. A list of parameters required 

to draw the legend on the plot can be supplied to a so-called �key� parameter. Therefore, the next 

step is to define and save the �key� parameters. 

> # de f i ne  l e ge nd 

> myke y_00 <-  l i s t (  

+   s pa c e =" t op" ,  # pu t  l e ge nd a t  t he  t op of  t he  pl ot  a r e a 

+   poi nt s =l i s t ( c e x=1,  pc h=16,  c ol =" b l ue " ) , 

+   t e xt =l i s t ( " FEV ( ml )  by c yc l e " ) ,  

+   l i ne s =l i s t ( l t y=" s ol i d" ,  l wd=1,  c o l =" bl a c k" ) , 

+   t e xt =l i s t ( " Li ne  o f  e qua l i t y" ) , 

+   poi nt s =l i s t ( c e x=1,  pc h=8,  c ol =" r e d" ) , 

+   t e xt =l i s t ( " FEV ( ml )  me a n" ) 

+ ) ;  

The list of parameters for the legend is saved under the object named �mykey_00�. The name of each 

element of the list is equal to the name of the parameter and the corresponding list element stores 

the actual parameter definition. The parameter definition can be another list of parameters as is the 

case here for the �points�, �lines� and again �points� parameters. The legend is to be placed at the 

top of the plot area as specified by the �space� parameter. The �points�, �text�, �lines�, �text�, 

�points�, �text� parameters are specified to draw the specified legend elements in columns in that 

order. 

In the lines of code that follow, the �xyplot� function is called and the object it returns is saved 

under the name �trellis_00�. Lattice plot functions return an object of class �trellis�, so �trellis_00� is 

an object of this class. 
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> # s a ve  t r e l l i s  da t a 

> t r e l l i s _00 <-  xypl o t (  

+   YB~YA| Pa t i e nt ,  # pl ot  YB vs  YA f o r  e a c h l e ve l  of  t he  ' Pa t i e nt '  f a c t or 

+   da t a =dda t a ,  # da t a s e t 

+   gr oups =Pa t i e nt ,  #  ' Pa t i e nt '  a s  gr oups  ne e de d t o pl ot  t he  me a n 

+   l a yout =c ( 3,  4) ,  #  3 c ol umns  4 r ows 

+   i nde x. c ond=l i s t (  c ( 10,  11,  12,  7,  8,  9,  4,  5,  6,  1,  2,  3)  ) , 

+   pa ne l =f unc t i on( x,  y,  s ubs c r i pt s ,  gr oups ,  . . . )  {  

+     mypa ne l _00( x,  y ,  s ubs c r i pt s ,  gr oups ,  . . . ) ; 

+   } ,  # pa ne l  f unc t i on 

+   x l a b=" Tr e a t me nt  A" ,  # x a x i s  l a be l 

+   y l a b=" Tr e a t me nt  B" ,  # y a x i s  l a be l 

+   a s pe c t =" i s o" ,  # a s pe c t  r a t i o s a me  s c a l e  on bot h a xi s 

+   ke y=myke y_00 # l i s t  of  l e ge nd pa r a me t e r s 

+ ) ;  

Here the first argument is a formula that instructs �xyplot� to construct scatterplots of outcome under 

treatment �B� in the ordinates axis against outcome under treatment �A� in the abscissa axis for each 

level of the �Patient� factor. The variables in the formula are looked for in the dataset supplied to the 

�data� argument, in this case �ddata�. The �groups� argument is set to the variable �Patient� in the 

dataset. This argument is to be passed to the �mypanel_00� function defined above, and it is needed 

to plot the mean point for each panel. The �layout� parameter instructs �xyplot� to distribute the 

panels as in a table with three columns and four rows. The �index.cond� parameter defines the 

assignment of the levels of the conditioning variable to the panels on the plot. This parameter is 

specified because plotting functions in �lattice� package draw panels from left to right and from 

bottom to top, but the desired order of the panels is distinct. Now it is important to note the �panel� 

argument, which is set to a function that calls the �mypanel_00� function saved earlier. This function 

is used to plot the data on each of the panels defined by the levels of the conditioning factor. The 

�xlab� and �ylab� arguments define the labels of the x-axis and y-axis respectively. By setting �aspect� 

to �iso�, the same scale is drawn for each of the two axis of the Cartesian plot drawn for each panel. 

This is useful when the dimensions of the variables drawn on both axis are the same, like in this 

particular case. Finally, the list of legend parameters saved under the �mykey_00� object is passed to 

the �key� parameter, instructing �xyplot� to draw a legend according to those parameters. 

To effectively plot the data and produce the desired graph the �trellis_00� object returned by 

�xyplot� must be printed. 

> # pl ot  t r e l l i s  s c a t t e r pl ot 

> pr i nt ( t r e l l i s _00) ; 
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Figure 9.1: Outcome under treatment �B� versus outcome under treatment �A� for each patient. 

After running the print of the saved �trellis_00� object, the graph presented in Figure 9.1 is created. 

Note that the points and lines displayed under each panel are drawn by a call to the �mypanel_00� 

function defined above. Remember that calls to �panel.xyplot�, �panel.abline�, and �panel.points� are 

made inside �mypanel_00�. Also note that the blue points in Figure 9.1 are drawn by a call to 

�panel.xyplot�; the solid black lines are drawn by a call to �panel.abline�; and the red star like points 

are drawn by a call to �panel.points�. As regards the interpretation of the plot, note that for each 

patient there is a point for each cycle (in blue) and that these points are scattered around the mean 

point (in red) which is the central point. The solid black line is the line of equality of outcome under 

two treatments. Points falling above the line and closer to the axis labelled �Treatment B� are points 

for which the outcome is superior under treatment �B� than under treatment �A�. Points falling below 
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the equality line and closer to the axis labelled treatment �A� are points for which the reverse 

happens. For patients number 3, 6, 8 and 12 there is at least a point that falls below the line, but the 

majority of the cycle points and the mean point fall above the equality line for all the twelve patients 

without exception. Hence, the graph suggests that the outcome is superior on average under 

treatment �B� for all the patients studied. Therefore, if it is considered that the health condition under 

study improves as the outcome variable registers higher values, treatment �B� is preferable over 

treatment �A�. If it is the other way around, than the choice shall fall over treatment �A�. 

An even more interesting plot is the one presented in the next example. On this example, the 

shrunk estimates of the individual treatment effects and the estimates of the overall treatment effect 

are plotted alongside the cycle observations and the naïve individual treatment effect estimates. 

Estimation of shrunk individual treatment effects through linear mixed-effects modelling is presented 

on chapters 7, and 8 above. To start, a vector with the shrunk predictions for each observation is 

computed from object �fit0� and saved for later use. 

> # s hr unk pr e di c t i ons  f or  a l l  obs e r va t i ons 

> pr e d_01 <-  pr e di c t ( 

+   f i t 0,  

+   r e . f or m=~( 1| Pa t i e nt ) +( 1| Pa t i e nt : Tr e a t me nt ) 

+ ) ;  

Afterwards a list with the Cartesian coordinates of the shrunk estimates is computed from the 

�pred_01� object that has just been saved. This list of coordinates is later used to plot points of the 

shrunk mean for each patient studied. 

> # l i s t  wi t h  s hr unk c oor di na t e s  f or  p l ot t i ng 

> s hr unk_01 <-  l i s t (  

+   " x" =pr e d_01[ 

+     mode l . f r a me ( f i t 0) $Tr e a t me nt ==l e ve l s ( mode l . f r a me ( f i t0 ) $Tr e a t me nt ) [ 1] 

+     ] ,  

+   " y" =pr e d_01[ 

+     mode l . f r a me ( f i t 0) $Tr e a t me nt ==l e ve l s ( mode l . f r ame ( f i t 0 ) $Tr e a t me nt ) [ 2] 

+     ]  

+ ) ;  

To plot the overall mean point on each panel, a similar list of coordinates must be computed and saved 

for posterior use. 

> ove r a l l _01 <-  l i s t (  

+   " x" =f i xe f ( f i t 0) [ 1 ] ,  # c oor di na t e  unde r  t r e a t me nt  ' A'  

+   " y" =f i xe f ( f i t 0) [ 1 ] +f i xe f ( f i t 0) [ 2]  # c oor di na t e  unde r  t r e a t me nt  ' B' 

+ ) ;  

> na me s ( ove r a l l _01$x)  <-  na me s ( ove r a l l _01$y)  <-  NULL;  
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The coordinates of the overall mean are computed from the �fit0� object that is presented on chapter 

7. Note that the abscissa is equal to the fixed effects intercept in the linear mixed-effects model. Also, 

note that the ordinate is equal to the intercept added to the coefficient of the �Treatment� factor 

used in the fixed effects part of the same model. 

The next step is to define a panel function to be used later on the �xyplot� call. 

> # de f i ne  pa ne l  f unc t i on 

> mypa ne l _01 <-  f unc t i on(  

+   x,  

+   y,  

+   z ,  # l i s t  of  s hr unk me a n c oor di na t e s 

+   o,  # l i s t  of  ove r a l l  me a n c oor di na t e s 

+   s ubs c r i pt s , 

+   gr oups , 

+   . . .  

+ )  {  

+   pa ne l . xyp l ot ( 

+     x,  

+     y,  

+     s ubs c r i pt s =s ubs c r i pt s , 

+     gr oups =gr oups , 

+     t ype =" p" ,  # t ype  of  p l ot  ' p '  f o r  poi nt s 

+     c e x=1,  # c ha r a c t e r  s i z e 

+     pc h=16,  # c ha r a c t e r  16 

+     c ol =" bl ue " ,  # c ol or  ' b l ue ' 

+     . . .  

+   ) ;  # pl ot  c yc l e  poi nt s 

+   pa ne l . a bl i ne ( 

+     a =0,  # i nt e r c e p t 

+     b=1,  # s l ope 

+     l t y=" s o l i d" ,  # l i ne  t ype  ' s ol i d ' 

+     l wd=1,  # l i ne  wi dt h 

+     c ol =" bl a c k"  # c ol or  ' b l a c k' 

+   ) ;  # pl ot  l i ne  of  e qua l i t y 

+   pa ne l . poi nt s ( 

+     x=t a ppl y( X=x,  I NDEX=gr oups [ s ubs c r i pt s ] ,  FUN=me a n) , 

+     y=t a ppl y( X=y,  I NDEX=gr oups [ s ubs c r i pt s ] ,  FUN=me a n) , 

+     c e x=1,  # c ha r a c t e r  s i z e 

+     pc h=8,  # c ha r a c t e r  8 

+     c ol =" r e d" ,  # c o l or  ' r e d' 

+     . . .  

+   ) ;  # pl ot  na i ve  me a n 

+   pa ne l . poi nt s ( 

+     x=z $x[ s ubs c r i pt s ] [ 1] , 

+     y=z $y[ s ubs c r i pt s ] [ 1] , 

+     c e x=1,  # c ha r a c t e r  s i z e 

+     pc h=4,  # c ha r a c t e r  4 

+     c ol =" gr e e n" ,  # c ol or  ' gr e e n' 

+     . . .  
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+   ) ;  # pl ot  s hr unk me a n 

+   pa ne l . poi nt s ( 

+     x=o$x, 

+     y=o$y, 

+     c e x=1,  # c ha r a c t e r  s i z e 

+     pc h=3,  # c ha r a c t e r  3 

+     c ol =" da r k gr a y" ,  # c ol or  ' da r k gr a y' 

+     . . .  

+   ) ;  # pl ot  ove r a l l  me a n 

+ }  # mypa ne l _01 

The �mypanel_01� function is essentially based on the �mypanel_00� function used to plot Figure 9.1. 

Two arguments are added (�z� and �o�) to pass the coordinates of the shrunk means for each patient 

and the coordinates of the overall mean to the inside of the function. In addition, two calls to 

�panel.points� are added to plot the patient shrunk means and the overall mean on each panel. 

To identify the additional points an appropriate legend must be defined. 

> # de f i ne  l e ge nd 

> myke y_01 <-  l i s t (  

+   r e p=FALSE, 

+   s pa c e =" t op" ,  # pu t  l e ge nd a t  t he  t op of  t he  pl ot  a r e a 

+   poi nt s =l i s t ( c e x=1,  pc h=16,  c ol =" b l ue " ) , 

+   t e xt =l i s t ( l a be l s =" FEV ( ml )  by c yc l e " ,  c e x=1) , 

+   l i ne s =l i s t ( l t y=" s ol i d" ,  l wd=1,  c o l =" bl a c k" ) , 

+   t e xt =l i s t ( l a be l s =" Li ne  of  e qua l i t y" ,  c e x=1) , 

+   poi nt s =l i s t ( 

+     c e x=1, 

+     pc h=c ( 8 ,  4,  3) , 

+     c ol =c ( " r e d" ,  " g r e e n" ,  " da r k gr a y" ) 

+   ) ,  

+   t e xt =l i s t ( 

+     l a be l s =c ( " Na i ve  me a n" ,  " Shr unk me a n" ,  " Ove r a ll  me a n" ) , 

+     c e x=1 

+   )  

+ ) ;  

Note that in relation to the previous plot, the legend is rewritten to accommodate for the two 

additional points. The legend labels are also laid out in three columns at the top of the plot area. The 

first and second columns contain only one row. The third and last column contain three rows one for 

each mean point drawn. By default rows not specified in the list of parameters are repeated a number 

of times equal to the maximum number of rows present in the list. The �rep=FALSE� argument avoids 

this unnecessary repetition. 

Finally, the data for the trellis plot can be computed. 
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> # s a ve  a nd pr i nt  t r e l l i s  da t a 

> t r e l l i s _01 <-  xypl o t (  

+   YB~YA| Pa t i e nt ,  # pl ot  YB vs  YA f o r  e a c h l e ve l  of  t he  ' Pa t i e nt '  f a c t or 

+   da t a =dda t a ,  # da t a s e t 

+   gr oups =Pa t i e nt ,  #  ' Pa t i e nt '  a s  gr oups  ne e de d t o pl ot  t he  me a n 

+   l a yout =c ( 3,  4) ,  #  3 c ol umns  4 r ows 

+   i nde x. c ond=l i s t (  c ( 10,  11,  12,  7,  8,  9,  4,  5,  6,  1,  2,  3)  ) , 

+   pa ne l =f unc t i on( 

+     x,  

+     y,  

+     s ubs c r i pt s , 

+     gr oups , 

+     z =s hr unk_01, 

+     o=ove r a l l _01, 

+     . . .  

+   )  {  

+     mypa ne l _01( x,  y ,  z ,  o,  s ubs c r i p t s ,  gr oups ,  . .. ) ;  

+   } ,  # pa ne l  f unc t i on 

+   x l a b=" Tr e a t me nt  A" ,  # x a x i s  l a be l 

+   y l a b=" Tr e a t me nt  B" ,  # y a x i s  l a be l 

+   a s pe c t =" i s o" ,  # a s pe c t  r a t i o s a me  s c a l e  on bot h a xi s 

+   ke y=myke y_01 # l i s t  of  l e ge nd pa r a me t e r s 

+ ) ;  

> pr i nt ( t r e l l i s _01) ; 

The �xyplot� call is similar to the one leading to the plot of Figure 9.1 with two obvious differences. 

The panel function calls �mypanel_01� instead of �mypanel_00�. In addition, the list of parameters 

supplied to the �key� parameter is now �mykey_01� instead of �mykey_00�. Also note that the 

�shrunk_01� object holding a list of coordinates of the shrunk estimates, and the �overall_01� object 

holding a list of overall mean coordinates, are passed to the panel function within this last �xyplot� 

call. A �trellis� object is returned from the �xyplot� call, and saved under the name �trellis_01�. The 

print of the �trellis_01� object leads to the plot of Figure 9.2. 
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Figure 9.2: Outcome under treatment �B� versus outcome under treatment �A� for each patient. 

The two additional points do not change the interpretations made above in respect to Figure 9.1. The 

shrunk mean and the overall mean remain above the line of equality suggesting that higher values of 

outcome variable are observed under treatment �B�. The overall mean is an estimate of the treatment 

effect across all the patients studied. It is therefore the same for all the patients. The data is balanced, 

i.e. the patients received treatments in the same number of cycles, so the overall mean resulting from 

the linear mixed-effects model presented on chapter 7 is the same as the naïve overall mean. The 

shrunk individual treatment effect or shrunk mean is a weighted average of the overall mean and the 

naïve individual mean, where the weights depend on the estimated covariance parameters of the 

linear mixed-effects model, and on the number of observations registered under the respective 

patient. It is generally closer to the overall mean than the naïve mean. This fact can be observed for 
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all the patients represented on Figure 9.2 without exception. It is important to mention that the 

estimation of the shrunk individual treatment effects labelled �shrunk mean� in Figure 9.2 involves all 

the data in the sample; while the naïve individual treatment effects labelled �naïve mean� on the same 

Figure 9.2 are estimated from the data of the respective patient only. Since shrunk individual 

treatment effects are estimated from more information than naïve individual treatment effects, the 

former are expected to be more efficient than the latter. Due to this fact, shrunk estimation of 

individual treatment effects through appropriate linear mixed-effects models shall be preferred 

overall more naïve estimation methods. 

So far, the patients have been identified by numbers. However, it might be preferable to refer 

to the patients by their actual real names. Particularly during the later stages of the clinical trial when 

blinding is no longer considered a threat to biasedness. Referring to the patients by their real names 

might be useful when the purpose of the series of n-of-1 clinical trials is to individualize treatments to 

patients. In that case, names can be assigned to the patient numbers and any �trellis� object can later 

be updated with the desired patient names. To proceed at first a vector of names is saved for posterior 

use. 

> # de f i ne  pa t i e nt  na me s 

> pa t i e nt _na me s  <-  c (  

+   " J a me s " ,  " Ma r y" ,  " J ohn" , 

+   " Pa t r i c i a " ,  " Robe r t " ,  " Li nda " , 

+   " Mi c ha e l " ,  " Ba r ba r a " ,  " Wi l l i a m" , 

+   " El i z a be t h" ,  " Da v i d" ,  " J e nni f e r " 

+ ) ;  

The twelve patient names presented here are fictitious names based on very common English 

language first names, and are meant to serve as an example. After saving the patient name vector, 

the �trellis� object used to create the plot of Figure 9.2 can be updated with the patient names as in 

the following lines of code. 

> # upda t e  t r e l l i s  ob j e c t  wi t h  pa t i e n t  na me s  a nd p lot  

> t r e l l i s _02 <-  upda t e ( 

+   t r e l l i s _01, 

+   s t r i p=s t r i p. c us t om( f a c t or . l e ve l s =pa t i e nt _na me s ) 

+ ) ;  

> pr i nt ( t r e l l i s _02) ; 

Note how the �update� function is used to update the �trellis_01� object with the �patient_names� 

vector holding the patient names. Here the �update� call returns an updated �trellis� object, which is 

saved under the name �trellis_02�. The print of the updated object leads to the graph presented on 

Figure 9.3 below. 
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Figure 9.3: Outcome under treatment �B� versus outcome under treatment �A� for each patient. 

The plot of Figure 9.3 is essentially the same as the one presented on Figure 9.2, with the exception 

that the trellis panels are identified by patient names instead of patient numbers. 

An alternative and perhaps more convenient way of working with patient names instead of 

patient numbers is to rename the �Patient� factor levels within the data.frame as in the following 

example. 

> # r e na me  f a c t or  l e ve l s 

> na me d_dda t a  <-  dda t a ; 

> l e ve l s ( na me d_dda t a $Pa t i e nt )  <-  pa t i e nt _na me s ; 

On this example, the �ddata� dataset is copied over to a new �named_data� dataset. Then the levels 

of the �Patient� factor within this �named_data� dataset are set to the �patient_names� vector, which 
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holds the actual patient names. To check that the factor levels of this new dataset are correctly set, in 

the next example the first and last observations are printed on screen. 

> # pr i nt  f i r s t  6 r ows  of  da t a . f r a me 

> he a d( na me d_dda t a ,  n=6) ; 

  Pa t i e nt  Cyc l e    YA   YB  dY 

1   J a me s      1 2394 2686 292 

2   J a me s      2 2515 2675 160 

3   J a me s      3 2583 2802 219 

4    Ma r y     1 2746 2726 - 20 

5    Ma r y     2 2592 2867 275 

6    Ma r y     3 2743 2742  - 1  

> # pr i nt  l a s t  6 r ows  of  da t a . f r a me 

> t a i l ( na me d_dda t a ,  n=6) ; 

    Pa t i e nt  Cyc l e    YA   YB  dY 

31    Da vi d     1 2617 2923 306 

32    Da vi d     2 2629 2832 203 

33    Da vi d     3 2732 2866 134 

34 J e nni f e r      1 2627 2759 132 

35 J e nni f e r      2 2712 2698 - 14 

36 J e nni f e r      3 2572 2826 254 

Observe that the values of the �Patient� factor in the new data.frame are as desired. The same process 

can be applied to the full dataset �ndata�. 

> # r e na me  f a c t or  l e ve l s 

> na me d_nda t a  <-  nda t a ; 

> l e ve l s ( na me d_nda t a $Pa t i e nt )  <-  pa t i e nt _na me s ; 

If these datasets are supplied to any of the plot functions accessible through the R software, the 

patient names instead of their respective numbers are displayed on the plots if applicable. 

A trellis scatterplot of the outcome variable versus the cycle for each patient is presented in 

the example that follows. Before calling �xyplot� to proceed with the creation of the trellis scatterplot 

a legend must be defined. Since data points of the outcome for each cycle are to be plotted, there is 

the need to identify the treatment under which each of the data points have been registered. Having 

this in mind the labels in the legend must be set to the treatment labels. 
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> # de f i ne  l e ge nd 

> myke y_03 <-  l i s t (  

+   s pa c e =" t op" ,  # pu t  l e ge nd a t  t he  t op of  t he  pl ot  a r e a 

+   poi nt s =l i s t ( c e x=1,  pc h=1,  c ol =" bl ue " ) , 

+   t e xt =l i s t ( 

+     l a be l s =pa s t e 0( " Tr e a t me nt  " ,  l e ve l s ( na me d_nda ta $Tr e a t me nt ) [ 1] ) , 

+     c e x=1 

+   ) ,  

+   poi nt s =l i s t ( c e x=1,  pc h=3,  c ol =" r e d" ) , 

+   t e xt =l i s t ( 

+     l a be l s =pa s t e 0( " Tr e a t me nt  " ,  l e ve l s ( na me d_nda ta $Tr e at me nt ) [ 2] ) ,  

+     c e x=1 

+   )  

+ ) ;  

The legend is to be placed at the top of the plot area as specified in the �space� parameter. In this 

legend, the elements are to be laid out in a table of four columns and one row. The elements are a 

point, followed by text, again a point, and finally a text. The first point is a �blue� character of type 

�1�. The text that identifies this point is the value of the reference treatment on the �named_ndata� 

dataset. The other point is a �red� character of type �3�. Moreover, this last point�s label is the value 

of the test treatment on the same �named_ndata� dataset. 

The �xyplot� call is similar to the ones presented in the previous examples with some minor 

modifications. 

> # s a ve  a nd pr i nt  t r e l l i s  da t a 

> t r e l l i s _03 <-  xypl o t (  

+   Y~Cyc l e | Pa t i e nt ,  # pl ot  ' Y'  vs  ' Cyc l e '  f or  e a c h l e ve l  of  ' Pa t i e nt ' 

+   da t a =na me d_nda t a ,  # da t a s e t 

+   gr oups =Tr e a t me nt ,  # i de nt i f y ' Tr e a t me nt '  obs e r va t i ons 

+   l a yout =c ( 3,  4) ,  #  3 c ol umns  4 r ows 

+   i nde x. c ond=l i s t (  c ( 10,  11,  12,  7,  8,  9,  4,  5,  6,  1,  2,  3)  ) , 

+   pc h=c ( 1,  3) ,  # c ha r a c t e r  t ype  ve c t or 

+   c ol =c ( " bl ue " ,  " r e d" ) ,  # c o l or  ve c t or 

+   c e x=1,  # c ha r a c t e r  s i z e 

+   x l a b=" Cyc l e " ,  # x  a xi s  l a be l 

+   y l a b=" FEV ( ml ) " ,  # y a xi s  l a be l 

+   ke y=myke y_03 

+ ) ;  

> pr i nt ( t r e l l i s _03) ; 

Now the full dataset with named patients is supplied to the �data� parameter. As usual, the �Patient� 

factor is used as conditioning variable. The response variable is now �Y� and the explanatory variable 

is now �Cycle� within the �named_ndata� dataset. By specifying the �Treatment� factor in the 

�groups� argument a distinction between the points is requested. In this case, �xyplot� assigns 

different colours to the points depending on their respective treatment. By specifying col=c(�blue�, 
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�red�), points under the first treatment are plotted in �blue� and points under the second treatment 

are drawn in �red�. It is also important to mention that the �pch� argument used here specifies 

different character types to points falling under one or the other treatment. To identify the points, the 

�col� and �pch� parameters in the legend list are the same as the same parameters in the �xyplot� 

call. Since a dataset with patient names instead of patient numbers was used in the call, the panels 

are expected to be labelled accordingly. The print of the �trellis_03� object returned by the �xyplot� 

call creates the plot presented on Figure 9.4. 

 

Figure 9.4: Outcome versus Cycle for each patient. 

The plot presented in Figure 9.4 suggests that the outcome variable increases when the treatment is 

switched from �A� to �B� for all the twelve patients. The same phenomenon is observed on previous 

plots. For some patients there is an evident increase or decrease of the outcome variable as the trial 
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progresses with additional cycles. In addition, the variation of outcome variable with cycle differs from 

patient to patient, suggesting a cycle by patient interaction. 

A scatterplot of the outcome variable difference under the two treatments versus the cycle 

can be obtained with a single �xyplot� call. 

> t r e l l i s _04 <-  xypl o t (  

+   dY~Cyc l e | Pa t i e nt , 

+   da t a =na me d_dda t a , 

+   l a yout =c ( 3,  4) ,  #  3 c ol umns  4 r ows 

+   i nde x. c ond=l i s t (  c ( 10,  11,  12,  7,  8,  9,  4,  5,  6,  1,  2,  3)  ) , 

+   t ype =" p" ,  # t ype  of  p l ot  ' p '  f or  poi nt s 

+   c e x=1,  # c ha r a c t e r  s i z e 

+   pc h=16,  #  c ha r a c t e r  16 

+   c ol =" bl a c k" ,  # c o l or  ' b l a c k' 

+   x l a b=" Cyc l e " ,  

+   y l a b=" Di f f e r e nc e  FEV ( ml ) " 

+ ) ;  

> pr i nt ( t r e l l i s _04) ; 

This �xyplot� call is simpler than the above calls. There is only one type of point being plotted, so the 

definition of a legend is not required. The continuous variable �dY� is expressed in function of the 

categorical variable �Cycle� conditioned on the �Patient� categorical variable. The variables are looked 

for in the �named_ddata� dataset. A �trellis� object is returned and saved under the name �trellis_04�. 

Figure 9.5 is created from the print of this �trellis_04� object. 
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Figure 9.5: Difference outcome versus Cycle for each patient. 

When interpreting the plot of Figure 9.5 it is important to remember that the outcome variable under 

treatment �B� minus the outcome variable under treatment �A� is represented in the ordinates axis. 

Thus when the points fall above the imaginary horizontal line that passes through the origin, higher 

values of outcome were registered under treatment �B�. Therefore, the plot suggests that on average 

higher values of outcome are observed under treatment �B� for all the patients without exception. 

There is nothing new up to this point. The difference outcome varies with cycle for every patient 

studied. Moreover, the cycle trend differs between the patients recruited into the trial. For some 

patients there is an increase of difference outcome with cycle, while for others there is a decrease. 
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9.2 Boxplots 

A boxplot is a compact and non-parametric graphical representation of the data [16]. Within 

this graphical representation five quantiles of the data are represented; the minimum, first quartile, 

median, third quartile, and the maximum. The first quartile and the third quartiles form the lower and 

upper sides of a rectangle or box. The median lies between the first and third quartiles of the data, so 

it is represented inside the box through either a point or a line extending from one side of the box to 

the other. To indicate variability outside the upper and lower quartiles, lines extending from the box 

to the minimum and maximum are drawn. Outliers may be plotted as individual points. Boxplots allow 

for an observation of the dispersion and skewness of the data. Longer rectangles indicate a higher 

interquartile range and consequently higher dispersion of the data. If the median line or point is 

centrally located inside the box and the lines extending from the box to the maximum and minimum 

have approximately equal lengths, then a symmetric distribution of the data is suggested. If it is the 

case that the median line or point is closer to one of the sides of the box than the distribution of the 

data is skewed. Boxplots are a convenient way of representing the distribution of the data. Because 

of their compactness, they are sometimes preferred over density plots. Boxplots of different 

subgroups of the data can be conveniently placed side by side allowing for a comparison between the 

subgroups. 

In series of n-of-1 trials, the main objective is to compare treatments within and between 

individuals. Therefore, in this case it is more interesting to draw boxplots of the outcome variable per 

treatment and patient. Trellis boxplots can be obtained within the R software through the �bwplot� 

function provided by the �lattice� extension. 

> # s a ve  a nd pr i nt  t r e l l i s  da t a 

> t r e l l i s _05 <-  bwpl o t (  

+   Y~Tr e a t me nt | Pa t i e nt ,  # f or mul a 

+   da t a =na me d_nda t a ,  # da t a s e t 

+   l a yout =c ( 3,  4) ,  #  3 c ol umns  4 r ows 

+   i nde x. c ond=l i s t (  c ( 10,  11,  12,  7,  8,  9,  4,  5,  6,  1,  2,  3)  ) , 

+   y l a b=" FEV ( ml ) " ,  # y- a xi s  l a be l 

+   pa r . s e t t i ngs =l i s t ( 

+     box. umbr e l l a =l i s t (  c ol =c ( " bl ue " ,  " r e d" )  ) ,  #  umbr e l l a  c ol our 

+     box. dot =l i s t (  c ol =c ( " bl ue " ,  " r e d" )  ) ,  # dot  col our  

+     box. r e c t a ngl e =l i s t (  c ol =c ( " bl ue " ,  " r e d" )  )  #  r e c t a ng l e  c ol our 

+   )  

+ ) ;  

> pr i nt ( t r e l l i s _05) ; 

In this example, the �Y� outcome variable is expressed in function of the �Treatment� factor. The 

conditioning of this relationship on the �Patient� factor variable leads to a panel per patient totalling 



Graphical methods 67 

 

twelve panels. A boxplot for each of the two treatments is expected for each patient. The colours of 

the boxplots are distinctively defined for the two treatments. The colours of three different parts of 

the boxplot can be defined independently as a list of parameters supplied to the �par.settings� 

argument. The colours of the �rectangle�, the �dot� and the �umbrella� parts are set equally so that 

the whole boxplot exhibits the same colour. In this case, boxplots of data registered under treatment 

�A� are blue, and boxplots of data registered under treatment �B� are red. This plot does not require 

the definition of a legend because the subgroup distinction is already evident. When the �trellis_05� 

object is printed, the graph presented in Figure 9.6 is created. 

 

Figure 9.6: Boxplots of outcome versus treatment for each patient. 

A comparison of the distribution of the data within the patients can be easily made from the 

observation of the plot of Figure 9.6. However, comparisons between the patients can be extremely 
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difficult. Therefore, it is preferable to plot all the boxplots side by side. This can be accomplished 

through an appropriate formula as in the following example. 

> # s a ve  a nd pr i nt  t r e l l i s  da t a 

> t r e l l i s _06 <-  bwpl o t (  

+   Y~Pa t i e nt : Tr e a t me nt ,  # f or mul a 

+   da t a =nda t a ,  # da t a s e t 

+   x l a b=" Pa t i e nt  a nd  Tr e a t me nt " ,  # x- a xi s  l a be l 

+   y l a b=" FEV ( ml ) " ,  # y- a xi s  l a be l 

+   hor i z ont a l =FALSE, 

+   pa r . s e t t i ngs =l i s t ( 

+     box. umbr e l l a =l i s t (  c ol =c ( " bl ue " ,  " r e d" )  ) ,  #  umbr e l l a  c ol our 

+     box. dot =l i s t (  c ol =c ( " bl ue " ,  " r e d" )  ) ,  # dot  col our  

+     box. r e c t a ngl e =l i s t (  c ol =c ( " bl ue " ,  " r e d" )  )  #  r e c t a ng l e  c ol our  

+   )  

+ ) ;  

> pr i nt ( t r e l l i s _06) ; 

Note the difference in the formula. There is no variable conditioned on. The �Y� variable is expressed 

in function of the �Patient� and �Treatment� variables with a colon in between. This formula expresses 

the outcome variable in function of a patient by treatment interaction. The absence of the �layout� 

and �index.cond� in this �bwplot� call is a notorious difference in relation to the above call. There is 

no conditioning variable defined, which implies the absence of panels, therefore panel related 

parameters are not required. By setting �horizontal=FALSE� the boxplots are displayed vertically. The 

colours of the boxplots are kept equal to the previous �bwplot� call. After printing the �trellis_06� 

object, the plot of Figure 9.7 is obtained. 
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Figure 9.7: Boxplots of outcome for each patient and treatment. 

Between patient comparisons of boxplots is now easier with all of them placed side by side. With the 

patient and treatment properly identified in the abscissa axis; and with all the boxplots related to 

treatment �A� in blue and all the boxplots related to treatment �B� in red; the interpretation of the 

data is eased. It can be observed that the outcome variable is superior under treatment �B� for every 

patient without exception. The plot suggests that the variation of the outcome variable is 

approximately equal for every patient and treatment; with notable exceptions for patient �5� and 

treatment �A�, patient �6� and treatment �B�, and patient �7� and treatment �A�, where the variance 

of the outcome is higher than the average. Figure 9.7 also suggests that the data is skewed for a great 

number of patients under one treatment or the other. However, caution is advised when interpreting 

the plot of Figure 9.7. Note that each of the boxplots represents only three observations of the 
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outcome variable. With such a low number of observations, the distribution of the data shall not be 

considered well estimated. However, this type of plot might be very useful when applied to series of 

n-of-1 trials with a reasonable number of observations per patient and treatment. 

If you try to use the �named_ndata� dataset instead of the �ndata� dataset to have the actual 

patient names identified in the abscissa axis as in the plot of Figure 9.7, you will find that the patient 

and treatment labels overlap to adjacent labels, making the identification of the actual boxplots 

extremely difficult. This problem can be overcome by plotting the outcome variable in the abscissa 

axis and the patient and treatment in the ordinate axis, with the boxplots drawn horizontally instead 

of vertically. 

> # s a ve  a nd pr i nt  t r e l l i s  da t a 

> t r e l l i s _07 <-  bwpl o t (  

+   Pa t i e nt : Tr e a t me nt ~Y,  # f or mul a 

+   da t a =na me d_nda t a ,  # da t a s e t 

+   x l a b=" FEV ( ml ) " ,  # x- a xi s  l a be l 

+   y l a b=" Pa t i e nt  a nd  Tr e a t me nt " ,  # y- a xi s  l a be l 

+   hor i z ont a l =TRUE, 

+   pa r . s e t t i ngs =l i s t ( 

+     box. umbr e l l a =l i s t (  c ol =c ( " bl ue " ,  " r e d" )  ) , 

+     box. dot =l i s t (  c ol =c ( " bl ue " ,  " r e d" )  ) , 

+     box. r e c t a ngl e =l i s t (  c ol =c ( " bl ue " ,  " r e d" )  ) 

+   )  

+ ) ;  

> pr i nt ( t r e l l i s _07) ; 

Note that the patient by treatment interaction is expressed in function of the outcome variable in the 

formula. The dataset with named patients is to be used for the plot. The x-axis and y-axis labels are 

also defined accordingly. In this case, the �horizontal� argument is set to �TRUE� and the boxplots are 

drawn horizontally. The plot of Figure 9.8 is created from the code presented. 
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Figure 9.8: Boxplots of outcome for each patient and treatment. 

Note that the patient names and treatments are well identified in the vertical axis of the plot of Figure 

9.8. All the others aspects of the plot of Figure 9.8 are identical to the plot of Figure 9.7. The data is 

the same and the interpretations made in respect to the plot of Figure 9.7 are hence the same. 

Boxplots of difference outcome for each patient can be obtained by supplying the dataset of 

differences to the �data� argument of �bwplot�, and defining an appropriate formula. 
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> # s a ve  a nd pr i nt  t r e l l i s  da t a 

> t r e l l i s _08 <-  bwpl o t (  

+   Pa t i e nt ~dY,  # f or mul a 

+   da t a =na me d_dda t a ,  # da t a s e t 

+   x l a b=" Di f f e r e nc e  FEV ( ml ) " ,  # x- a xi s  l a be l 

+   y l a b=" Pa t i e nt " ,  #  y- a xi s  l a be l 

+   hor i z ont a l =TRUE 

+ ) ;  

> pr i nt ( t r e l l i s _08) ; 

The �Patient� factor is defined as a function of the �dY� outcome variable, and the boxplots are plotted 

horizontally. Figure 9.9 below is produced after running this code. 

 

Figure 9.9: Boxplots of outcome difference for each patient. 



Graphical methods 73 

 

Interpretations are identical to the ones made from Figure 9.7 and Figure 9.8. However here there are 

no boxplots of two treatments to compare. Instead, a vertical imaginary line passing through zero 

must be considered as a reference. Remember that the difference outcome variable is computed by 

subtracting the outcome variable under treatment �A� from the outcome variable under treatment 

�B�, both measured under the same cycle. The majority of the boxes as well as the medians lie above 

the imaginary vertical line passing through zero suggesting that higher values of outcome variable are 

observed under treatment �B� rather than treatment �A�. As an exception, a median very close to 

zero is observed for the patient �Mary�. 

When plotting boxplots the median is drawn by default. To plot the mean, the definition of a 

panel function is required. In the following example, a panel function is defined first. This panel 

function draws the boxplots and plots the mean points for each patient. 

> # de f i ne  pa ne l  f unc t i on 

> mypa ne l _09 <-  f unc t i on(  

+   x,  

+   y,  

+   . . .  

+ )  {  

+   pa ne l . bwp l ot ( 

+     x,  

+     y,  

+     pc h=" | " , 

+     . . .  

+   ) ;  

+   me a n. va l ue s  <-  t a ppl y(  

+     X=x,  

+     I NDEX=y,  

+     FUN=me a n 

+   ) ;  

+   pa ne l . poi nt s ( 

+     x=me a n. va l ue s [ y ] , 

+     y=y,  

+     c e x=1,  # c ha r a c t e r  s i z e 

+     pc h=1,  # c ha r a c t e r  1 

+     c ol =" bl a c k" ,  # c ol or  ' b l a c k'  

+     . . .  

+   ) ;  

+ }  # mypa ne l _09 

In the �mypanel_09� function, the default �bwplot� panel function is called. Here note the �pch� 

argument to �panel.bwplot�. According to this argument, the median is to be represented by a vertical 

line instead of a point as in the above examples. The coordinates of the outcome are passed through 

the argument �x�. In addition, the coordinates of the patient are passed through the �y� argument. 

After the call to �panel.bwplot�, the mean for each patient is computed through a call to �tapply�. 
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Finally, �panel.points� plots the mean points for each patient. The next step is the actual �bwplot� call 

that makes use of the defined panel function. 

> # s a ve  a nd pr i nt  t r e l l i s  da t a 

> t r e l l i s _09 <-  bwpl o t (  

+   Pa t i e nt ~dY,  # f or mul a 

+   da t a =na me d_dda t a ,  # da t a s e t 

+   pa ne l =f unc t i on( x,  y,  . . . )  { 

+     mypa ne l _09( x,  y ,  . . . ) ; 

+   } ,  # pa ne l  f unc t i on 

+   x l a b=" Di f f e r e nc e  FEV ( ml ) " ,  # x- a xi s  l a be l 

+   y l a b=" Pa t i e nt " ,  #  y- a xi s  l a be l 

+   hor i z ont a l =TRUE 

+ ) ;  

> pr i nt ( t r e l l i s _09) ; 

This �bwplot� call is similar to the one leading to the plot of Figure 9.9, the only difference being the 

use of the �mypanel_09� function. The plot of Figure 9.10 is obtained as a result. 
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Figure 9.10: Boxplots of outcome difference for each patient. 

Note that on Figure 9.10 the median is represented by a vertical line, and the mean is indicated by a 

small black circular area. The dataset and formula is the same as the ones used to make the plot of 

Figure 9.9 and for that reason, the interpretations are similar. 

9.3 Density plots 

The density function is a very important concept in probability theory and in Statistics in 

general. The density function characterizes the distribution of the data. Density plots allow the analyst 

to compare the distribution of the data between subgroups of the same dataset. On the other hand, 

the observation of density plots might suggest a very well-known distribution such as the Normal 

distribution. For this reason, density plots are commonly used to check model assumptions. For 
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example, the linear mixed-effects models presented in chapters 7, and 8 assume that the errors are 

normally distributed within and between groups. Therefore, density plots of the errors obtained from 

the model provide a way of checking that assumption, given that the Normal density assumes a very 

well-known symmetric bell shaped curve. However, the purpose here is not to cover model 

assumption checking techniques. It is the purpose of this document to demonstrate some of the 

graphical facilities available within the R software for displaying data arising from series of n-of-1 trials. 

To determine the curve for plotting, kernel density estimation is used. Kernel density estimation is a 

non-parametric way of estimation of the probability density function of the data. Kernel density 

estimation is a very wide field that cannot be covered here. The texts of Silverman [17], Wand and 

Jones [18], Bowman and Azzalini [19] and Scott [20] are suggested to those interested to know more 

about the subject. 

Density plots of the data for each patient and treatment are considered next. Before making 

the actual plot, an appropriate legend must be defined. 

> # de f i ne  l e ge nd 

> myke y_10 <-  l i s t (  

+   s pa c e =" t op" ,  # pu t  l e ge nd a t  t he  t op of  t he  pl ot  a r e a 

+   l i ne s =l i s t ( l t y=" s ol i d" ,  l wd=1,  c o l =" bl ue " ) , 

+   t e xt =l i s t ( 

+     pa s t e ( " Tr e a t me nt  " ,  l e ve l s ( na me d_nda t a $Tr e a t me nt ) [ 1] ,  s e p=" " ) 

+   ) ,  

+   l i ne s =l i s t ( l t y=" da s he d" ,  l wd=1,  c ol =" r e d" ) , 

+   t e xt =l i s t ( 

+     pa s t e ( " Tr e a t me nt  " ,  l e ve l s ( na me d_nda t a $Tr e a t me nt ) [ 2] ,  s e p=" " ) 

+   )  

+ ) ;  

The legend is to be placed on top of the plot area. The density curve under treatment �A� is identified 

with a solid blue line. Whereas the density curve under treatment �B�, is to be identified by a dashed 

red line. Trellis density plots can be obtained through the �densityplot� function provided by the 

�lattice� package. The following lines of code make use of it. 
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> # s a ve  a nd pr i nt  t r e l l i s  da t a 

> t r e l l i s _10 <-  de ns i t ypl ot ( 

+   ~Y| Pa t i e n t ,  # f or mul a 

+   da t a =na me d_nda t a ,  # da t a s e t 

+   gr oups =Tr e a t me nt , 

+   l a yout =c ( 3,  4) ,  #  3 c ol umns  4 r ows 

+   i nde x. c ond=l i s t ( 

+     c ( 10,  11,  12,  7 ,  8,  9,  4 ,  5,  6,  1,  2,  3) 

+   ) ,  # de f i ne  pa ne l  or de r 

+   x l a b=" FEV ( ml ) " ,  # x a xi s  l a be l 

+   y l a b=" De ns i t y" ,  #  y a xi s  l a be l 

+   l t y=c ( " s o l i d" ,  " da s he d" ) , # l i ne  t ype 

+   l wd=1,  # l i ne  wi d t h 

+   c ol . l i ne =c ( " bl ue " ,  " r e d" ) ,  # l i ne  c ol or 

+   p l ot . poi n t s =TRUE,  # pl ot  poi nt s 

+   c e x=0. 6,  # poi nt  s ymbol  e xpa ns i on 

+   pc h=c ( 16,  1) ,  # poi nt  s ymbol 

+   c ol =c ( " bl ue " ,  " r e d" ) ,  # po i nt  c ol or 

+   ke y=myke y_10 # l i s t  of  l e ge nd pa r a me t e r s 

+ ) ;  

> pr i nt ( t r e l l i s _10) ; 

The density of the outcome variable �Y� conditioned on the patient is specified in the formula. The 

�groups� argument splits the density curves according to the levels of the �Treatment� factor. This 

leads to two density curves one for each treatment under each panel defined by the �Patient� 

conditioning variable. Figure 9.11 is obtained after running the code. 
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Figure 9.11: Density of outcome per treatment and patient. 

The plot of Figure 9.11 suggests that higher values of outcome are observed under treatment �B� 

when compared to treatment �A�. Given that, the density curves relative to treatment �B� lie on the 

right side of the density curves for treatment �A�, regardless of the patient. The density curve under 

treatment �A� for �Robert� is wider than the other curves, suggesting that the variance is higher for 

this treatment and patient. All the curves exhibit a bell like shape characteristic of the normal density. 

Some curves suggest a mixed normal density with two modes. It is important to note however that 

there are only three observations available for estimation of each curve. With such a low number of 

points, kernel density estimation is not expected to behave well and there is a high level of uncertainty 

associated with it. However, the plots exemplified might provide useful insight into n-of-1 trials 

designed with more periods or cycles. 
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It is possible to plot all the density curves side by side without resorting to conditioning. 

However due to the large number of curves occupying the same area there is a lot of confusion. In this 

case, it does not facilitate interpretation. Potting the density curves on the same plot area might be 

useful in other situations. For this reason, an example is presented. In this example, the dataset of 

outcome differences is used. 

> t r e l l i s _11 <-  de ns i t ypl ot ( 

+   ~dY,  

+   da t a =na me d_dda t a , 

+   gr oups =Pa t i e nt , 

+   x l a b=" Di f f e r e nc e  FEV ( ml ) " ,  # x a xi s  l a be l 

+   y l a b=" De ns i t y" ,  #  y a xi s  l a be l 

+   p l ot . poi n t s =FALSE,  # do no t  pl ot  poi nt s 

+   r e f =TRUE,  # a dd r e f e r e nc e  l i ne  a t  z e r o 

+   a ut o. ke y=l i s t ( s pa c e =" t op" ,  c ol umns =4) 

+ ) ;  

> pr i nt ( t r e l l i s _11) ; 

The formula is fairly simple in this case. Only the outcome variable is specified in the formula. The 

�Patients� variable in the �groups� argument, leads to one density curve for each patient. If this 

argument is not specified than a unique density curve pertaining to the whole dataset is drawn. 

Plotting the points is not very useful either. Due to the large number of points falling over the same 

region, a distinction between them is rather difficult. Specifying �plot.points=FALSE� prevents the 

points from being drawn. The �ref=TRUE� argument requests a horizontal line at zero. Unlike in 

previous examples, an extensive list of legend parameters is not supplied to the function call. Instead, 

a list with a minimal set of parameters is supplied to the �auto.key� parameter. In this case, the legend 

is to be placed in the top of the plot area. The labels are to be laid out in four columns. The legend is 

automatically defined from the levels of the �Patient� factor defined in the �groups� parameter. The 

graph is present on Figure 9.12 below. 
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Figure 9.12: Density of difference outcome for each patient. 

A plot like the one presented in Figure 9.12 can be used to perform a between patient comparison of 

the density curves of the outcome difference under two treatments. As mentioned before the number 

of curves occupying the same region of the graph makes interpretations difficult. Despite this 

difficulty, it can be observed that the distribution of the outcome difference shows a remarkably 

distinct mean and variance between the patients. 

Density estimation for each treatment involves more observations than estimation for each 

patient. Therefore, a density plot of the outcome for each treatment is more useful. The next example 

shows how this can be done with the R software. 
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> # de f i ne  l e ge nd 

> myke y_12 <-  l i s t (  

+   s pa c e =" t op" ,  # pu t  l e ge nd a t  t he  t op of  t he  pl ot  a r e a 

+   l i ne s =l i s t ( l t y=" s ol i d" ,  l wd=1,  c o l =" bl ue " ) , 

+   t e xt =l i s t ( 

+     pa s t e ( " Tr e a t me nt  " ,  l e ve l s ( nda t a $Tr e a t me nt ) [ 1] ,  s e p=" " ) 

+   ) ,  

+   l i ne s =l i s t ( l t y=" da s he d" ,  l wd=1,  c ol =" r e d" ) ,  

+   t e xt =l i s t ( 

+     pa s t e ( " Tr e a t me nt  " ,  l e ve l s ( nda t a $Tr e a t me nt ) [ 2] ,  s e p=" " ) 

+   )  

+ ) ;  

>  

> # s a ve  a nd pr i nt  t r e l l i s  da t a 

> t r e l l i s _12 <-  de ns i t ypl ot ( 

+   ~Y,  

+   da t a =nda t a , 

+   gr oups =Tr e a t me nt , 

+   x l a b=" FEV ( ml ) " ,  # x a xi s  l a be l 

+   y l a b=" De ns i t y" ,  #  y a xi s  l a be l 

+   l t y=c ( " s o l i d" ,  " da s he d" ) ,  # l i ne  t ype 

+   l wd=1,  # l i ne  wi d t h 

+   c ol . l i ne =c ( " bl ue " ,  " r e d" ) ,  # l i ne  c ol or 

+   p l ot . poi n t s =TRUE,  # pl ot  poi nt s 

+   c e x=0. 6,  # poi nt  s ymbol  e xpa ns i on 

+   pc h=c ( 16,  1) ,  # poi nt  s ymbol 

+   c ol =c ( " bl ue " ,  " r e d" ) ,  # po i nt  c ol or 

+   r e f =TRUE,  # a dd r e f e r e nc e  l i ne  a t  z e r o 

+   ke y=myke y_12 

+ ) ;  

> pr i nt ( t r e l l i s _12) ; 

The complete dataset must be used rather than the dataset of outcome differences. The formula 

contains only the outcome variable �Y�. In this case, the �Treatment� variable is specified in the 

�groups� parameter. The legend labels are determined from the levels of the �Treatment� variable. 

Moreover, the legend is placed on the top of the plot area. The plot is presented on Figure 9.13 below. 
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Figure 9.13: Density of outcome for each treatment. 

The density curve of the data registered under treatment �B� lies on the right of the one registered 

under treatment �A�. This suggests that the outcome is higher on average under treatment �B�. The 

density curve relative to treatment �A� is wider than the curve relative to treatment �B�, suggesting 

that the variance is higher under treatment �A� than under treatment �B�. Both curves resemble the 

normal density curve, suggesting the data is approximately normal. The plot of Figure 9.13 refers to 

the data from all the patients. Therefore, within and between patient comparisons cannot be made. 

9.4 Dot plots 

A dot plot is a simple statistical chart, in which dots are used to represent data points 

associated with categorical variables. For data arising from series of n-of-1 trials, it makes sense to 
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plot the points associated with the measurements recorded on each patient. This permits within and 

between patient comparisons to be made. Since the main objective is to assess the difference 

between treatments, the points must be properly identified. Therefore, in the next examples the point 

character and colour are defined according to the respective treatment. One starts by defining a list 

of parameters for the legend. 

> myke y_13 <-  l i s t (  

+   s pa c e =" t op" ,  # pu t  l e ge nd a t  t he  t op of  t he  pl ot  a r e a 

+   poi nt s =l i s t ( c e x=1,  pc h=16,  c ol =" b l ue " ) , 

+   t e xt =l i s t ( 

+     pa s t e ( " Tr e a t me nt  " ,  l e ve l s ( na me d_nda t a $Tr e a t me nt ) [ 1] ,  s e p=" " ) 

+   ) ,  

+   poi nt s =l i s t ( c e x=1,  pc h=1,  c ol =" r e d" ) , 

+   t e xt =l i s t ( 

+     pa s t e ( " Tr e a t me nt  " ,  l e ve l s ( na me d_nda t a $Tr e a t me nt ) [ 2] ,  s e p=" " ) 

+   )  

+ ) ;  

The legend is placed on the top of the plot area. Treatment �A� is identified by a small blue circle. 

While treatment �B� is identified by a small red circumference. Dot plots can be obtained from either 

�dotplot� or �stripplot� functions with similar results. The difference is that �dotplot� by default draws 

a line passing through the points while �stripplot� does not. In the following code, �dotplot� is used. 

> # s a ve  a nd pr i nt  t r e l l i s  da t a 

> t r e l l i s _13 <-  dot pl ot (  

+   ~Y| Pa t i e n t ,  # f or mul a 

+   da t a =na me d_nda t a ,  # da t a s e t 

+   gr oups =Tr e a t me nt , 

+   l a yout =c ( 3,  4) ,  #  3 c ol umns  4 r ows 

+   i nde x. c ond=l i s t ( 

+     c ( 10,  11,  12,  7 ,  8,  9,  4 ,  5,  6,  1,  2,  3) 

+   ) ,  # de f i ne  pa ne l  or de r 

+   x l a b=" FEV ( ml ) " ,  # x a xi s  l a be l 

+   c e x=1,  # poi nt  s ymbol  e xpa ns i on 

+   pc h=c ( 16,  1) ,  # poi nt  s ymbol 

+   c ol =c ( " bl ue " ,  " r e d" ) ,  # po i nt  c ol or 

+   ke y=myke y_13 

+ ) ;  

> pr i nt ( t r e l l i s _13) ; 

The outcome variable �Y� is conditioned on the �Patient� variable leading to a dot plot for each 

patient. By supplying the �Treatment� to the �groups� argument, an identification of the points 

according to the treatments is requested. The legend is defined according to the �mykey_13� list. The 

plot is presented on Figure 9.14 below. 
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Figure 9.14: Dot plot of outcome per patient. 

For all the patients without exception the majority of the points relative to treatment �B� lie on the 

right of the points recorded under treatment �A�, suggesting that the outcome is higher under 

treatment �B� most of the time. 

It is very difficult to perform between patient comparisons with the plot of Figure 9.14. The 

next example considers a dot plot where between and within patient comparisons can be made very 

easily. The example makes use of �stripplot�. First, a list of parameters for the legend is defined. 
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> # de f i ne  l e ge nd 

> myke y_14 <-  l i s t (  

+   s pa c e =" t op" ,  # pu t  l e ge nd a t  t he  t op of  t he  pl ot  a r e a 

+   poi nt s =l i s t ( c e x=1,  pc h=8,  c ol =" r e d" ) , 

+   t e xt =l i s t ( l a be l s =" Na i ve  t r e a t me nt  e f f e c t " ,  c e x=1) ,  

+   poi nt s =l i s t ( c e x=1,  pc h=4,  c ol =" gr e e n" ) , 

+   t e xt =l i s t ( l a be l s =" Shr unk t r e a t me nt  e f f e c t " ,  c e x=1) ,  

+   l i ne s =l i s t ( l t y=" s ol i d" ,  l wd=1,  c o l =" gr a y" ) , 

+   t e xt =l i s t ( l a be l s =" Ove r a l l  t r e a t me nt  e f f e c t " ,  c ex=1)  

+ ) ;  

The legend is placed on the top of the plot area. It identifies three labels. The �Naïve treatment effect� 

is identified by a red star point. The �Shrunk treatment effect� is identified by a green cross point. In 

addition, the �Overall treatment effect� is to be identified by a grey solid line. Afterwards a panel 

function is defined. 

> # de f i ne  pa ne l  f unc t i on 

> mypa ne l _14 <-  f unc t i on(  

+   x,  

+   y,  

+   . . .  

+ )  {  

+   f i t  <-  l me r (  

+     f or mul a =Out c ome ~1+( 1| Pa t i e nt ) , 

+     da t a =da t a . f r a me ( 

+       " Pa t i e nt " =y, 

+       " Out c ome " =x 

+     ) ,  

+     REML=TRUE 

+   ) ;  

+   s hr unk. va l ue s  <-  pr e di c t ( 

+     obj e c t =f i t , 

+     r e . f or m=~( 1| Pa t i e nt ) 

+   ) ;  

+   me a n. va l ue s  <-  t a ppl y(  

+     X=x,  

+     I NDEX=y,  

+     FUN=me a n 

+   ) ;  

+   pa ne l . s t r i ppl ot ( 

+     x,  

+     y,  

+     t ype =" p" ,  # t ype  of  p l ot  ' p '  f o r  poi nt s 

+     c e x=1,  # c ha r a c t e r  s i z e 

+     pc h=1,  # c ha r a c t e r  1 

+     c ol =" bl a c k" ,  # c ol or  ' b l a c k' 

+     . . .  

+   ) ;  # pl ot  da t a  po i nt s 

+   pa ne l . poi nt s ( 

+     x=me a n. va l ue s [ y ] , 
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+     y=y,  

+     c e x=1,  # c ha r a c t e r s i z e 

+     pc h=8,  # c ha r a c t e r  8 

+     c ol =" r e d" ,  # c o l or  ' r e d' 

+     . . .  

+   ) ;  # pl ot  na i ve  me a n 

+   pa ne l . poi nt s ( 

+     x=s hr unk. va l ue s , 

+     y=y,  

+     c e x=1,  # c ha r a c t e r  s i z e 

+     pc h=4,  # c ha r a c t e r  4 

+     c ol =" gr e e n" ,  # c ol or  ' gr e e n' 

+     . . .  

+   ) ;  # pl ot  s hr unk me a n 

+   pa ne l . a bl i ne ( 

+     v=f i xe f ( f i t ) [ 1] ,  # ve r t i c a l  l i ne 

+     l t y=" s o l i d" ,  # l i ne  t ype  ' s ol i d ' 

+     l wd=1,  # l i ne  wi dt h 

+     c ol =" gr a y"  # c o l or  ' gr a y ' 

+   ) ;  # pl ot  ove r a l l  me a n 

+   pa ne l . a bl i ne ( 

+     v=0,  # ve r t i c a l  l i ne 

+     l t y=" da s he d" ,  #  l i ne  t ype  ' da s he d' 

+     l wd=1,  # l i ne  wi dt h 

+     c ol =" gr a y"  # c o l or  ' gr a y ' 

+   ) ;  # pl ot  r e f e r e nc e  l i ne 

+ }  # mypa ne l _14 

The panel function performs several tasks. It starts by fitting a linear mixed-effects model of difference 

to the data. Fitting of the model in question within R is referred in chapter point 8 above. It then 

computes the patient conditioned predicted values from the fitted model. These predicted values are 

the shrunk treatment effects. It follows by computing the mean of the data for each patient and 

considering that patient�s data only. These individual mean values are the naïve treatment effects. 

Then the function plots the actual data points for each patient, the naïve means, the shrunk means, 

and a vertical solid line passing through the overall mean. Finally, it draws a dashed line passing 

through zero. After having access to a list of legend parameters and to a panel function, a call to 

�stripplot� is made. 
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> # s a ve  a nd pr i nt  t r e l l i s  da t a 

> t r e l l i s _14 <-  s t r i ppl ot (  

+   Pa t i e nt ~dY,  # f or mul a 

+   da t a =na me d_dda t a ,  # da t a s e t 

+   x l a b=" Di f f e r e nc e  FEV ( ml ) " ,  # x a xi s  l a be l 

+   pa ne l =f unc t i on( x,  y,  . . . )  { 

+     mypa ne l _14( x,  y ,  . . . ) ; 

+   } ,  # pa ne l  f unc t i on 

+   ke y=myke y_14 

+ ) ;  

> pr i nt ( t r e l l i s _14) ; 

According to the formula argument, the �Patient� variable is plotted in the y-axis, and the outcome 

difference variable �dY� is plotted in the x-axis. The dataset of outcome differences with named 

patients is used. In addition, the x-axis label is defined accordingly. The �panel� parameter defines a 

function, which calls �mypanel_14� defined above. The last parameter is the �key�, which equals the 

�mykey_14� list of legend parameters. The plot obtained is presented on Figure 9.15 below. 
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Figure 9.15: Dot plot of outcome difference per patient. 

Between patient comparisons are now possible. The plot of Figure 9.15 suggests that for some 

patients the individual treatment effect is lower than the overall treatment effect, while there are 

patients for which the reverse happens. In other words, the plot of Figure 9.15 suggests the existence 

of a treatment by patient interaction. All the individual treatment effects, naïve and shrunk are 

positive, suggesting that the outcome is higher under treatment �B� than under treatment �A� on 

average for each patient. Therefore, if the patients benefit from higher values of outcome, then 

treatment �B� shall be preferred. If it is the case that lower values of outcome are preferred, then the 

choice shall fall over treatment �A�. The shrunk treatment effects are closer to the overall mean than 

to the respective naïve counterparts. The shrunk treatment effects are a weighted average of the 
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overall mean and the naïve individual mean. The plot suggests that more weight is given to the overall 

mean than to the naïve individual mean in this case.
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