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Abstract

Automatic literacy assessment of children is a complex task that

normally requires carefully annotated data. This paper focuses

on a system for the assessment of reading skills, aiming to de-

tection of a range of fluency and pronunciation errors. Natu-

rally, reading is a prompted task, and thereby the acquisition

of training data for acoustic modelling should be straightfor-

ward. However, given the prominence of errors in the training

set and the importance of labelling them in the transcription,

a lightly supervised approach to acoustic modelling has better

chances of success. A method based on weighted finite state

transducers is proposed, to model specific prompt corrections,

such as repetitions, substitutions, and deletions, as observed in

real recordings. Iterative cycles of lightly-supervised training

are performed in which decoding improves the transcriptions

and the derived models. Improvements are due to increasing

accuracy in phone-to-sound alignment and in the training data

selection. The effectiveness of the proposed methods for rela-

belling and acoustic modelling is assessed through experiemnts

on the CHOREC corpus, in terms of sequence error rate and

alignment accuracy. Improvements over the baseline of up to

60% and 23.3% respectively are observed.

1. Introduction

Speech technology advances in recent years have allowed au-

tomatic assessment tools to permeate education methodologies.

Interactive computer assisted language learning (CALL) tools

incorporate a variety of approaches [1], such as spoken word

assessment [2], pronunciation assessment [3], and literacy as-

sessment [4]. In particular, literacy assessment may involve a

wide range of language-related skills, such as decoding words,

fluently reading sentences aloud, reading comprehension, and

writing [4].

The use of speech technology in reading assessment has

been extensively investigated for almost three decades. Most

of the studies have focused on children who read in their na-

tive language [5, 6, 7], or on adults that learn a second language

[8]. Assessing reading skills is a particularly challenging task,

especially with young children (6 to 12 years of age). Auto-

matic reading assessment tools are crucial in primary education

because they can compensate for different learning rates, and

can provide personalised exercises and auxiliary support, when

necessary.

This paper focuses on developing a system to assess chil-

dren reading skills by detecting a range of typical fluency and

pronunciation errors.

Automatic reading assessment for children is a complex

task that relies on speech recognition methodologies. Thus it

requires carefully transcribed data for training of children spe-

cific acoustic models. Accurate error-labelled annotation is also

essential for developing and testing the error classifiers and pre-

diction models that are required for this task. It is often very

difficult to gather such high-quality material to train in-domain

models due to the high labelling cost. Many corpora of chil-

dren read speech provide only the prompted text and an over-

all speaker assessment score. The PF STAR corpus [9] and

the TBALL corpus [4] are examples of word level annotated

data sets in English. Two ad-hoc corpora are available for the

Dutch language: JASMIN-CGN [10] and CHOREC [11]. Both

provide careful manual annotation of words and reading errors.

Even though these corpora are very useful for research, the di-

versity of the speech material is often limited. Limitations are

for example minimal vocabulary or use of specific microphones

or recording conditions. Hence models derived cannot be eas-

ily transferred to different conditions. If the training material

needs to be extended, the effort in providing the required level

of accuracy is often overwhelming. Manually transcribed data

such as children’s read speech recorded in real environment is

a very expensive and requires great deal of time and expertise.

An alternative method to manual annotation is to automatically

enhance approximate transcriptions of unseen data, allowing for

iterative expansion of training sets.

Reading assessment is a somewhat unusual task as the spo-

ken words should be identical to the original text prompted to

the learner. However the realisiation can be regarded as a specif-

ically constrained variation of the original text.

The correction of audio transcription is common problem in

training statistical acoustic models with real audio recordings,

and a lightly supervised approach to acoustic modelling as out-

lined in [12] vis often adopted. This training method is based

on the opportunity of automatically improving the accuracy of

speech transcriptions using available prior knowledge. The re-

covered transcript can originate from an inaccurate annotation,

an extended summary of the speech content, or a prompted

script.

Compensating for inaccurate annotations has been exten-

sively researched in the domain of broadcast news to correct

recognition errors of automatic speech transcriptions [13, 14,

15]. Weighted finite state transducers (WFST) are the most of-

ten adopted models to detect the variations from a given script.

A WFST-based approach to improve the automatic alignment

is for example proposed in [16]. In order to detect reading and

pronunciation errors, transducers are used in [17].

In this paper, a flexible WFST-based language model is

adopted to improve not only the recognition results in presence

of a pre-trained model, but also the model training itself by

providing a more accurate word-level alignment and segmen-

tation.

2. Lightly-supervised training

The lightly-supervised training regime is designed to compen-

sate for the mismatch between the spoken words and the pro-
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Figure 1: WFST topologies modelling typical reading events:

deletions (G1), repetitions (G2), and substitutions (G3). The

no-error (G0) and the combined (G4) grammars are also dis-

played.

vided transcriptions. Since for reading assessment the speaker

is requested to only say the words on a prompted script, the as-

sumption is that the discrepancies between the expected word

sequence and the speech outcome cannot be extensive. The

possible variations are therefore quite limited, and the most fre-

quent differences can be modelled by small controlled changes

of the word sequence. A WFST is introduced to describe these

variations. This transducer implements the language model that

drives the automatic speech recognition (ASR) decoding and

provides the transcription in lightly-supervised training. Itera-

tive cycles of the training regime are performed. At each itera-

tion, the WFST-based decoding improves the transcriptions and

by expectaction that also improves the derived acoustic models.

2.1. Typical reading error modelling

A WFST is a flexible structure which models word sequences

as transitions from a series of nodes. Each transition is triggered

by an input symbols, is associated with a cost, and may generate

output symbols. The recognition WFST is a composition of the

following four elements:

D = H ◦ C ◦ L ◦ G (1)

where H represents the statistical description of context-

dependent phoneme features, C is a transducer mapping

context-dependent phonemes to monophones, L links mono-

phones and words (lexicon), and G (or grammar) models the

sequence of words. H and C mainly derive from the acoustic

model training, L is defined by the pronunciation dictionary.

The grammar G is the component that is crafted to model the

common reading behaviours, such as deletion, repetition, and

mispronunciations. Figure 1 illustrates the grammar topologies

representing the typical reading events at word level. The G0

transducer models a word as it appears in the prompted text. G1

introduces word deletions superimposing a silence transition.

G2 implements repetitions with word-level loops. G3 allows for

multiple parallel transitions that model alternative word realisa-

tions, such as mispronunciations, false start, and word-spelling.

G4 combines the above grammars to allow for recovering the

greatest possible amount of mismatching annotation. The in-

put symbols sil and pi, i ∈ 0, . . . , N , on the arcs accept the

recognition engine output. The output symbols consist of the

labels (COR, DEL, REP, PAU, ALT) which correspond to the

recognised events (correct word, deletion, repetition/insertion,

pause/silence, and substitution respectively) combined with the

identifiers of the linked word. The likelihood of these transi-

tions is defined by the costs wi, and their values are normally

learned from data (see § 3.1).

The WFST of a complete reading task can be automatically

derived from the prompted text by selecting one transducer of

Figure 1 for each word in the text, and concatenating them. This

modular structure allows for several layers of error-modelling

complexity. For example, single-word restarts are implicitly

represented by G4 as a repetition/false start followed by a cor-

rect/deletion. The efficacy of these grammars in correcting the

original prompted text is investigated in § 4.

2.2. Iterative acoustic model training

Figure 2 depicts the iterative process adopted to improve the

lightly supervised acoustic model training. White blocks rep-

resent the steps required by iterative training with both super-

vised and lightly-supervised transcripts. These consist of two

parts: the bootstrap and the optimisation loops. The audio as

segmented with the original transcriptions is the input to the

maximum-likelihood (ML) training of a generative model (a

hidden Markov model with Gaussian mixtures, HMM-GMM).

At each iteration, the new model is used to produce new tran-

scriptions. The segmentation step also includes data filtering.

The audio fragments that obtain likelihoods lower than the over-

all corpus average are discarded.

The green blocks in Figure 2 are related to the WFST-based

ASR decoding. Depending on the input prompt and the de-

gree of allowed variation, a dedicated grammar for each type of

prompt and selected error category can be created by the WFST

grammar generator.

The proposed iterative training is tested with two types of

features: perceptual linear prediction (PLP) features and feed-

forward deep neural network (DNN) bottle-neck (BN) features.

The PLP-based model training (PLP-HMM) uses the prompt

text and an out-of-domain (OOD) acoustic model at the boot-

strap stage (red block in Figure 2) to generate the first tran-

scriptions. Due to the sensitivity of DNN training to inaccu-

rate segmentation, BN-based bootstrapping (blue blocks) takes

advantage of the segmentation derived from previously-trained

in-domain PLP-HMM models.

If accurate transcriptions (AT) are available for the corpus,

i.e. when all acoustic events (words and errors) are labelled,

an oracle acoustic model can be trained. These transcriptions

along with their time information provide both the most accu-

rate audio segmentation and the most effective filtering of the

too-distorted speech segments. The resulting acoustic models

(PLP-HMM+AT and BN-HMM+AT) can be addressed as the

best possible ones that can be trained on such data. Their per-

formance hence represents the upper limits towards which the

proposed iterative regimes should converge.

2.3. The scoring system

The quality of the reading error recovering and of the acoustic

modelling is assessed by computing a sequence error rate mea-

sure and an alignment accuracy measure.

The sequence error rate is the word error rate (WER) of

the ASR output against an accurate manual transcription with
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Figure 2: The complete iterative lightly-supervised training process. Different colours identify the paths and blocks belonging to

different sections of the process. The PLP-HMM and BN-HMM trainings are red and blue respectively. Green identifies the WFST

creation and the ASR decoding. The bootstrap stage is also represented.

all the reading errors. This score measures the quality of the

grammar at predicting the reading errors in the audio.

The alignment accuracy score of the ASR output is per-

formed with the method used in [18]. A precision/recall mea-

sure is calculated with respect to a manual transcription with ac-

curate timing. A word is considered to be a match if both start

and end times fall within a 100ms window of the associated

reference word. The fragments that are filtered out during the

segmentation stage of the iterative training are excluded from

scoring.

3. The CHOREC corpus

The training and recognition process is evaluated on the

CHOREC (CHildren’s Oral REading Corpus) [11, 19], a

database of recorded, transcribed and manually annotated chil-

dren’s oral readings. The corpus consists of recordings from

400 Dutch speaking children if 6 to 12 years of age. The chil-

dren were asked to complete several reading tasks. 130 hours of

audio are carefully annotated at several levels of descriptive de-

tails, among which the most interesting are: 1. the orthographic

transcription tier (PMT) with the text prompted to the reader;

2. the accurate transcription tier (AT) with the automatically

aligned complete description of what is in the audio.

Three reading tasks providing the largest sets of record-

ings are considered here: isolated words, LG (∼ 28h), non-

sense pseudo-words, LGP (∼ 37h), and long paragraphs, AVI

(∼ 36h). The available material is split into training and test

sets. A speaker does not appear in both sets and a fair distribu-

tion (1/3 and 2/3) of sentences without/with errors in the test

set is ensured. Table 1 shows the principal statistics for these.

Table 1: Characteristics of training and test set.

Name Purpose Files Segments Included tasks

chotrain.1 training 2445 ∼ 60000 AVI, LGP, LG

chotest.1 test 415 ∼ 15000 AVI, LGP, LG

The PMT transcriptions are used at the training bootstrap

stage and as a input for WFST creation. The text and the tim-

ing information in the AT transcription constitute the reference

against which the WFST and the acoustic training regime are

scored. AT is also used as transcription to train an oracle sys-

tem. As the timings of the manual transcription was obtained

from forced alignment, the CHOREC word-level time informa-

tion may not entirely accurate. Though, manual inspection con-

firmed that the alignment mismatches are minimal and probably

can be ignored.

Text normalisation is conducted on the original text to

transform it into a scoring-compatible format. The not-prompt

related labels, such as background noise or external speaker

speech, are discarded. When possible, error labels are linked

to the prompt words that are related to them by explicitly dupli-

cating the word labels in the final reference (ATR).

3.1. The CHOREC error label distribution

The best method to derive the weights which define the WFST

transducer of § 2.1 is to directly learn them from children real

behaviour. For this reason, the labels in the AT transcription

are scrutinised and the overall distribution of the error labels is

displayed in Figure 3. The LG, LGP, and AVI reading tasks

are plotted in separate bar charts. For simplicity, the original

Figure 3: Error type distribution in the CHOREC corpus anno-

tation. Colours are used to group errors of similar nature.

47 error codes, described in the CHOREC annotation protocol

manual [11], are grouped into 6 main categories: 1. substitution

errors (in red colour) which label phone-level error; 2. deletion

errors (in green), which identify words or phones are missing

in the audio; 3. insertion errors (in blue), which show words

with extra phone insertion; 4. decoding errors (in cyan), such

as letter-by-letter or syllable-by-syllable spelling; 5. word sub-

stitution errors (in purple); 6. unidentified events (in black). A

dependency linking different types of read material and error

categories can be easily extrapolated from Figure 3. In the LGP

task, for example, phone substitutions are the most common er-
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rors. On the other hand, these errors are generally less frequent

in the AVI task, because, in such task, prior knowledge helps

the reader predicting word sequences and their realisation.

The event occurrences for each of these categories are used

to compute the log prior values that are used as weights w
Ê

in

the WFST, according to function expressed in:

w
Ê
= − log

(

|Ê|
∑

E∈C
|E|

)

(2)

where Ê is a set of specific events (correct, deletion, repetition,

substitution, etc.) observed in the transcription, |.| is the cardi-

nality operator, and C is set of annotation from the entire corpus.

The log-prior values extracted from the corpus are reported

in Table 2. Phone substitution and decoding, along with un-

Table 2: Log-prior of the error categories in CHOREC. Links

between CHOREC events and WFST weights are highlighted.

CHOREC event WFST weight LG LGP AVI

correct wCOR 0.0900 0.3836 0.1940

phone substitution – 5.6511 2.0449 6.5725

deletions wDEL 5.3453 3.1964 5.7884

insertions wREP 6.8397 3.1307 6.5260

decoding wALT 4.0403 2.8448 4.1364

word substitution – 2.8324 3.3991 1.8699

unknown – 8.1834 4.3394 8.0076

known events are not modelled in the transducers as these are

very unlikely in the most realistic reading tasks (LG and AVI).

4. Experiments

The experimental implementation of the system described in

§ 2.2 uses the HTK toolkit [20] to segment the audio and ex-

tract spectral audio features, the Juicer recogniser [21] to per-

form the WFST-based decoding, and the OpenFST library to

automatically compose the WFST for the typical reading error

modelling. Initial bootstrap out-of-domain models are trained

on the children speech data from the JASMIN-CGN corpus.

The experiments conducted on the CHOREC corpus test

the different error modelling configuration (G0, . . ., G4) of Fig-

ure 1. Different acoustic models are computed, and the de-

rived automatic transcriptions are scored against the ATR ref-

erence, according the measures of § 2.3. The PLP-HMM+G0

and BN-HMM+G0 systems provide the baseline results against

which all the other trainings are compared. The OOD PLP-

HMM+PMT bootstrap results are also reported in the Figures

to emphasise the mismatch between OOD and in-domain acous-

tic model performance. The sequence error rate results are re-

ported as the WER of training and test sets against the ATR

reference in Figure 4. This score measures the effectiveness
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Figure 4: WER on training and test sets w.r.t different error

models.

of the error prediction models in compensating for missing or

repeated words. As expected, the combined grammar G4 is

the WFST configuration that provides the lower WER. PLP-

HMM+G4 and BN-HMM+G4 respectively obtain 11.3% and

60.8% relative WER reduction w.r.t the PLP baseline on the

training set. It appears that repetition prediction grammar, G2,

alone is responsible of most of the performance improvement in

the error prediction (24.2% relative). The filtering step associ-

ated to the segmentation stage is also influencing the quality of

the acoustic modelling. The training set size considerably varies

depending on the quality of the segmentation. E.g., the OOD

PLP-HMM+PMT system, even though it has a low WER, dis-

cards large portions of usable speech (size ∼ 13h) whilst BN-

HMM+G4 manages to recover up to 20h of data. The alignment

accuracy scores for each grammar are plotted in Figure 5. Pre-

cision and recall measures are combined in a F-measure value

for clarity. These scores assess the accuracy of the model in po-
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Figure 5: Alignment score on training and test sets w.r.t. differ-

ent error models.

sitioning the recovered speech events (correct words and errors)

in the audio. Along with the baseline results, the oracle sys-

tem scores (PLP-HMM+AT and BN-HMM+AT) are computed.

These define the upper boundary for lightly supervised training

in which all transcription errors are completely recovered. The

system using the G4 grammar also produces the best alignment

accuracy scores. PLP-HMM+G4 and BN-HMM+G4 achieve

14.3% and 23.3% relative improvement respectively w.r.t. the

PLP baseline on the training set. It is worth to notice that these

scores are only few percentage points lower than the oracle re-

sults, 10.0% and 16.2% relative reduction, respectively.

5. Conclusions

An iterative lightly supervised training regime was proposed to

obtain acoustic models for children automatic reading assess-

ment. A WFST was employed to model the typical reading

errors observed in the CHOREC children recordings. A con-

strained recognition stage can provide transcriptions that re-

cover most discrepancies with the original prompted text. Ex-

periments conducted on the CHOREC corpus show that this

training regime successfully improves the quality of the seg-

mentation and labels, and hence of the derived acoustic models.

Repetition error recovery is most important. Best results are

obtained with a model that takes repetitions, substitutions, and

deletions into account. Compared to a PLP HMM-GMM base-

line WER is reduced by 11.3%, and by 60.1% with BN-HMM

models. The process also improves alignment accuracy score

by 14.3% and 23.3%, respectively.
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