

This is a repository copy of *Top-down bottom-up visual saliency for mobile robots using deep neural networks and task-independent feature maps*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/137782/

Version: Accepted Version

Proceedings Paper:

Jaramillo-Avila, U., Hartwell, A., Gurney, K. orcid.org/0000-0003-4771-728X et al. (1 more author) (2018) Top-down bottom-up visual saliency for mobile robots using deep neural networks and task-independent feature maps. In: Giuliani, M., Assaf, T. and Giannaccini, M., (eds.) Towards Autonomous Robotic Systems. TAROS 2018, 25-27 Jul 2018, Bristol, UK. Lecture Notes in Computer Science, 10965. Springer Verlag, pp. 489-490. ISBN 9783319967271

https://doi.org/10.1007/978-3-319-96728-8

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-96728-8

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Top-down Bottom-up Visual Saliency for Mobile Robots using Deep Neural Networks and Task-Independent Feature Maps

Uziel Jaramillo-Avila¹, Adam Hartwell¹, Kevin Gurney², Sean Anderson¹

1. Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, UK

2. Department of Psychology, University of Sheffield, Sheffield, S10 2TN, UK {ujaramilloavila1, ahartwell1, k.gurney, s.anderson}@sheffield.ac.uk

Visual saliency is a biological mechanism for shifting visual attention to important objects in the environment, where important objects could be hazards, or items associated with a task [1]. This approach to analysing visual scenes reduces the computational burden on vision systems by only focusing on a few important stimuli rather than the whole scene. Visual saliency is therefore potentially important for robots, to enable effective and safe operation in unstructured environments [2].

Visual saliency models can contain a bottom-up and/or a top-down component [3]. The bottom-up and top-down components have particular, respective advantages. The bottom-up component is typically fast and does not require training via machine learning algorithms. Bottom-up methods should also be more robust, because they do not require object recognition to operate successfully. The top-down component is essential, however, for task-dependent actions where a robot would need to recognise important objects to complete a task.

Machine learning algorithms are typically used for top-down visual saliency, e.g. via support vector machines [4]. Recently, deep neural networks have been applied to the task of top-down bottom-up visual saliency, exploiting the accuracy of deep networks in image recognition for the top-down component [5]. However, methods that combine deep neural networks for top-down visual saliency and task-independent feature maps for bottom-up saliency have not yet been developed. This is a gap in the literature, which this work aims to address.

In this investigation, we combined a well-known approach to bottom-up visual saliency, using task-independent feature maps, based on e.g. colour contrast, intensity contrast and orientation contrast [6], with a deep convolutional neural network (CNN) based on the Tiny-YOLO architecture [7]. The resulting bottomup and top-down saliency maps (spatially calibrated maps of salient features) were fused using a weighted sum, which combined the output of both processing streams into a single saliency map to drive visual attention [8].

To evaluate the visual saliency scheme we generated data from a small mobile robot, a Turtlebot, in an indoor environment, and implemented the visual saliency algorithm on an NVIDIA Jetson TX2, which is a processing board for embedded systems with a small GPU (256 CUDA cores). The Jetson TX2 was also used to control movements of the Turtlebot, using an installation of Robot

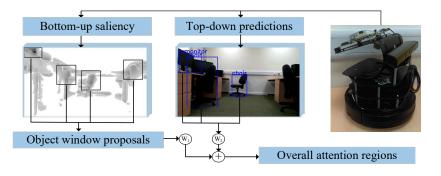


Fig. 1. Scheme for top-down bottom-up visual saliency. The Turtlebot with mounted Jetson TX2, on the right, generates and processes each map. In this example the top-down CNN fails to detect the chair to the right of the image, which is successfully detected by the task-independent map in the bottom-up pathway.

Operating System (ROS), so the control and visual processing was integrated on a single board.

We found that the bottom-up and top-down components worked as expected. However, a key early result from this pilot study was the observation that the top-down CNN would occasionally miss objects in the environment that were more robustly detected by the bottom-up task-independent feature maps (Fig. 1). Therefore, the fusion of bottom-up task-independent maps and top-down deep net maps appears promising for robust visual saliency in mobile robots.

References

- 1. Itti, L. and Koch, C.: Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), p.194–203 (2001)
- Jiang, L., Koch, A. and Zell, A.: Salient regions detection for indoor robots using RGB-D data. IEEE International Conference on Robotics and Automation, 1323– 1328 (2015)
- 3. Borji, A. and Itti, L.: State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 185–207 (2013)
- 4. Judd, T., Ehinger, K., Durand, F. and Torralba, A.: Learning to predict where humans look. IEEE International Conference on Computer Vision, 2106–2113 (2009)
- Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., Zhang, L.: Bottom-up and top-down attention for image captioning and VQA. arXiv Preprint, arXiv:1707.07998 (2017)
- Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20, 1254– 1259 (1998).
- Redmon, J., Farhadi, A.: YOLO9000: Better, Faster, Stronger. IEEE International Conference on Computer Vision and Pattern Recognition, 6517–6525 (2017)
- Kimura, A., Yonetani, R. and Hirayama, T.: Computational models of human visual attention and their implementations: A survey. IEICE Trans. on Information and Systems, 96(3), 562–578 (2013)