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Abstract. We present transverse electron focusing measurements in the two dimensional
electrons gas formed at the interface of a GaAs/AlGaAs heterostructure. The experimental
arrangement consists of two orthogonal quantum point contacts (QPCs), one acting as injector
and the other as detector of the collimated 1D electrons as a function of transverse magnetic
field. The focusing spectrum shows anomalous behaviour, the first and third focusing peaks
split into two sub-peaks while second peak remains as a single peak. The observed splitting, a
signature of spin states, arises from the spin-orbit interaction when the 1D electrons are injected
into the 2D regime, thus allowing us to manipulate the spin states within the 1D channel.

There is considerable interest in the spin properties of clean one-dimensional (1D) quantum
wires, the science of which has potential for spintronics and spin-based logic devices. Generally
electrons in a quantum wire are spin degenerate, but spin polarisation becomes observable on
the application of a large in-plane magnetic field[1]. Although spontaneous spin polarisation
is forbidden in a strictly 1D system of infinite length, according to the Lieb-Mattis theorem[2],
phenomena attributed to spin polarisation[3, 4] such as the 0.7 anomaly[1, 5, 6] and source-drain
bias induced 0.25 structure[7] have been observed in quasi-1D systems. A direct measurement of
the degree of spin freedom is thus necessary to lead to a comprehensive understanding of these
features to complement conductance measurements[8].

A typical transverse electron focusing setup consists of an injector and a detector, generally
along a plane such that on application of a small perpendicular magnetic field (B⊥) the electrons
will exhibit cyclotron motion[9, 10]. Once the cyclotron radius (rc) matches the condition
N×2rc=L (N is an integer and L is the separation between the injector and detector), the
injected electrons are guided into the detector and result in a voltage drop across the detector
(refered as Vcc hereafter). The cyclotron radius is directly proportional to B⊥, thus giving rise
to focusing peaks periodic in B⊥.

It has been predicted theoretically[8] that an imbalance of the spin-split branches, due to the
spin-orbit interaction, can be detected using transverse electron focusing by means of observation
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Figure 1. Experiment setup and characteristic of the QPC. a, schematic of the focusing
device; the yellow bars are metallic gates and the red blocks are Ohmic contacts. b, colour plot
of the transconductance dG

dVsg
as a function of dc source-drain bias, where Vsg is the voltage on

the split gates to define the QPC. The bright (dark) regime is for high (low) transconductance.
Conductance plateaus quantized in the units of G0 occur with zero bias voltage while additional
structures appear with subsequent increment of the source-drain bias voltage.

of a split in the odd-numbered focusing peaks, where the height of each sub-peak is proportional
to the population of detected spin states. It has been confirmed experimentally in a GaAs hole
gas[11, 12] and an InSb electron gas[13], the materials with large spin-orbit interaction, that the
first focusing peak splits into two sub-peaks where each sub-peak was associated with a spin
state.

Here we present results of transverse electron focusing experiments in GaAs based electron
gas where a pronounced splitting of the first focusing peak was observed.

The devices were fabricated from a high mobility two dimensional electron gas formed at
the interface of GaAs/Al0.33Ga0.67As heterostructure. At 1.5 K, the measured electron density
was 1.80×1011cm−2 and the mobility was 2.17×106cm2V−1s−1, therefore the mean free path is
over 10 µm which is much larger than electron propagation length which is around 2 µm. The
experiments were performed in a cryofree dilution refrigerator with an electron temperature of 70
mK, using the standard lockin technique. For the two-terminal conductance (G) measurement,
an excitation voltage of 10 µV at 77 Hz was applied whereas for the four-terminal focusing
measurement a current excitation of 10 nA at 77 Hz was used[14, 15].

In contrast to the conventional linear focusing device geometry[9, 10] where the central gate
is shared between the injector and detector, we used an orthogonal focusing device geometry to
allow independent control of the injector and detector as shown in Fig. 1(a). The orthogonal
configuration avoids the possible cross-talking between the injector and detector[14]. Both the
injector and detector exhibited well defined 1D characteristics as shown in Fig. 1(b). The
conductance plateaus were quantized at integer multiple of G0 (2e2/h) for zero dc source-drain
bias, and at half integer plateaus, i.e., 1.5 G0, 2.5 G0· · · etc. at Vsd ≈ -1.5 mV. A structure at
0.25 G0 appears at large source-drain bias voltage (< -2 mV) which is similar to the previous
report[7].

The focusing result is shown in Fig. 2 with the injector and detector fixed at G0, respectively.
With negative transverse magnetic field the focusing signal is almost zero (result is not shown)
while with positive magnetic field the periodic focusing peaks are well defined and the peaks
position is in good agreement with calculation according to

Bfocus =

√
2h̄kF
eL

(1)



3

1234567890 ‘’“”

Advances in Quantum Transport in Low Dimensional Systems  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 964 (2018) 012002  doi :10.1088/1742-6596/964/1/012002

Figure 2. Representative focusing spectrum. Both injector and detector are fixed at first
conductance plateau. Periodic focusing peaks are well defined and their position is in good
agreement with calculation as highlighted by the arrows. The upper plot shows the result with
current flowing from the injector to detector and vice-versa for the lower plot.

A comparison between negative and positive magnetic field results suggests that the Quantum
Hall effect and Shubnikov-de Haas (SdH) oscillations are negligible in the regime of focusing[9,
14, 15], and all the features are due to transverse electron focusing only. The first and third
focusing peaks split into two sub-peaks, on the other hand, the second focusing peak remains
as a single peak. These observations are similar to that reported for p-type GaAs and n-type
InSb[11, 12, 13], however, the splitting of first focusing peak (around 6 mT) is much smaller
compared to p-type GaAs (around 36 mT) and n-type InSb (around 60 mT), which is consistent
with the fact that the energy difference between different spin branches in n-type GaAs is much
smaller compared with materials with strong spin-orbit interaction[11, 12, 13]. The focusing
spectrum remains qualitatively the same after swapping the role of injector and detector as
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Figure 3. First peak at higher conductance. a, injector conductance was set to G0 (blue),
3G0 (green) and 4G0 (red), respectively. Detector was fixed at G0. b, detector conductance was
set to G0 (blue), 3G0 (green) and 4G0 (red), respectively while the injector was fixed at G0. c,
result after swapping the polarity of the magnetic field. Injector conductance was fixed at G0

(blue), 3G0 (green) and 4G0 (red). Detector was fixed at G0.

shown in lower panel of Fig. 2. The result shows that the effect is reproducible and free from
impurity after the swap of injector and detector. We also illuminated the device with a red LED
and the effect was reproducible with a noticeable change in focusing peaks position due to an
increase in carrier concentration. We realise that the odd-even peak splitting arises from the
spin-orbit interaction[8, 14, 15, 16]. In addition, the observation was further confirmed to be
spin related via in-plane magnetic field dependence study where the splitting of first focusing
peak was enhanced with increasing in-plane field[15].

We noticed that the first focusing peak showed a pronounced splitting when the injector

conductance was smaller than 2G0 (G0 = 2e2

h
), however, such splitting was absent at large

injector conductance value (e.g. 3G0 and 4G0) and only a single peak was observed as shown
in Fig. 3(a). Similar result was obtained by fixing the injector conductance at G0 and tuning
the detector conductance (Fig. 3(b)) and swapping the polarity of the magnetic field (and the
role of injector and detector, Fig. 3(c)). It is also important to emphasize that a single peak at
large injector conductance value aligns with the dip between the two sub-peaks rather than one
of the sub-peaks. This observation suggests the result is disorder free and does not arise from
the shape of wavefunction within the injector. Assuming the peak splitting is due to disorder,
then with an even larger angular spreading at larger injector conductance the splitting should
persist[17].

In conclusion, we have observed a split in the odd-numbered focusing peaks in GaAs electron
gas using transverse electron focusing measurement. The result provides a direct method of
probing the spin polarisation in 1D electrons thus opens new opportunities for spintronics and
other quantum schemes.

The work was supported by Engineering and Physical Sciences Research Council (EPSRC),
UK.
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