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M A J O R A R T I C L E

Immune Responses in Human Necatoriasis:
Association between Interleukin-5 Responses
and Resistance to Reinfection

Rupert J. Quinnell,1 David I. Pritchard,2 Andrew Raiko,3 Alan P. Brown,2 and Marie-Anne Shaw1

1School of Biology, University of Leeds, Leeds, and 2School of Pharmacy, University of Nottingham, Nottingham, United Kingdom;
3Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea

(See the editorial commentary by Maizels and Balic, on pages 427–9.)

Cytokine and proliferative responses to Necator americanus infection were measured in a treatment-reinfection

study of infected subjects from an area of Papua New Guinea where N. americanus is highly endemic. Before

treatment, most subjects produced detectable interleukin (IL)–4 (97%), IL-5 (86%), and interferon (IFN)–g

(64%) in response to adult N. americanus antigen. Pretreatment IFN-g responses were negatively associated

with hookworm burden, decreasing by 18 pg/mL for each increase of 1000 eggs/gram (epg) ( ; ).n p 75 P ! .01

Mean IFN-g responses increased significantly after anthelmintic treatment, from 166 to 322 pg/mL ( ;n p 42

). The intensity of reinfection was significantly negatively correlated with pretreatment IL-5 responses,P ! .01

decreasing by 551 epg for each 100 pg/mL increase in production of IL-5 ( ; ). These data indicaten p 51 P ! .01

that there is a mixed cytokine response in necatoriasis, with worm burden–associated suppression of IFN-g

responses to adult N. americanus antigen. Resistance to reinfection is associated with the parasite-specific IL-

5 response.

The human hookworms Necator americanus and An-

cylostoma duodenale infect more than a billion people

worldwide and are a significant cause of iron-deficiency

anemia [1]. The global burden of disease due to hook-

worms has been estimated to be 22 million disability-

adjusted life-years [2]. Infection usually occurs after

penetration of the skin by infective larvae, followed by

a tissue-migratory larval stage. Adult worms are long-

lived inhabitants of the small intestine, and, in contrast

to infection with other geohelminths, the intensity of

infection is usually greatest in adults [3, 4]. Infection

with hookworms is treated easily with a variety of ant-

helmintics, but, in areas where hookworms are en-

demic, reinfection after treatment is rapid [5, 6], and
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long-term control requires repeated chemotherapy. Re-

cently, attention has been focused on the possibility of

control by vaccination, and a number of vaccine can-

didates are being tested [7]. Relatively little is known

about protective immune responses to infection with

hookworms. Infection with hookworm, as with other

helminths, induces a strong immune response, with

elevated levels of total and specific IgE and eosinophilia.

There is some evidence of a protective effect of anti-

hookworm antibodies [8], and total and specific IgE

responses have been shown to correlate negatively with

hookworm fecundity [9]. However, the role of cellular

and cytokine responses in resistance to reinfection has

not been investigated.

Infection with human hookworms is chronic, with

adult worms surviving an average of 2–4 years, with a

maximum of 18 years [10]. This suggests that infection

with hookworms may modulate parasite-specific im-

mune responses. Such immunomodulation is charac-

teristic of infection with tissue-dwelling filarial nema-

todes and schistosomes, resulting in an antigen-specific

suppression of cellular immune responses [11–14]. There
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Table 1. Demographic and parasitological characteristics of

subjects enrolled in a study of Necator americanus infection in

Papua New Guinea.

Characteristic Value

Age, years

Mean (95% CI) 24.6 (22.0–27.5)

Range 6–66

Sex, no. of subjects

Male 50

Female 31

Hookworm burden, mean (95% CI), epg

All ages (n p 81) 3182 (2551–3928)

6–13 years old (n p 13) 2356 (1041–4095)

14–20 years old (n p 25) 3233 (2242–4473)

21–34 years old (n p 25) 3742 (2453–5402)

35–66 years old (n p 18) 2931 (1870–4524)

Prevalence of other infections, no. of subjects

infected/total no. of subjects (%)

Trichuris trichiura 2/81 (2.5)

Ascaris lumbricoides 0/81 (0)

Filariasis 10/79 (12.7)

Plasmodium species 15/77 (19.5)

P. falciparum 11/77 (14.3)

P. vivax 3/77 (3.9)

P. malariae 1/77 (1.3)

NOTE. CI, confidence interval; epg, eggs per gram of feces.

may also be modulation of responses to nonparasite antigens,

such as bacterial antigens [15–17]. Since hookworm-infected

communities typically harbor other species of helminth and

nonhelminth pathogens, there is the potential for a wide variety

of immunological interactions. Such interactions may be of

great importance when considering vaccination against either

hookworms or other pathogens in areas where hookworms are

endemic.

We report here the results of a study of an N. americanus–

infected population in Papua New Guinea. The aims of the study

were to describe the proliferative and cytokine (interferon [IFN]–

g, interleukin [IL]–4, and IL-5) responses to hookworm antigen

in an infected population and to test the hypotheses that (1)

infection with hookworms suppresses immune responses to par-

asite or mycobacterial antigen, (2) antihookworm immune re-

sponses protect against reinfection, and (3) coinfection with other

parasites affects immune responses to hookworm.

SUBJECTS, MATERIALS, AND METHODS

Study population. The study was performed in the village

of Haven, Madang Province, Papua New Guinea. Informed

consent was obtained from all subjects or their parents. The

study was approved by the Medical Research Advisory Com-

mittee of Papua New Guinea. Stool samples were obtained

during September 1998, and fecal egg counts were performed

by use of a modified McMaster salt-flotation method, with re-

sults expressed as eggs per gram (epg) of feces. Blood samples

(10–20 mL) were obtained from 81 infected subjects 15 years

old during November–December 1998 (table 1); those subjects

were then treated with a single dose of pyrantel pamoate (10

mg/kg of body weight) 0–3 days after blood samples were ob-

tained. Repeat blood samples were obtained from 54 subjects

a median of 33 days after treatment (range, 24–38 days); the

remaining subjects refused to have a second blood sample ob-

tained. The efficacy of anthelmintic treatment was assessed in

a nearby village: treatment reduced the mean epg by 83% (n

p44). At the conclusion of sampling, everyone in the village,

except children !4 years old and pregnant women, was offered

treatment with a single dose of albendazole (400 mg). Perinatal

vaccination with bacille Calmette-Guérin (BCG) is routinely

performed in this population. Before treatment, all subjects

were tested for malaria infection by use of microscopic ex-

amination of Giemsa-stained blood smears and for filarial in-

fection by use of circulating antigen ELISA (TropBio). During

September 2001, ∼33 months after treatment, reinfection hook-

worm burden (i.e., epg) was assessed in as many members of

the study group as possible ( ), and treatment with al-n p 63

bendazole was offered again. Reinfection epg was not assessed

in 14 subjects who were absent from the village and in 4 subjects

who did not provide a fecal sample. Blood samples were also

obtained from 5 control subjects (21–44 years old) from an

area where hookworms are not endemic (University of Leeds,

Leeds, UK).

Preparation of antigens. Adult N. americanus excretory-

secretory (ES) products and the mycobacterial antigen purified

protein derivative (PPD; Statens Serum Institute, Copenhagen)

were used. ES products were obtained as described elsewhere

[18]. In brief, N. americanus worms were maintained in syn-

geneic DSN hamsters by percutaneous infection of neonates

with 100 infective N. americanus larvae. Thirty-five days after

infection, the hamsters were killed, and the small intestine was

removed, cut along its length, and placed in Hanks’ buffered

saline solution at 37�C. Adult worms were allowed to detach

voluntarily from the small intestine, washed extensively with

RPMI 1640 medium supplemented with 100 IU/mL penicillin

and 100 mg/mL streptomycin, and incubated for 1 h at 37�C.

ES products were collected by culturing overnight in RPMI

1640 medium supplemented with 100 IU/mL penicillin, 100

mg/mL streptomycin, and 2 mmol/L l-glutamine. The protein

content of the collected ES products was determined by use of

bovine serum albumin (BSA) standards (BioRad). ES products

were freeze-dried and stored at �20�C until required.

Proliferation assays. Peripheral blood mononuclear cells

(PBMCs) were isolated from heparinized venous blood by cen-

trifugation over Histopaque 1077 (Sigma). PBMCs were washed

twice in wash medium (RPMI 1640 Dutch modification sup-
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Figure 1. Proliferative and cytokine responses in Necator americanus–

infected subjects. Mean proliferative (A), interferon (IFN)–g (B), interleukin

(IL)–4 (C), and IL-5 (D) response to medium alone (�), N. americanus

antigen (NA), and mycobacterial antigen purified protein derivative (PPD).

Proliferation is expressed as counts per minute (cpm). Vertical bars, Boot-

strap 95% confidence intervals.

plemented with 100 IU/mL penicillin, 100 mg/mL streptomy-

cin, 2 mmol/L l-glutamine, 1 mmol/L sodium pyruvate, and

25 mmol/L 2-mercaptoethanol), counted in 0.4% trypan blue,

and resuspended at a concentration of 106 cells/mL in wash

medium supplemented with 10% fetal calf serum. Cells were

cultured in triplicate in 96-well plates, at a concentration of

cells/well, and were incubated at 37�C in 5% CO2 in52 � 10

the presence of 10 mg/mL antigen. One hundred microliters of

supernatant was removed on day 5, and cells were pulsed with

1 mCi/well of tritiated thymidine (DuPont) for 16 h and har-

vested onto glass-fiber filters. Radioactivity was counted in a

scintillation counter (Wallac).

Cytokine determination. Levels of IFN-g were determined

in day-5 supernatants of the cultures used for proliferation assays.

For determination of levels of IL-4 and IL-5, parallel cultures

were set up at concentrations of 107 cells/mL, and supernatants

were harvested on days 3 and 5, respectively. Where cells were

limiting, cultures for IL-5 determination were not set up. All

supernatants were stored at �70�C. Cytokine assays were per-

formed by use of ELISA using commercial kits with a detection

limit range of 31–2000 pg/mL for IFN-g, 7.8–500 pg/mL for

IL-5 (Duoset; Genzyme), and 3.9–125 pg/mL for IL-4 (Bio-

source). Results were expressed as picograms per milliliter;

where levels were above or below the detection limit, a value

equal to the detection limit was recorded.

Total IgE ELISA. Polystyrene 96-well plates (MaxiSorp)

were coated with 100 mL of monoclonal mouse anti–human

IgE (clone GE-1; Sigma; 1:500 diluted in 0.05 mol/L carbon-

ate/bicarbonate buffer [pH 9.6]) overnight at 4�C. Plates were

washed with PBS plus 0.05% Tween 20 (PBS-T; pH 7.2) and

blocked with 200 mL of 3% BSA in PBS for 1 h at 37�C. After

blocking, the plates were washed again, and 100 mL of human

serum (diluted 1:500 in PBS-T plus 1% BSA) was added to

each well and incubated for 2 h at 37�C. A standard curve of

human IgE standards (doubling dilutions from 125 to 0.5 IU/

mL; National Institute of Biological Standards and Control)

was included on each plate. All assays were performed in du-

plicate. Plates were washed again, and 100 mL of alkaline phos-

phatase–conjugated goat anti–human IgE (Sigma; diluted 1:

1000 in PBS-T plus 1% BSA) was added to each well, and the

plates were incubated for 1 h at 37�C. Antibody binding was

visualized by the addition of p-nitrophenyl phosphate substrate,

and absorbance was measured at 405 nm.

Statistical analysis. Data on proliferation (counts per min-

ute) and production of cytokines were analyzed after subtrac-

tion of background (no antigen) levels. Data were analyzed

untransformed, with confidence intervals (CIs) of means and

regression slopes and significance levels calculated empirically

by bootstrapping, using bias correction (2000 replicates). Boot-

strapping is a nonparametric method and is appropriate for

analyzing highly skewed data, such as cytokine levels, which

are not easily transformed to normality [19]. The analysis of

variables affecting pretreatment proliferation and cytokine pro-

duction was by multiple regression. All variables (hookworm

epg, presence of filarial infection, presence of malaria, age, age2,

and sex) were included in the full model, and nonsignificant

variables were removed sequentially until only significant var-

iables remained ( ). Removed variables were then retestedP ! .05

in the final model and were retained if significant ( ).P ! .05

Analysis of variables affecting reinfection hookworm burden was

performed by regression, as described above: each immunologi-

cal variable was analyzed separately, with age, age2, sex, and pre-

treatment hookworm burden included in the full model. All

analyses were performed by use of Stata 6.0 software [20]. Since

multiple immune response variables were analyzed, most atten-

tion was given to results with .P ! .01

RESULTS

Parasitology. All study subjects were infected with hook-

worm; N. americanus is the only species of hookworm present

in the area [4]. The mean intensity of infection with hookworms

was 3182 epg (95% CI, 2551–3928 epg). The intensity of in-

fection with hookworms was lowest in children !14 years old

(table 1), but there was no significant association between in-

tensity and host age or sex. Trichuris trichiura was present at

a very low prevalence, whereas Ascaris lumbricoides was not

detected; Enterobius vermicularis infection was not assessed but

is known to be present in the study village. The prevalence of
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Table 2. Relationship between immune responses to Necator americanus antigen (NA) and mycobacterial purified protein derivative

(PPD) and parasitic infection and host age and sex, in hookworm-infected subjects in Papua New Guinea.

Parameter,

antigen

Hookworm

burden, epg

Filariasis

positive

Plasmodium

positive Age/age2 Sex

cpm

NA �0.615 (�1.243 to �0.005)
a

NS NS NS NS

PPD NS NS �26,796 (�45,134 to �8093)
c

NS NS

IFN-g

NA �0.0183 (�0.0363 to �0.0068)
b

NS NS NS NS

PPD �0.052 (�0.103 to �0.010)
a

NS NS NS NS

IL-4

NA NS �8.837 (�15.45 to �1.78)
a

�10.98 (�17.39 to �4.97)
b

NS NS

PPD NS NS NS NS NS

IL-5

NA NS �125.0 (�199.3 to �32.0)
a

NS NS NS

PPD NS NS NS NS NS

Total IgE 0.29 (0.10 to 0.56)
b

NS �1507 (�3126 to �232)
a

NS �1632 (�2894 to �306)
a

NOTE. Data are slopes and bootstrap 95% confidence intervals. Proliferative (counts per minute [cpm]) and cytokine responses were analyzed after subtraction

of background (no antigen) levels. epg, eggs per gram of feces; IL, interleukin; NS, not significant ( ; not included in final model).P 1 .05
a

.P ! .05
b

.P ! .01
c

.P ! .001

filarial circulating antigen was 12.7%; Wuchereria bancrofti is

the only species occurring in this region. The prevalence of

Plasmodium species infection was 19.5%, mostly P. falciparum

(table 1).

Pretreatment proliferative and cytokine responses. Pre-

treatment proliferative and cytokine responses are shown in

figure 1. Most subjects produced detectable levels of IL-4 (72/

74 [97%]), IL-5 (59/69 [86%]), and IFN-g (47/74 [64%]) in

response to N. americanus ES antigen. Proliferative and IFN-

g responses to PPD were strong, with all subjects producing

detectable IFN-g (74/74 [100%]). However, few subjects pro-

duced detectable IL-4 (8/46 [17%]) or IL-5 (24/54 [44%]) in

response to PPD. The mean total IgE level was 3813 IU/mL

(95% CI, 3203–4535 IU/mL). In contrast, proliferative and

IFN-g responses to N. americanus antigen in control subjects

from an area where hookworms are not endemic were below

background (no antigen) levels, and there was no detectable

IL-4 response.

Immune responses and intensity of infection with hook-

worms. Both proliferative and IFN-g responses to hookworm

antigen were significantly lower in subjects with high pretreat-

ment hookworm burden (table 2; figure 2A and 2B). This effect

was not hookworm specific: IFN-g responses to PPD were also

negatively correlated with hookworm burden (figure 2B). In con-

trast, IL-4 and IL-5 responses to either antigen were not related

to pretreatment hookworm burden. Proliferative and cytokine

responses were not significantly correlated with age and sex. Total

IgE levels were significantly positively correlated with pretreat-

ment hookworm burden and were lower in female subjects.

Immune responses and coinfection. Proliferative and IFN-

g responses to hookworm antigen were not affected by filarial

or malarial coinfection (table 2). In contrast, proliferative re-

sponses to PPD were significantly lower in subjects with Plas-

modium species infection. Both IL-4 and IL-5 responses to hook-

worm antigen were significantly lower in subjects with filarial

infections (figure 3A and 3B), and IL-4 responses were also lower

in subjects with Plasmodium species infection (figure 3C). IL-4

and IL-5 responses to PPD were not affected by coinfections.

Total IgE levels were lower in subjects with Plasmodium species

infection.

Effect of anthelmintic treatment. The IFN-g response to

hookworm antigen increased significantly after chemotherapy

( ), whereas proliferative IL-4 and IL-5 responses to hook-P ! .01

worm antigen were unchanged (table 3). In contrast, the pro-

liferative response to PPD decreased significantly after treat-

ment ( ), as did total IgE ( ). Variation in theP ! .001 P ! .001

number of days since treatment did not affect the change in

most immune responses, although there was a greater decrease

in IL-5 N. americanus antigen over time, and a lesser decrease

in IL-4 PPD over time ( for both).P ! .05

Immune responses and intensity of reinfection with hook-

worms. The prevalence of hookworm reinfection after 33

months was 97% (61/63 subjects), and the mean intensity of

reinfection was 2144 epg (95% CI, 1498–3046 epg). There was

a significant negative relationship between reinfection worm bur-

den and the pretreatment IL-5 response to hookworm antigen

( ; figure 4). Examination of figure 4 shows 1 point withP ! .01

very high reinfection epg; if this point is removed from the

analysis, the slope is �2.64 (95% CI, �5.26 to �0.54; ).P ! .02

Reinfection burden was not related to other antihookworm re-

sponses, age, sex, or pretreatment hookworm burden.
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Figure 2. Relationship between Necator americanus burden and the

proliferative response (expressed as counts per minute [cpm]) to N. amer-

icanus antigen (A) or the interferon (IFN)–g response (B) to N. americanus

antigen (�) and the mycobacterial antigen purified protein derivative (+).

Proliferation and IFN-g responses are values after subtraction of back-

ground (no antigen) levels. Worm burden is expressed as no. of eggs per

gram (epg) of feces. Linear regression trend lines are plotted.

DISCUSSION

Human immune responses to infection with hookworms, like

those to other helminth infections, are characterized by up-

regulated production of specific and nonspecific IgE and eo-

sinophilia. We have shown that, as expected, infection with

hookworms is associated with up-regulation of the Th2 cyto-

kines controlling these responses, with most infected subjects

producing both IL-4 and IL-5 in response to hookworm an-

tigen. However, most subjects also produced detectable IFN-g

in response to hookworm antigen. Adult hookworm antigen

was used in the present study, but there is cross-reactivity be-

tween larval and adult antigens [21], so some of the observed

immune response may have been stimulated by larval stages.

Such a mixed Th1/Th2 response to parasite antigens has also

been described in N. americanus infection in Africa and in T.

trichiura infection [22, 23]. In contrast, the immune response

to A. lumbricoides infection is more Th2 biased, with no de-

tectable production of IFN-g [24].

There was a clear negative relationship between hookworm

burden and IFN-g responses to hookworm antigen. Such a

negative relationship could indicate hookworm-associated

immunosuppressive effects or could be evidence of protective

immune responses. There was also a significant increase in

antihookworm IFN-g responses 5 weeks after chemotherapy.

This increase could be due to the removal of immunosup-

pressive adult worms or to increased exposure to antigens

released from dead or dying worms. Since worms are expelled

intact from the gut after treatment, the latter possibility is

unlikely. Thus, the results of the present study provide strong

evidence of an immunosuppressive effect of high hookworm

burdens on IFN-g responses that is removed by chemother-

apy. There was also some evidence of an effect on specific

proliferative responses, which had a weakly significant neg-

ative correlation with hookworm epg and also increased after

chemotherapy, although not significantly. The immunosup-

pressive effect is apparently Th1 specific, because there was

no evidence of suppression of IL-4 or IL-5 responses, and

total IgE was positively correlated with hookworm burden

and decreased significantly after treatment. Changes in IgE

may reflect the level of antigenic stimulation and/or down-

regulatory IFN-g responses. Infection with tissue-dwelling fi-

larial nematodes and schistosomes is known to result in the

down-regulation of parasite-specific immune responses [11–

14], with increased responsiveness after chemotherapy [13,

25, 26]. Immunosuppression has been associated with pro-

duction of IL-10 and transforming growth factor–b [27–

29]. In addition, N. americanus produces a range of poten-

tially immunomodulatory molecules, including proteases and

a C-type lectin, and adult worm products have been report-

ed to induce apoptosis in activated T cells [30–32]. Whether

the specific IFN-g response protects against infection with

hookworms is unknown. However, that hookworms suppress

IFN-g responses suggests that these responses damage adult

worms, and some schistosome studies show a protective role

for proliferative [26] and IFN-g [33] responses. Mathematical

modeling has shown that the detection of anti–adult worm

protective immune responses from immunoepidemiological

data can be difficult [34]. In particular, anti–adult worm re-

sponses are not expected to be negatively associated with the

degree of reinfection [34]; thus, the lack of an association

between IFN-g responses and reinfection seen here does not

exclude a protective role for IFN-g.

The present data show a clear protective effect of IL-5 re-

sponses to hookworm antigen. The results were not con-

founded by associations between reinfection and age, sex, or
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Figure 3. Production of cytokines in response to Necator americanus antigen in subjects coinfected with hookworms and Wuchereria bancrofti or

Plasmodium species. Data are the mean levels of production of interleukin (IL)–4 (A) and IL-5 (B) in subjects positive (+) or negative (�) for circulating

filarial antigen (CAg). C, Production of IL-4 in subjects positive or negative for Plasmodium species malaria (MAL), as determined by thick smear. IL-

4 and IL-5 responses are values after subtraction of background (no antigen) production. Vertical bars, Bootstrap 95% confidence intervals.

Table 3. Effect of anthelmintic treatment on immune responses in Necator americanus–

infected subjects.

Parameter,

antigen

No. of

subjects

Pretreatment

level, mean

Posttreatment

level, mean Change (bootstrap 95% CI)

cpm

NA 42 10,339 13,888 +3549 (�175 to 7261)

PPD 42 78,474 59,566 �18,909 (�27,268 to �10,313)
a

IFN-g, pg/mL

NA 42 166 322 +156 (11 to 339)
b

PPD 42 1436 1463 +27 (�122 to 175)

IL-4, pg/mL

NA 42 20 17 �3.1 (�7.5 to 1.2)

PPD 29 0.05 �0.1 �0.2 (�1.2 to 0.6)

IL-5, pg/mL

NA 37 163 151 �12 (�58 to 32)

PPD 23 �11 �0.7 +10 (�29 to 70)

Total IgE, IU/mL 54 4132 3591 �541 (�923 to �254)
a

NOTE. Proliferative and cytokine responses to N. americanus antigen (NA) and mycobacterial purified protein

derivative (PPD) and total IgE level, before and after treatment with pyrantel pamoate, and the change (bootstrap

95% confidence interval [CI]) in immune response. Proliferation is expressed as counts per minute (cpm). Pro-

liferative and cytokine responses are values after subtraction of background (no antigen) level.
a

.P ! .001
b

.P ! .01

pretreatment hookworm burden. This is the first evidence of

protective cytokine responses in infection with hookworms.

The association with reinfection strongly suggests that IL-5

responses act against incoming larvae, rather than adult

worms [34]. Previous studies in Papua New Guinea have

shown a negative correlation between antilarval IgG and re-

infection [8]. In contrast, epidemiological evidence of im-

munity is limited: here, neither pretreatment nor reinfection

worm burden decreased with increasing host age. However,

the relationship between age and exposure is unknown, and

comparison across studies does provide evidence of acquired

resistance [35]. These studies suggest that Th2 responses are

associated with resistance to infection with hookworms. Per-

haps surprisingly, there was no association between IL-4 and

reinfection, although vaccine-induced immunity in a murine

model is associated with increased levels of IL-4 in tissue [36].

The role of IL-5 suggests that eosinophils may be important

for protection. This result is also consistent with the obser-

vation that N. americanus produces metalloproteases that

cleave eotaxin and thus inhibit eosinophil recruitment in vitro

[37]. Similar studies of schistosome infection have found ev-

idence of a protective role of IL-5 against reinfection [26, 33,

38], although, in one study of Schistosoma haematobium, IL-

5 was associated with disease, not protection [39]. Th2 cy-

tokines (IL-9, IL-10, and IL-13) have also been associated

with low A. lumbricoides burden, which is consistent with a

protective role, although no associations were seen with T.

trichiura burden [23, 40]. Our data thus suggest that different

immune responses may act against adult and larval hook-

worms, with strong evidence of IL-5–mediated protection

against larvae, and a suggestion of IFN-g–mediated protection

against adult worms, which is suppressed by established adult
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Figure 4. Relationship between the intensity of reinfection with Ne-

cator americanus and production of interleukin (IL)–5 in response to N.

americanus antigen before treatment. Reinfection was assessed as no.

of eggs per gram (epg) of feces 33 months after anthelmintic treatment.

IL-5 responses are values after subtraction of background (no antigen)

production. Linear regression trend line is plotted; there is a significant

negative relationship (slope, �5.512; bootstrap 95% confidence interval,

�13.376 to �1.266; ).P ! .01

worms. There was no evidence of suppression of IL-5 re-

sponses by adult worms, perhaps suggesting some concom-

itant immunity. However, previous studies have shown neg-

ative associations between Th2 responses (total and specific

IgE) and size and fecundity of adult worms [9]. Although

these effects could be mediated by effects on larvae, they

suggest some effective anti–adult worm Th2 responses. The

present study was a relatively small study of a polyparasitized

population, which may have limited our ability to detect any

association between adult worms and Th2 responses.

The geographic distribution of infection with hookworms

overlaps that of many other parasitic diseases; thus, hookworm-

infected subjects will usually be infected with a variety of other

parasites. In our study area, both filarial infection and malaria

are common, although infections with other gastrointestinal

helminths are rare. We have found evidence that both infec-

tions suppress Th2 cytokine responses to hookworm antigens.

The data suggest that, in polyparasitized subjects, there will be

multiple immunological interactions between infections, due

to nonspecific immunosuppressive effects and cross-reacting

antigens. Active filarial infection was associated with decreased

IL-4 and IL-5 responses to hookworm antigens. Although fil-

ariasis is typically associated with suppression of IFN-g re-

sponses, there is some evidence of down-regulation of IL-4/IL-

5 or IL-5 responses to filarial antigens [41, 42], and proliferative

responses to larval hookworm antigen are down-regulated by

concomitant Schistosoma mansoni infection [43]. Infection with

Plasmodium species was associated with suppression of IL-4

responses to hookworm antigen. The effects of malaria on hel-

minth infection have not been previously described, although

malaria has been associated with suppression of spontaneous

production of IL-4 [44] and a lower risk of atopic skin reactions

[45]. The apparent distinction between infection with hook-

worms, which affected Th1 responses, and filarial or malarial

infection, which affected Th2 responses, may reflect the rela-

tively small sample size. Hence, only the strongest influence on

each response may have been detected.

There was evidence of a suppressive effect of both hook-

worm and Plasmodium species infection on responses to PPD.

IFN-g responses to PPD were weakly negatively correlated

with hookworm burden but did not increase after chemo-

therapy, in contrast to the results of an Ethiopian study [46].

This suppressive effect on Th1 responses was not associated

with a shift toward a Th2 response, because IL-4 and IL-5

responses did not vary. A similar down-regulation of anti-

PPD responses has been reported in onchocerciasis [15, 17].

The clinical relevance is unclear, although an association be-

tween intestinal nematodes and multibacillary leprosy has

been reported elsewhere [47]. It has been suggested that the

relatively low efficacy of BCG vaccination in the tropics may

result from concomitant helminth infection [48], and asca-

riasis and onchocerciasis have been reported to reduce post-

vaccination immune responses to cholera and tetanus vaccine,

respectively [16, 49]. We observed a strong suppressive effect

of Plasmodium species parasitemia on proliferative responses

to PPD. Effects of moderate to severe, but not mild, malaria

on PPD responses have been reported elsewhere [50],

whereas, in the present study, effects were seen in asymptom-

atic infected subjects. There was also a surprising decrease in

proliferative responses to PPD after chemotherapy. There is

no obvious reason why removal of hookworms should sup-

press anti-PPD responses, and there was no correlation be-

tween pretreatment burden and anti-PPD responses. How-

ever, because pretreatment anti-PPD responses were strongly

affected by Plasmodium species infection, it is possible that a

change in prevalence of Plasmodium species over time may

have affected these data. Blood smears were not performed

for study subjects at the posttreatment blood sampling; how-

ever, smears from other subjects in the village revealed that

the prevalence of Plasmodium species infection increased from

17.9% during the pretreatment sampling period to 37.7%

during posttreatment sampling ( , controlling for ageP p .027

and sex). This change in prevalence is likely to have caused

the differences in PPD responses and could have obscured

other increases in immune responses to both hookworm and

PPD.

In summary, our results show that infection with hookworms

induces a mixed Th1/Th2 response, with worm burden–de-

pendent suppression of Th1 responses. Despite this immuno-

suppression, there is evidence of protective immunity against

reinfection, mediated by IL-5. This protective response was
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down-regulated by concomitant infection with W. bancrofti.

These results suggest that a vaccine inducing Th2 responses

may be successful. However, immune responsiveness may be

compromised by preexisting infection with hookworms or with

other parasites.
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