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ABSTRACT 

 
In this paper, we consider a mixed transit oligopoly market and analyze strategic interactions between 
passengers and operators. A number of operators provide vertically differentiated transit service to 
passengers. Individuals choose transit based on the assumption of willingness to pay (WTP) and 
minimize their generalized costs. Users are generally heterogeneous in both WTP and value of time 
(VOT). The efficient transit market is segmented by cut-off VOTs and illustrated in the two-
dimensional WTP and VOT space. The market bounds is a concave polygonal chain connected by cut-
off points. We formulate the efficient transit market problem for Pareto optimal solutions and develop 
a randomized market bounds algorithm (RMBA). The algorithm is based on random walk Monte 
Carlo methods. It is a powerful tool to compute and analyze transit oligopoly. The Pareto frontier can 
be found by RMBA and shown to converge in probability. A case study on duopoly is conducted. 
 
Keywords: Mixed transit oligopoly; service differentiation; Pareto optimality; randomized market 
bounds algorithm 
 
 

1. INTRODUCTION 

 
The market structure of oligopoly is commonly observed in public transport in the real world. 
Different transit modes such as buses, metros and trams, are operated by different firms and often 
overlap in routes to share passenger demands. Even for the single transit mode where monopoly 
prevails, the entry of new operators becomes possible thanks to the policy of transit deregulation 
(Nash, 1993; Wang and Yang, 2005). The transit market dominated by a few number of operators with 
different objectives is referred to as a mixed transit oligopoly (De Fraja and Delbono, 1990; Qin et al., 
2016). 
 
Bertrand competition, of which firms solely compete in price, is one of the earliest models to describe 
market behaviors under oligopoly. Vertical product differentiation enables firms to compete in a much 
richer context (Choudhary et al., 2005). In this paper, we study a mixed transit oligopoly where 
operators differentiate their services in price and quality. The full price in transit is a passenger’s 
generalized cost per trip, while service quality is measured by transit frequency. Individuals’ choices 
on transit are based on the assumption of WTP given by Zhang et al. (2017), and the operator with the 
lowest generalized cost is selected. Such service differentiation is successful when users’ valuation of 
quality differs, namely they are heterogeneous in VOT. The transit market is “efficient” (Yang et al., 
2001) when each operator has a positive demand share. And the corresponding efficient transit market 
condition is established. Market is segmented by cut-off VOTs and illustrated in the two-dimensional 
WTP and VOT space. 
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The Pareto optimal solutions can be found by a constrained mathematical optimization problem under 
the efficient transit market condition. The major difficulties to solve such formulations are that both an 
operator’s objective and its strategy set depend on operators’ strategies. The normalized objectives are 
generally non-convex and non-quasiconvex. The strategy sets may be non-linear and non-convex. 
Traditional optimization techniques are thus inapplicable. We transform the mathematical form of 
market constraints to the graphical determination of market bounds, and reformulate the problem with 
cut-off points. We develop a randomized market bounds algorithm (RMBA) based on random walk 
Monte Carlo methods (Dunn and Shultis, 2011). The algorithm is used to find the Pareto frontier and 
shown to converge in probability. 
 
We organize the remaining parts of the paper as follows. The next section discusses efficient transit 
market condition, and illustrates market segmentation in the two-dimensional WTP and VOT space. 
Section 3 investigates formulations of Pareto optimality. Section 4 reformulates the problem with cut-
off points, and introduces RMBA. A case study on the market structure of duopoly are analyzed in 
Section 5. Conclusion is given in Section 6. 
 
 

2. EFFICIENT TRANSIT MARKET CONDITION AND SEGMENTATION 

 

We consider an oligopoly transit market with n  ( 2,n n ) operators, who are indexed by the set 

| 1,2, ,I i i n . Operators provide services for passengers in a single origin-destination trip and 

differentiate their services in price and quality. Specifically, an operator i I  sets its own fare iP  and 

frequency iF  strategically. Let ,i i iP Fχ  denote operator i ’s strategy and iχ  denote operators’ 

strategies other than operator i . Let the 2 1n  column vector ,
T

i iχ χ χ  denote the strategies of 

all operators. 
 
The demand structure of passengers is based on the assumption of WTP (denoted by ) given by 

Zhang et al. (2017). It is defined as an individual’s reserved maximum amount of the generalized cost 
for transit service. An individual will use transit service if his or her perceived generalized cost does 
not exceed the person’s WTP. Users are supposed to be heterogeneous in both WTP and VOT. Users’ 
WTP lies in 0, , while VOT lies in 0, .  and  denote the suprema of WTP and 

VOT among all potential users, respectively. And we suppose ,i iP T i I  (the domain 

can be extended if this is not satisfied). 
 
The cost structure of passengers is assumed as a linear combination of monetary cost and time cost. 

For a passenger with a VOT  who uses operator i ’s service, his or her perceived generalized cost 

iC  is given by 

 , ,  i i i i i iC c P F P T i I  (1) 

where 0i i iT T F  is the time component of the trip, and 0i idT dF  for each operator i I . 

 
As there are several operators, passengers may still face multiple options that satisfy their WTP. We 
further assume that if a passenger uses transit, the passenger will always choose the operator with the 
minimum perceived generalized cost. With this assumption, there are actually some cut-off VOTs 

(Wang and Yang, 2005) that partition passengers’ choices among operators. If we artificially let 
0 1 0 1,  P P T T  and 1 1,  0n nP T , then all the cut-off VOTs can be consistently defined as 

 1

1

,  0,1, ,i i
i

i i

P P
i n

T T
 (2) 
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The corresponding coordinates ,i i  are called cut-off points, where 

 ,  0,1, ,i i i iP T i n  (3) 

In particular, 0 0 1, 0, P  and , ,n n n nP T . 

 
How these cut-off VOTs and cut-off points work are shown as follows. Suppose that operators are 
sorted in an ascending order with respect to fare, and their strategies satisfy 

 

1 2 1 max

max 1 1 2 2 1 1 min

0 1 2 1

0

0

n n

n n n n

n n

P P P P P

T T F T F T F T F T  (4) 

where maxP , minT  and maxT  are positive pre-defined limits due to policy or fleet size restrictions. 

Condition (4) is called the efficient transit market condition. The term “efficient” is originated from 
Yang et al. (2001). The efficient transit market condition ensures a positive demand share for each 
operator. This is given by the following proposition. 
 

 
Figure 1. Efficient transit market segmentation under service differentiation. 

 
Proposition 1. Under the efficient transit market condition, the transit market is segmented by cut-off 

VOTs. A passenger who uses transit will choose transit service of operator i I  if the passenger’s 
VOT lies in 1,i i . 

 

Proof. Under the efficient transit market condition, we have 1 1 1i i i i i iC P T P T C  if 

i ; and 1 1 1i i i i i iC P T P T C  if 1i  for i I . Since , , ,i j i j I i j , 

we then have 

 
1,   if ,

,   if ( , ]

i n n n n n n i i

n n n n n n i n

C C P T P T i I

P T P T C C i I
 (5) 

and 

 1,  , ,  if ,i j i iC C i j I j i  (6) 
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So an individual with WTP ,iC  and VOT 1,i i  will use transit and choose transit 

service of operator i I  because it has the minimum perceived generalized cost among all operators. 

For passengers with VOT ( , ]n , they do not use any operator’s transit service. ∎ 

 
By Proposition 1, the transit market segmentation is illustrated in Figure 1. The whole transit market 

segment is written as 
1

n

i

i

, where i  is the market segment of operator i I . Each operator 

has a cuneiform market segment on the two-dimensional WTP and VOT space. The operators who 
provide premium services (relatively high fare and frequency) will serve the high end market where 
passengers have higher WTP and VOT. The whole market bounds is defined by the envelope 

connected by cut-off points , ,  0,1, ,i i i n . Operator i I ’s market bounds is defined by its 

cost curve iC  and two cut-off points 1 1,i i  and ,i i . 

 
 

3. FORMULATIONS OF PARETO OPTIMALITY 

 
Suppose that each operator behaves in a non-cooperative manner and chooses its fare and frequency 

simultaneously. Given other operators’ strategies iχ , operator i ’s objective is to maximize a 
weighted combination of its profit i  and total consumer surplus : 

 
,

max  , ,  
i i i

i i i i i i
P F

z z i I
χ

χ χ χ  (7) 

where 0,1i  is the consumer weight that indicates operator i ’s nature (Zhang et al., 2017). 

Operators’ objectives vary when consumer weights vary. Such transit market is referred to as a mixed 

transit oligopoly. Note that there should be total consumer surplus  in the objective function rather 

than operator i ’s consumer surplus i . Because an originally private operator’s consideration of 
consumer surplus happens only under regulation, and the regulator concerns the overall benefits of 
passengers. Such objective function is also adopted by papers like Clark et al. (2009) and Qin et al. 
(2016). It contrasts the objective function in papers like Ishibashi and Kaneko (2008) and Sanjo (2009) 
that also take the rivals’ interests into consideration. 
Operator i ’s profit is given by 

 ,  i i i iP Q K i I  (8) 

With users’ heterogeneity in both WTP and VOT, a bivariate distribution ,  is thus assigned to 

characterize each user. Let ,h  denote the joint probability density function of ,  and 

assume it to be differentiable when there is a large group of passengers. According to Figure 1, 
operator i ’s realized passenger demand is a function of operators’ strategies and written as 

 
,

, , , ,  
i

i i i iQ q Q h d d i Iχ χ X  (9) 

where Q q X  is potential passenger demand that solely depends on exogenous demand variables 

X . Operator i ’s cost is generally a function of its frequency and demand, which can also be written 
as a function of operators’ strategies: 
 , , , ,  i i i i i i iK k F Q k i Iχ χ X  (10) 

Total consumer surplus 
1

n

i

i

, where i  is operator i ’s consumer surplus and is given by 

 
,

, ,  
i

i i iQ P T h d d i I  (11) 
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With the detailed form of operator i ’s objective function as described above, we continue to consider 
Pareto optimal solutions under the efficient transit market condition. A strict inequality constraint may 
lead to an ill-posed optimization problem in the sense that the solution is infeasible but on the 
boundary of the feasible set. Therefore, we relax the efficient transit market condition (4) to non-strict 
inequality when considering the problem under constraints. We can do sanity check after a solution is 
obtained. Let 

 

1 2 1 max

1 1 max 1 1 2 2 1 1 min

0 1 2 1

0

, ; ; , |

0

n n
T

n n n n n n

n n

P P P P P

P F P F T T F T F T F T F Tχ χ (12) 

denote the set of all the operators’ feasible strategies under the relaxed efficient transit market 
condition. The Pareto optimal solutions can thus be formulated as 

 1 2max  , , ,  . . nz z z s t
χ

χ χ χ χ χ  (13) 

Various methods can be used to simplify such multi-objective optimization problem, such as linear 
scalarization or ε-constraint method (Geoffrion, 1967; Yang and Yang, 2011). However, the difficulty 

is that the feasible strategy set χ  depends on operators’ strategies and may be non-linear or non-

convex. What is more, the normalized objective function after scalarization is generally non-convex 
and non-quasiconvex. So it is still difficult to generate feasible solutions for the simplified single 
objective optimization problem. 
 
 
4. RANDOMIZED MARKET BOUNDS ALGORITHM 

 
Here we try another graphical approach to solve the efficient transit market problem. The efficient 
transit market condition requires a particular shape of market bounds as shown in Figure 1. The 
market bounds is connected by cut-off points. From Eqs. (2) and (3), operator i ’s time component is 
given by 

 1

1

,i i
i

i i

T i I  (14) 

It is also the slope of operator i ’s market bounds in Figure 1. Operator i ’s fare is given by 

 1 1

1

ω β ωβ
,

β β
i i i i

i

i i

P i I  (15) 

So if every cut-off point is determined, every operator’s strategy is also determined. This inspires the 
idea that the mathematical form of market constraints can be transformed to the graphical 
determination of market bounds, and the efficient transit market problem can be reformulated with 
cut-off points. In fact, it is proved (omitted in this paper) that the transit market is efficient if and only 
if its market bounds is a concave polygonal chain connected by cut-off points with boundary 
conditions on the two-dimensional WTP and VOT space. As a result, we develop an algorithm for 
problem (13), which is called randomized market bounds algorithm. This algorithm is based on 
random walk Monte Carlo methods (Dunn and Shultis, 2011). It is relevant to the concept of “random 
walk” because the generation of whole market bounds is a stochastic process that describes a concave 
polygonal chain with successive generation of random cut-off points. It is relevant to the concept of 
“Monte Carlo methods” because we rely on repeated random sampling of market bounds generation to 
obtain numerical results. 
The key part of the randomized market bounds algorithm is randomized market bounds generation. 
The generation process is a successive iteration process. To ensure that the whole market bounds is a 
concave polygonal chain on the two-dimensional WTP and VOT space, the consecutive cut-off points 
have certain graphical relations. The subsequent cut-off point must lie within an angle area whose 
vertex is the preceding cut-off point. The slopes of angle rays and generation details are described in 
Table 1. 
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Table 1. Algorithm: randomized market bounds generation 

Algorithm: randomized market bounds generation 

Step 1: Initialization. Set 0β 0 . Randomly set 0 max0, P . Set operator 1 ’s minimum slope 
min

1 minT T  and maximum slope 
max

1 maxT T . Set current operator 1i . 

Step 2: Generation. The two rays of minimum and maximum slopes and the suprema of 

passengers’ WTP  and VOT  form a shaded area. It can be a quadrilateral 

or a triangle, which depends on the two intersecting VOTs: 
min max

1 1β β ω ω /i i i iT  and 
max min

1 1β β ω ω /i i i iT . 

Randomly set subsequent cut-off point β ,ωi i  within the shaded area. 

Calculate iT  from Eq. (14). Set operator 1i ’s minimum slope 

min

1 min

max

max , i
i

i

T T
P

 and maximum slope 
max

1 maxmin ,i iT T T . 

Step 3: Move. Set current operator 1i i . If i n , go to Step 2; else if i n , go to Step 4. 

Step 4: Finalization. Set n . Calculate two intersecting VOTs: 

min max

1 1β β ω ω /n n n nT  and 
max min

1 1β β ω ω /n n n iT . 

Randomly set 
min maxβ ,βn n n

. Note n  may be larger that . In this case 

we extend β=βn . 

Return the series of cut-off points: , ,  0,1, ,i i i na  

 
With the whole market bounds defined by the series of cut-off points obtained, we are ready to search 
the Pareto optimal solutions of the efficient transit market problem. The algorithm process is described 
in Table 2. The algorithm is in linear time complexity of the loop counter. It is also proved (omitted in 
this paper) that the Pareto frontier candidate obtained from the algorithm converges in probability 
towards the true Pareto frontier. 
 

Table 2. Algorithm: searching the Pareto optimality 

Algorithm: searching the Pareto optimality 

Step 1: Initialization. Set loop counter 0N . Set an empty set of Pareto frontier candidate 

{}Ns . 

Step 2: Calculation. Generate a new allocation of cut-off point series a  using the algorithm of 

randomized market bounds generation. Calculate each operator i I ’s 
demand iQ , cost iK , profit i , consumer surplus i  and objective iz  

given by Eqs. (9), (10), (8), (11) and (7), respectively. 
Step 3: Comparison. Compare the objectives of allocation a  with every allocation in Ns . If 

allocation a  is not dominated by any allocation in Ns , remove the 

allocations in Ns  that are dominated by a  and put a  into Ns . 

Step 4: Move. If N  reaches a pre-defined maximum loop counter, stop and return Ns ; 

else let 1N Ns s , set loop counter 1N N  and go to Step 2. 

 
 

5. DUOPOLY CASE STUDY 

 
In this section we consider a numerical case study for the mixed duopoly market. We suppose a 
bivariate normal distribution for individuals’ characteristics on the two-dimensional WTP and VOT 
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space, which is given by 

 
400 40

β,ω ~ μ ,μ 60,12 ,
40 16

T
 (16) 

The mean and standard deviation of VOT are 60HK$/hr and 20HK$/hr. The mean and standard 
deviation of WTP are 12HK$ and 4HK$. Such assigned distribution guarantees that more than 99.7% 

(68-95-99.7 rule in statistics) of the VOT values lie in 0,120  (HK$/hr) and 99.7% of the WTP 

values lie in 0,24  (HK$). Therefore, we initially denote β=120  HK$/hr and ω=24  HK$. Note the 

covariance is 40  and the correlation is 0.5≠0, which means that WTP and VOT are not statistically 

independent. The probability density function is drawn in Figure 2. 
 

 
Figure 2. Bivariate normal distribution of individuals’ characteristics. 

 

 
Figure 3. Pareto frontier of under mixed transit duopoly. 

 
We consider a duopoly transit market where two operators provide differentiated transit services in 

both fare and frequency. We set 2n . Potential demand 1500Q /hr. Fare and time component 

extrema are max 20P HK$, min 1/ 60T hr and max 1/ 4T hr. Consumer weight 1 2, 0,0.5 . 
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Time component function 1 2 ,  i iT F i I . Operator’s cost function ,  i i i i iK F Q i I , 

where 1 2, 500,400 HK$ and 1 2, 0.4,0.6 HK$. Market variables can be calculated 

using RMBA when a random market bounds is generated. The obtained Pareto frontier with a pre-

defined 
61.0 10  loops are drawn in Figure 3. 

 
 

6. CONCLUSION 

 
This paper studies service differentiation under a mixed transit oligopoly, where users are generally 
heterogeneous in WTP and VOT. The efficient transit market condition is established. The transit 
market segmentation is illustrated in the two-dimensional WTP and VOT space. The Pareto optimality 
is formulated as a constrained multi-objective optimization problem when the efficient transit market 
condition is considered. 
 
The intrinsic nature of this efficient transit market problem is complex mainly because both the 
objective function and feasible strategy set depend on operators’ strategies. The general forms of 
individuals’ characteristics and cost structures may yield non-convexity and even complicate the 
mathematical formulations. The market bounds in the efficient transit market is a concave polygonal 
chain connected by cut-off points. Therefore, we reformulate the problem with cut-off points and 
develop RMBA to solve the efficient transit market problem. The convergence in probability of this 
algorithm is proved. RMBA provides a powerful tool to compute and analyse transit oligopoly. A case 
study on transit duopoly is conducted. 
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