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When numerous treatments exist for a disease (Treatments 1, 2, 3, etc), net-

work meta‐regression (NMR) examines whether each relative treatment effect

(eg, mean difference for 2 vs 1, 3 vs 1, and 3 vs 2) differs according to a covar-

iate (eg, disease severity). Two consistency assumptions underlie NMR: consis-

tency of the treatment effects at the covariate value 0 and consistency of the

regression coefficients for the treatment by covariate interaction. The NMR

results may be unreliable when the assumptions do not hold. Furthermore,

interactions may exist but are not found because inconsistency of the coeffi-

cients is masking them, for example, when the treatment effect increases as

the covariate increases using direct evidence but the effect decreases with the

increasing covariate using indirect evidence.

We outline existing NMR models that incorporate different types of treatment

by covariate interaction. We then introduce models that can be used to assess

the consistency assumptions underlying NMR for aggregate data. We extend

existing node‐splitting models, the unrelated mean effects inconsistency model,

and the design by treatment inconsistency model to incorporate covariate

interactions. We propose models for assessing both consistency assumptions

simultaneously and models for assessing each of the assumptions in turn to

gain a more thorough understanding of consistency.

We apply the methods in a Bayesian framework to trial‐level data comparing

antimalarial treatments using the covariate average age and to four fabricated

data sets to demonstrate key scenarios.

We discuss the pros and cons of the methods and important considerations

when applying models to aggregated data.

KEYWORDS

consistency, inconsistency models, network meta‐analysis, network meta‐regression, node splitting,

treatment by covariate interactions
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1 | INTRODUCTION

Reviews often compare multiple treatments for the same

condition. In such cases, network meta‐analysis (NMA)

can compare all treatments (eg, Treatments 1, 2, and 3)

in a single analysis by estimating the relative treatment

effects (eg, log odds ratios) for all treatment pairings

(eg, 2 vs 1, 3 vs 1, and 3 vs 2) using direct and indirect

evidence.1-3 The key assumption underlying NMA is

consistency of the treatments effects across direct and

indirect evidence.3 Many methods have been proposed

to assess the consistency assumption underlying NMA,4

including node‐splitting models5,6 and inconsistency

models, such as the design by treatment (DBT) inconsis-

tency model7-11 and the unrelated mean effects (URM)

inconsistency model.12

Network meta‐regression (NMR) is an extension of

NMA that examines whether a covariate modifies each

of the relative treatment effects.13 A covariate may

modify each relative treatment effect differently; that

is, each treatment comparison may have a different

covariate interaction. NMR is used to explore causes

of heterogeneity or inconsistency or when known effect

modifiers exist and we wish to present results for

different patient groups. Covariates may be characteris-

tics of patients (eg, weight), treatments (eg, additional

therapy), studies (eg, location), or methods (eg, alloca-

tion concealment).14-16

NMR results commonly consist of, for each compari-

son, one relative treatment effect estimated at the covariate

value 0 (or at the mean covariate value when the NMR

model is centered) and one regression coefficient for the

treatment by covariate interaction. Consistency assump-

tions are required for both of these parameters.17-19 For

instance, for a three‐treatment NMR, where Treatment 1

is taken as the reference, the consistency equation for the

relative treatment effects can be written as, d23 = d13 − d12
where, for example, d23 is the relative treatment effect for 3

vs 2, and the consistency equation for the regression coef-

ficients is β23 = β13 − β12 where, for example, β23 is the

coefficient for 3 vs 2.13,17,19 It is possible for neither

assumption to hold (ie, inconsistent relative treatment

effects and inconsistent coefficients) or for only one of

the assumptions to hold (ie, either consistent relative

FIGURE 1 Graphs showing how the relative treatment effect (eg, log odds ratio) for Treatment 3 vs Treatment 2 could change with a

covariate value with separate lines representing direct evidence (from trials that allocated Treatments 2 and 3), indirect evidence (from

the remaining trials), and all evidence in various scenarios: A, there is no treatment by covariate interaction based on all evidence, and the

relative treatment effects at 0 covariate are consistent, and the regression coefficients for the treatment by covariate interaction are consistent;

B, there is an interaction based on all evidence, and the relative treatment effects at 0 covariate are consistent, and the coefficients are

consistent; C, there is no interaction based on all evidence, and the relative treatment effects at 0 covariate are consistent, and the coefficients

are inconsistent; D, there is an interaction based on all evidence, and the relative treatment effects at 0 covariate are consistent, and the

coefficients are inconsistent; E, there is no interaction based on all evidence, and the relative treatment effects at 0 covariate are inconsistent,

and the coefficients are consistent; F, there is an interaction based on all evidence, and the relative treatment effects at 0 covariate are

inconsistent, and the coefficients are consistent; G, there is no interaction based on all evidence, and the relative treatment effects at 0

covariate are inconsistent, and the coefficients are inconsistent; and H, there is an interaction based on all evidence, and the relative

treatment effects at 0 covariate are inconsistent, and the coefficients are inconsistent. Direct, indirect, and all evidence is overlapping in plots

(A) and (B)

2 DONEGAN ET AL.



treatment effects or consistent coefficients), which would

make the results of the NMR unreliable.

Theoretically, there are eight possible scenarios that

can occur when assessing whether treatment by covariate

interactions exist and the consistency assumptions.

Examples of the scenarios are shown in Figure 1A‐H.

Each figure shows how the relative treatment effect for

3 vs 2 changes with an increasing covariate value; sepa-

rate lines are displayed for direct, indirect, and all evi-

dence. For a three‐treatment network, the direct

evidence for 3 vs 2 would be from trials that allocated

Treatments 2 and 3 and the indirect evidence for 3 vs 2

would be from the remaining trials. Note that the lines

have the same intercept when the relative treatment

effects at the covariate value 0 are consistent (Figure 1

A‐D) and the lines have the same slope when the coeffi-

cients are consistent (Figure 1A, B, E, and F). In

Figure 1A, no interaction is detected using NMR, and

both consistency assumptions are satisfied; therefore,

the NMR results are valid but would not be clinically use-

ful. On the other hand, in Figure 1B, NMR shows an

interaction and both assumptions hold; therefore, the

NMR is reliable and could be used to draw clinical infer-

ences. Figure 1C, E, and G show scenarios where no

interaction is detected using NMR, but one or more of

the assumptions are not satisfied; consequently, the

NMR results are invalid; notably, in Figure 1C,G, an

interaction exists when direct evidence, and indirect evi-

dence are considered separately, but it is not seen when

applying NMR because it is masked by the inconsistency.

Lastly, in Figure 1D, F, and H, an interaction is found

using NMR, but one or more of the assumptions do not

hold, so the NMR results are unreliable. The cause of

inconsistency should be considered when inconsistency

is found (Figures 1C‐H).

Although many methodological publications have

proposed NMR analyses,13,17-25 to the authors' knowl-

edge, no methods have been introduced for assessing

the consistency assumptions underlying NMR.

In this paper, we introduce methods for assessing the

consistency assumptions underlying NMR. We extend

existing node‐splitting models,5,6 the DBT inconsistency

model,7-11 and the URM inconsistency model12 to incor-

porate treatment by covariate interactions. In Section 2,

we specify the NMR model and propose assessment

methods that can be applied to aggregate trial‐level data

(ie, trial specific relative treatment effects relative to refer-

ence Arm 1 and their variances) with either continuous

or categorical covariates. In Section 3, we apply the

methods to a real data set and fabricated data sets illus-

trating key scenarios under a Bayesian framework. In

Section 4, we discuss the proposed methods and highlight

their pros and cons.

2 | METHODS

We outline NMR models and then introduce methods for

assessing consistency using the node‐splitting models and

one type of inconsistency model (ie, URM model). New

methods based on the alternative DBT inconsistency

model are also presented in the supplementary material.

All models are summarized in Table 1.

To set notation, let i denote the trial where i = 1, …, S

and S is the number of independent trials and let k be the

trial arm where k = 1, …, Ai and Ai is the number of arms

in trial i. Let tik denote the treatment given in trial i in

arm k where tik ∈ {1,……,T} and T is the number of treat-

ments in the network. Note that Treatment 1 is taken to

be the reference treatment.

Suppose we have trial‐level outcome data, where yik is

the observed relative treatment effect (eg, log odds ratio

or mean difference) for arm k vs Arm 1 (with k ≥ 2) in

trial i and vik is the corresponding variance. As the rela-

tive treatment effect is a continuous measure, we assume

a normal likelihood yik~N(θik,vik) where θik is the mean

relative treatment effect in trial i (with k ≥ 2). Also, the

data set would include a study‐level covariate xi for each

trial i that can be a continuous variable or an indicator

variable to represent dichotomous data.

2.1 | Network meta‐regression models

NMR models estimate the basic regression coefficients,

which are the coefficients for each treatment vs Treat-

ment 1 (ie, β12, β13, …, β1T), and then the remaining func-

tional coefficients (ie, β23, β24, ….) are calculated as linear

combinations of the basic coefficients using the consis-

tency equations. Three NMR models have been proposed

previously, each making different assumptions regarding

the basic coefficients,13,17-19 that is, independent (model

1a), exchangeable (model 1b), and common coefficients

(model 1c). The decision regarding which assumption to

make can be based on model fit statistics and the esti-

mated coefficients of the models but in practice is often

determined by data availability.

Model 1a can be written as follows:

θik ¼ δi;1k þ βti1;tikxi;

Where βti1;tik=β1;tik ‐β1;ti1 , βti1;tik is the difference in the

relative treatment effect of tik vs ti1 per unit increase in

the covariate xi, or in other words, the regression coeffi-

cient for the treatment by covariate interaction. In a

random‐effects model, δi,1k (with k ≥ 2) represents the

trial‐specific relative treatment effect of tik vs ti1 when

the covariate is 0 (xi = 0) and is assumed to be a

DONEGAN ET AL. 3



TABLE 1 Proposed model variations

Models Including

Independent Treatment

by Covariate Interactions

Models Including

Exchangeable Treatment

by Covariate Interactions

Models Including

Common Treatment

by Covariate Interactions

NMR Models Model 1a Model 1b Model 1c

Node‐splitting models Models splitting the relative treatment effect and

the regression coefficient for the interaction.

Model 2.1a Model 2.1b Model 2.1c

Models splitting the relative treatment effect only. Model 2.2a Model 2.2b Model 2.2c

Models splitting the regression coefficient for the

interaction only.

Model 2.3a Model 2.3b Model 2.3c

URM models Models assessing consistency of the relative

treatment effect and the regression coefficient

for the interaction.

Model 3.1a Model 3.1b Model 3.1c

Models assessing consistency of the relative

treatment effect only.

Model 3.2a Model 3.2b Model 3.2c

Models assessing consistency of the regression

coefficient for the interaction only.

Model 3.3a Model 3.3b Model 3.3c

DBT models Models assessing consistency of the relative

treatment effect and the regression coefficient

for the interaction.

Model 4.1a Model 4.1b Model 4.1c

Models assessing consistency of the relative

treatment effect only.

Model 4.2a Model 4.2b Model 4.2c

Models assessing consistency of the regression

coefficient for the interaction only.

Model 4.3a Model 4.3b Model 4.3c

Abbreviations: DBT, design by treatment; NMR, network meta‐regression; URM, unrelated mean effects.
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realization from a normal distribution δi;1k∼N dti1;tik ; σ
2

� �

with dti1;tik ¼ d1;tik − d1;ti1 where dti1;tik is the mean relative

treatment effect of tik vs ti1 when the covariate is 0. In a

fixed‐effect model, we set σ2 = 0 to obtain δi,1k= d1;tik
− d1;ti1 .

Model 1b is the same as model 1a, but now, β1;tik
∼Norm B; υ2ð Þ: Model 1c is formulated by setting β1;tik
¼ β in model 1a; note that in this model, the functional

coefficients are 0 because of the consistency equations

(eg, β23 = β13 − β12 = β − β = 0).17

2.2 | Assessing consistency by node
splitting

The principle aim of node‐splitting models is to assess

whether there is evidence of “loop inconsistency,” where

loop inconsistency is defined as a difference between a

result from direct and indirect evidence. Node‐splitting

models estimate relative treatment effects and/or regres-

sion coefficients for the interaction based on direct evi-

dence and separate estimates from indirect evidence to

explore whether they agree. Multiple node‐splitting

models need to be applied, one model for each compari-

son of interest.

To specify the node‐splitting models, we extend the

notation, such that the node being split is (bt, t*) where
bt ≠ t* and bt < t*:For example, if one wants to split the

node (3, 4), then bt ¼ 3 and t* = 4.

To assess both the consistency assumptions simulta-

neously, node‐splitting models can split the relative

treatment effect and coefficient to provide, for each

comparison with both direct and indirect evidence, a rel-

ative treatment effect, and a coefficient estimated from

direct evidence and an effect and coefficient based on

indirect evidence. The model that splits the relative treat-

ment effect and coefficient and includes independent

interactions (model 2.1a) is an extension of model 1a as

follows:

θik ¼
δi;1k þ βti1;tikxi if ti1 ≠bt and=or tik ≠ t*

δi;1k þ βdirxi if ti1 ¼bt and tik ¼ t*

:;
8
<
:

Where βti1;tik=β1;tik ‐β1;ti1 , βti1;tik represents the difference

in the relative treatment effect of tik vs ti1 per unit

increase in the covariate estimated using indirect evi-

dence, and βdir represents the difference in the relative

treatment effect of t* vsbt per unit increase in the covariate

estimated using direct evidence. In a random‐effects

model, if trial i allocated t*andbt, that is, ti1=bt and tik = t*,

then δi,1k~N(d
dir,σ2) where ddir represents the mean

relative treatment effect of t* vs bt when the covariate

value is 0 estimated using direct evidence; whereas if trial

i did not allocate t*andbt, that is, ti1≠bt and/or tik ≠ t*, then

δi;1k∼N dti1;tik ; σ
2

� �
where dti1;tik represents the mean rela-

tive treatment effect of tik vs ti1 when the covariate value

is 0 estimated using indirect evidence and dti1;tik
¼ d1;tik − d1;ti1 .

To assess only the consistency of the relative treat-

ment effects, node‐splitting models can split the relative

treatment effect alone to produce a single coefficient that

is estimated using all evidence and two relative treatment

effects (ie, one estimated using direct evidence and the

other estimated using the indirect evidence). The model

that splits the relative treatment effect alone and includes

independent interactions (model 2.2a) is

θik ¼ δi;1k þ βti1;tikxi;

where βti1;tik represents the difference in the relative treat-

ment effect of tik vs. ti1 per unit increase in the covariate

estimated using all evidence. In this model, the trial‐

specific relative treatment effects, δi,1k are distributed in

the same way as in model 2.1a.

Likewise, to assess the consistency of the coefficients

alone, a node‐splitting model can split only the coefficient

to estimate a single relative treatment effect using all evi-

dence and two coefficients (e, one estimated from direct

evidence and the other from indirect evidence). The

model that splits only the coefficient and includes inde-

pendent interactions (model 2.3a) is the same as model

2.1a except the trial‐specific relative treatment effects;

δi,1k are distributed as δi;1k∼N dti1;tik ; σ
2

� �
where dti1;tik

represents the mean relative treatment effect of tik vs ti1
when the covariate value is 0 estimated using all evidence.

Node‐splitting models can be adapted to include

exchangeable (models 2.1b, 2.2b, and 2.3b) or common

(models 2.1c, 2.2c, and 2.3c) interactions as described in

Section 2.1. Note that model 2.1c and 2.3c fix each func-

tional coefficient based on indirect evidence (ie, βti1;tik
when ti1 ≠ 1) to be 0 whereas the corresponding result

from direct evidence (βdir) is not.

The level of consistency can be assessed, by compar-

ing the model fit of the NMR (model 1[a, b, or c]) with

that of the node‐splitting models (models 2.1[a, b, or c],

2.2[a, b, or c], and 2.3[a, b, or c]); inconsistency is

indicated if a node‐splitting model is an improved fit.

Moreover, if the between trial variance is lower in the

node‐splitting models as compared with the NMR, incon-

sistency may exist. Also, for each treatment comparison,

the size, direction, and precision of the relative treatment

effect estimated using direct evidence can be compared

DONEGAN ET AL. 5



with that estimated using indirect evidence. Such com-

parisons are subjective and when results are presented

graphically and compared, care must be taken because

the scale and shape of the plots can affect how different

the results appear to be. Furthermore, when using Bayes-

ian methods, for each comparison, the probability (prob)

that the direct and indirect evidence differs can be calcu-

lated. For each treatment pairing, the inconsistency esti-

mate (IE); that is, the difference between the relative

treatment effect from direct evidence and indirect evi-

dence can be calculated at each iteration of the chain,

and the number of iterations for which IE ≥ 0 is counted.

It is then possible to calculate the prob that the relative

treatment effect from direct evidence exceeds the relative

treatment effect from indirect evidence, by dividing the

number of counted iterations by the total number of iter-

ations of the chain. Lastly, assuming that the posterior

distribution of the difference (IE) is symmetric and

unimodal, the prob that the direct and indirect evidence

agree is given by P = 2 × minimum(prob, 1 − prob).5,26

Likewise, the regression coefficients from direct and indi-

rect evidence can be compared in the same way.

2.3 | Assessing consistency using URM
models

URM models assess global consistency that is inconsis-

tency somewhere in the treatment network, by compar-

ing the results from an NMR model with those from an

URM model.12

The URM model that assesses the consistency of the

relative treatment effects and coefficients and includes

independent interactions (model 3.1a) is the same as the

NMR model (model 1a), but it does not incorporate the

consistency equations (i.e. dti1;tik ¼ d1;tik − d1;ti1 and

βti1;tik=β1;tik ‐β1;ti1 ), and as such, the model parameters are

estimated using direct evidence only. Model 3.1a is equiv-

alent to fitting separate pair‐wise meta‐regressions,

except, model 3.1a assumes the between trial variance

(σ2) is equal across comparisons but the pair‐wise meta‐

regressions would not.

The URM model that assesses only consistency of the

relative treatment effects and includes independent inter-

actions (model 3.2a) is the same as model 3.1a but incor-

porates the consistency equation for the coefficients.

Likewise, the UMR model that assesses only consistency

of the coefficients with independent interactions (model

3.3a) is same as model 3.1a but includes the consistency

equation for the relative treatment effects.

Exchangeable (models 3.1b, 3.2b, and 3.3b) or com-

mon (models 3.1c, 3.2c, and 3.3c) interactions can be

included. However, it is worth noting that the

independent, exchangeable, or common assumptions are

slightly different to those specified for the NMR models

(models 1a, 1b, and 1c). In the NMR models, we assume

the basic regression coefficients (ie, β12, β13, …, β1T) are

independent, exchangeable, or common. However, when

the consistency equation for the coefficients is not used in

the URM model (ie, models 3.1[a, b, or c] and 3.3[a, b, or

c) we can assume that all regression coefficients, that is

basic and functional coefficients, are independent,

exchangeable (ie, βti1;tik∼Norm B; υ2ð Þ) or common (ie,

βti1;tik ¼ βÞ. In particular, this means that when including

common interactions, the functional coefficients in the

NMR model (model 1c) are forced to be 0, but this is

not so in the URM model (models 3.1c and 3.3c).

To determine consistency, the model fit of the NMR

model (model 1[a, b, or c]) and the fit of the URM models

(models 3.1(a, b, or c), 3.2(a, b, or c), and 3.3[(a, b, or c])

can be compared; when an URM model is an improved

fit, inconsistency may be present. Also, differences

between the relative treatment effects and regression

coefficients produced from the NMR model and those

from the URM models may suggest inconsistency.

2.4 | Including multi‐arm trials

The models can be applied to data sets including multi‐

arm trials providing that the correlation between the

observed relative treatment effect (yik) and the trial‐

specific relative treatment effects (δi,1k) is taken into

account. For each multi‐arm trial i with m arms, the

observed relative treatment effects and the trial‐specific

relative treatment effects are assumed to follow multivar-

iate normal distributions

yi2

⋮

yim

0
B@

1
CAeN

θi2

⋮

θim

0
B@

1
CA;

vi2 … cov yi2; yimð Þ

⋮ ⋱ ⋮

cov yi2; yimð Þ … vim

0
B@

1
CA

0
B@

1
CA

and

δi;12

⋮

δi;1m

0
B@

1
CAeN

d1;ti2 − d1;ti1

⋮

d1;tim − d1;ti1

0
B@

1
CA;

τ2 … τ2=2

⋮ ⋱ ⋮

τ2=2 … τ2

0
B@

1
CA

0
B@

1
CA:

Furthermore, there is an extra consideration when

fitting node‐splitting models.5,6 If one wants to split node

(ti1, tik), then a multi‐arm trial will contribute direct evi-

dence to the relative treatment effect (ddir) as required

because bt ¼ ti1. However, the multi‐arm trial would not

contribute direct evidence to the estimation of the relative

treatment effect, ddir, if one splits another node (eg, ti2,

ti3) because bt ≠ ti1. Therefore, to overcome this problem,

6 DONEGAN ET AL.



when a multi‐arm trial compared the two treatments, t*

andbt, in addition to other treatments, treatmentbt is taken
to be the baseline treatment ti1 for that study.

Note that for URM models including multi‐arm trial

data, the URM model is not the same as fitting separate

pair‐wise meta‐regressions because the correlation in

multi‐arm trials is taken into account but would not be

in pair‐wise analyses; also, the URM model only uses ti1
as the baseline treatment so direct evidence for some

pairwise comparisons would not be used whereas

pairwise meta‐regression could utilize all direct evidence.

3 | APPLICATION TO DATA SETS

3.1 | Data sets

Here, the methods proposed in Section 2 are applied to a

real data set and four fabricated data sets that have been

manipulated to demonstrate specific scenarios.

3.1.1 | Malaria data set

Two Cochrane reviews and the corresponding trials were

used to construct the malaria data set; reviews compared

artemether (AR), quinine (QU), and artesunate (AS).27,28

Randomised controlled trials including patients with

severe malaria were eligible. Age was considered to be

an effect modifier because the clinical features of malaria

differ by age and thus, all treatment recommendations

are stratified by age in the reviews and World Health

Organization treatment guidelines.29 Event rates for the

primary outcome, death, and the covariate, average age

of patients in each trial were extracted. Two studies with

missing covariate data were deleted from the data set.

Using the event rates, trial‐specific log odds ratios and

their standard deviations were calculated in R. Table S1

displays the data. Figure 2 shows the network diagram.

3.1.2 | Fabricated data sets

Four fabricated data sets were constructed by manipulat-

ing the malaria data set to illustrate key scenarios: (a) no

interaction is present and the relative treatment effects

and regression coefficients are consistent (Figure 1A);

(b) interaction exists and the relative treatment effects

and coefficients are consistent (Figure 1B); (c) interaction

exists, and the relative treatment effects are consistent,

but the coefficients are inconsistent (Figure 1D); (4) no

interaction is present, and the relative treatment effects

are consistent, but the coefficients are inconsistent

(Figure 1G). Example R code to generate the data sets is

given in the supplementary material.

Analogous to the malaria data set, each data set com-

pared three treatments (AS, AR, QU): there was direct

evidence for each possible comparison; no multi‐arm tri-

als contributed; and a dichotomous outcome and contin-

uous covariate was of interest. Ten trials contributed

direct evidence to each comparison. For each study, a

continuous covariate was taken to be a realization from

normal distribution (ie, N(17, 102)) truncated at 0 to

ensure the covariate values were similar to those

observed in the malaria data set.

The log odds ratios and regression coefficients were

chosen to be similar to those estimated in the original data

set. For each data set, the log odd ratio at 0 covariate of tri-

als comparing treatments AR and AS was 0.2, trials com-

paring treatments QU and AS was 0.23, and trials of

treatments QU and ARwas 0.03. For data set one, the coef-

ficient for each comparison was 0. For data set two, the

coefficient for trials comparing treatments AR and AS

was 0.02, trials comparing treatments QU and AS was

0.02, and trials of treatments QU and AR was 0. For data

set three, the coefficient for trials comparing treatments

AR and AS was 0.01, trials of treatments QU and AS was

0.04, and trials comparing treatments QU and AR was 0.

For data set four, the coefficient for trials comparing treat-

ments AR and AS was −0.04, trials of treatments QU and

AS was 0.04, and trials of treatments QU and AR was 0.

The trial‐specific observed log odds ratios were esti-

mated from the values of log odds ratio at 0 covariate,

the coefficients, and the covariates. The between‐trial var-

iance was 0. The standard error of the observed log odds

ratio was 0.2 for each trial.

3.2 | Implementation

All models were fitted to the data sets using WinBUGS

1.4.3 and the R2WinBUGS package in R. Example code is

provided as supplementary material. For the malaria data

set, all models in Table 1 were fitted. For the fabricated

FIGURE 2 Network diagram for the malaria data set. Number of

trials (number of patients) displayed. AR, artemether; AS,

artesunate; QU, quinine
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data sets, only fixed‐effect versions of models 1a, 2.1a, 3.1a,

and 4.1a were applied because the between trial variance

was 0 and the coefficients differed across comparisons.

See Table S2 for the parameterization of the DBT models.

The covariates were centered at their mean. All parameters

were given noninformative normal prior distributions (ie,

N(0, 100000)) except the between‐trial standard deviation

that was assumed to follow a noninformative uniform dis-

tribution (ie, Uni(0, 10)) and a weakly informative prior

distribution (ie, uniform (0, 2)) was specified for the stan-

dard deviation of the exchangeable regression coefficients.

Three chains with different initial values were run for

300 000 iterations. The initial 100 000 draws were

discarded and chains were thinned such that every fifth

iteration was retained. Convergence of the chains was

assessed by inspecting trace plots of the draws.

Model fit and complexity of models was assessed using

the deviance information criterion (DIC) defined as

DIC ¼ Dþ pD where D is the posterior mean of the resid-

ual deviance and pD is the effective number of parame-

ters.30 A model with a smaller DIC was preferable to a

model with a larger DIC, but differences of less than three

units were not considered meaningful. When models had

little difference in DIC, the simplest model was chosen.

3.3 | Results

Results from NMR, node‐splitting and URM models are

presented here. The results from DBT models are pre-

sented in supplementary material.

3.3.1 | Malaria data set

NMR models

Comparing fixed‐effect and random‐effect NMR models

(models 1a, 1b, 1c), the DICs from all NMR models vari-

ations are similar (DICs 24.93‐26.76 in Table S3). Also,

the estimated regression coefficients for the treatment

by average age interactions were quite similar for each

model variation (Table S4). Therefore, results from the

simplest model to the fixed‐effect NMR with common

interactions (model 1c) are presented.

The results of model 1c show that there is evidence of

a small interaction between relative treatment effect and

average age for AR vs AS and QU vs AS; the posterior

median of the common regression coefficient for AR vs

AS and QU vs. AS is 0.0132 with 95% credibility interval

(CrI), 0.0018‐0.0244, (Table S4). There is no interaction

for QU vs AR because the model fixes the coefficient to

be 0. However, before using these results to draw clinical

inferences, the underlying consistency assumptions must

be assessed.

Node‐splitting models

Table 2 shows model fit assessment results for fixed‐effect

node‐splitting models with common interactions (models

2.1c, 2.2c, 2.3c). The DIC of the NMRmodel (DIC = 25.29)

is similar to those of the node‐splitting models (DICs

23.75‐27.95) indicating that the model is not improved

by splitting each node, lending support to the consistency

assumptions.

TABLE 2 Model fit assessment results for fixed‐effect models with common treatment by average age interactions for the malaria data set

Model

Mean

Residual

Deviance pD DIC

NMR model (model 1c) 22.29 3.00 25.29

Node‐splitting model splitting the log odds ratio and regression coefficient: AR vs AS (model 2.1c) 22.97 4.99 27.95

Node‐splitting model splitting the log odds ratio and regression coefficient: QU vs AS (model 2.1c) 22.96 4.98 27.93

Node‐splitting model splitting the log odds ratio and regression coefficient: QU vs AR (model 2.1c) 20.65 5.00 25.65

Node‐splitting model splitting the log odds ratio only: AR vs AS (model 2.2c) 23.27 4.01 27.27

Node‐splitting model splitting the log odds ratio only: QU vs AS (model 2.2c) 23.27 4.01 27.29

Node‐splitting model splitting the log odds ratio only: QU vs AR (model 2.2c) 23.27 4.01 27.27

Node‐splitting model splitting the regression coefficient only: AR vs AS (model 2.3c) 23.19 4.01 27.19

Node‐splitting model splitting the regression coefficient only: QU vs AS (model 2.3c) 23.19 4.01 27.19

Node‐splitting model splitting the regression coefficient only: QU vs AR (model 2.3c) 19.74 4.01 23.75

URM model assessing consistency of the log odds ratio and regression coefficient (model 3.1c) 19.93 4.01 23.94

URM model assessing consistency of the log odds ratio only (model 3.2c) 23.27 4.01 27.27

URM model assessing consistency of the regression coefficient only (model 3.3c) 18.96 3.00 21.96

Abbreviations: AR, artemether; AS, artesunate; DIC, deviance information criterion; QU, quinine; NMR, network meta‐regression; URM, unrelated mean

effects. Number of data points: 24
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TABLE 3 Results from fixed‐effect node‐splitting models including common treatment by average age interactions for the malaria data set

Model Type Parameter Evidence

Posterior Median (95% Credibility Interval), P

AR vs AS QU vs AS QU vs AR

Splitting the log odds ratio and

regression coefficient

(model 2.1c)

Log odds ratio (centered) Direct −2.3540 (−6.7650 to 2.0530)* 0.4316 (0.2833‐0.5797) 0.2882 (0.0449‐0.5315)

Indirect 0.1985 (−0.0815 to 0.4782) −2.1000 (−6.4180 to 2.4430)* 0.1825 (−0.4751 to 0.8419)

IE, P −2.5510 (−6.9740 to 1.8710),

P = 0.26

2.5330 (−2.0150 to 6.8540),

P = 0.26

0.1055 (−0.5990 to 0.8089),

P = 0.77

Regression coefficient for the

interaction

Direct 0.1738 (−0.0974 to 0.4451) 0.0126 (0.0006‐0.0245) 0.0191 (−0.0008 to 0.0387)

Indirect 0.0126 (0.0007‐0.0245) 0.1728 (−0.1048 to 0.4376) Fixed at 0

IE, P 0.1613 (−0.1100 to 0.4327),

P = 0.25

−0.1603 (−0.4253 to 0.1173),

P = 0.24

0.0191 (−0.0008 to 0.0387),

P = 0.06

Splitting the log odds ratio only

(model 2.2c)

Log odds ratio (centered) Direct 0.2495 (−0.3804 to 0.8815) 0.4320 (0.2837‐0.5804) 0.2328 (−0.0031 to 0.4700)

Indirect 0.1994 (−0.0821 to 0.4787) 0.4824 (−0.1946 to 1.1600) 0.1816 (−0.4797 to 0.8403)

IE, P 0.0512 (−0.6481 to 0.7515),

P = 0.89

−0.0499 (−0.7523 to 0.6552),

P = 0.89

0.0521 (−0.6518 to 0.7545),

P = 0.89

Regression coefficient for the

interaction

All 0.0129 (0.0011‐0.0248) 0.0129 (0.0011‐0.0248) Fixed at 0

Splitting the regression

coefficient only (model 2.3c)

Log odds ratio (centered) All 0.1890 (−0.0918 to 0.4673) 0.4283 (0.2793‐0.5747) 0.2746 (0.0469‐0.5033)

Regression coefficient for the

interaction

Direct 0.0195 (−0.0210 to 0.0603) 0.0126 (0.0007‐0.0245) 0.0188 (−0.0007 to 0.0385)

Indirect 0.0125 (0.0007‐0.0245) 0.0194 (−0.0210 to 0.0601) Fixed at 0

IE, P 0.0070 (−0.0358 to 0.0500),

P = 0.75

−0.0068 (−0.0498 to 0.0357),

P = 0.76

0.0188 (−0.0007 to 0.0385),

P = 0.06

Abbreviations: AR, artemether; AS, artesunate; IE, inconsistency estimate; P, probability of agreement between direct and indirect evidence; QU, quinine.

* Results are influenced by the vague prior distribution and can be considered to be “not estimable.”
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The results from node splitting are displayed in

Table 3. In the model that assesses consistency of both

the log odds ratio and the coefficient (model 2.1c), the

log odds ratios for AR vs AS (−2.3540, 95% CrI, −6.7650

to 2.0530) and QU vs AS (0.4316, 95% CrI, 0.2833‐

0.5797) based on direct evidence differs with those from

indirect evidence (ie, 0.1985, 95% CrI, −0.0815 to 0.4782,

and −2.1000, 95% CrI, −6.4180 to 2.4430, respectively)

because only two trials contribute direct evidence for

AR vs.AS and, therefore, the results are influenced by

the vague prior distribution. A similar but less pro-

nounced inconsistency is also seen for the corresponding

coefficients. Yet the prob of agreement between direct

and indirect evidence is low for the coefficient for QU

vs AR (P = 0.06) but not remarkably low for other com-

parisons or the log odds ratios (Ps 0.24‐0.77). Similar con-

clusions are drawn from models that split either the log

odds ratio or the regression coefficient only (models 2.2c

FIGURE 3 Posterior distributions for the log odds ratios (centered) and regression coefficients for the interaction from fixed‐effect node‐

splitting models with common treatment by average age interactions for the malaria data set. Results in Figure A‐F are from models 2.1c and

1c. Results in Figures G‐I are from models 2.2c and 1c. Results in Figures J‐L are from models 2.3c and 1c. In Figures F and I, the coefficient

from indirect evidence and from all evidence is forced to be 0. AR, artemether; AS, artesunate; QU, quinine

FIGURE 4 Log odds ratio versus average age for direct and indirect from fixed‐effect node‐splitting models and for all evidence from the

fixed‐effect network meta‐regression model with common treatment by average age interactions for the malaria data set. Results in Figures

A‐C are from models 2.1c and 1c. Results in Figures D‐F are from models 2.2c and 1c. Results in Figures G‐I are from models 2.3c and 1c. AR,

artemether; AS, artesunate; QU, quinine [Colour figure can be viewed at wileyonlinelibrary.com]
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and 2.3c). The consistency of the direct and indirect evi-

dence is also supported graphically in Figure 3, which

displays the posterior distributions of the centered log

odds ratios and regression coefficients and in Figure 4,

where the log odds ratio versus average age is plotted.

URM models

Table 2 also displays model fit assessment results for

fixed‐effect URM models with common interactions

(models 3.1c, 3.2c, 3.3c). The DIC of the NMR model

(DIC = 25.29) is similar to those from the URM models

the assess consistency of both the log odds ratio and coef-

ficient (DIC = 23.94) or the log odds ratio alone

(DIC = 27.27) (models 3.1c and 3.2c) but is slightly higher

than that from the model that assesses the coefficient

alone (DIC = 21.96) (model 3.3c) indicating a possible

inconsistency on a coefficient.

See Table 4 for the results from the NMR model and

URM models. The results from the URM models are quite

similar to those from the NMR model with the exception

of the regression coefficient for QU vs AR. This difference

in the coefficient for QU vs AR is because of the different

assumptions underlying the two models; the NMR model

sets the regression coefficients for AR vs AS and QU vs

AS to be identical (ie, 0.0132, 95% CrI, 0.0018‐0.0244)

and the coefficient for QU vs AR to be 0, whereas all

three coefficients are set to be identical in the URM

model (ie, 0.0145, 95% CrI, 0.0044‐0.0247).

Overall, there is not only evidence of an interaction

from the NMR but also evidence of inconsistency; the

node‐splitting models show evidence of loop inconsis-

tency for the coefficient of QU vs AR, and the URM

models support this showing a possible inconsistency of

the coefficients.

3.3.2 | Fabricated data sets

Data set 1: No interaction and consistency

The DICs from each model (models 1a, 2.1a, and 3.1a) are

similar (8.01‐12.00); therefore, there is no obvious sign of

inconsistency (Table 5). Using the results from node split-

ting (model 2.1a), the log odds ratios and coefficients

based on direct and indirect evidence are very similar,

and the probabilities of agreement between direct and

indirect evidence are practically one (Table 6). The results

from the NMR model are also similar to those from the

URM model (model 3.1a) (Table 7) indicating consis-

tency. Overall, the NMR model does not show that a

treatment by average age interaction exists (Table 7)

and there is no evidence of loop inconsistency using node

splitting or global inconsistency using the URM model.

Figure 5, which shows the results from the NMR model

and node‐splitting models, supports this conclusion. T
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Data set 2: Interaction and consistency

The DICs from the models (models 1a, 2.1a, and 3.1a) are

again similar (8.00‐11.99) indicating consistent evidence

(Table 5). From node splitting (model 2.1a), the log odds

ratios and the coefficients based on direct and indirect

evidence are almost identical, and the probabilities of

agreement of direct and indirect evidence are practically

one (Table 6); Figure 5 shows the results graphically.

The URM model (model 3.1a) also gives comparable

results to the NMR model (Table 7). In conclusion, the

NMR model shows that an interaction exists for AR vs

AS (0.0200, 95% CrI, 0.0074‐0.0327) and QU vs AS

(0.0200, 95% CrI, 0.0080‐0.0321) (Table 7) and there is

no loop inconsistency using node splitting, or global

inconsistency using the URM model.

Data set 3: Interaction and inconsistency

The DIC from the NMR model (model 1a) (DIC = 47.14)

is much higher than those from node splitting (model

2.1a) and the URM model (model 3.1a) (11.97‐11.99) sug-

gesting inconsistency (Table 5). From node splitting, the

log odds ratios based on direct and indirect evidence are

comparable, but the coefficients for AR vs AS (0.0100,

95% CrI, −0.0039 to 0.0241) and QU vs AS (0.0400, 95%

CrI, 0.0298 to 0.0503) and QU vs AR (0.0000, 95% CrI,

−0.0125 to 0.0126) from direct evidence differ from those

from indirect evidence (ie, 0.0400, 95% CrI, 0.0237‐0.0562,

0.0099, 95% CrI, −0.0088 to 0.0289, and 0.0300, 95% CrI,

0.0127‐0.0474, respectively); the probabilities of agree-

ment of direct and indirect evidence are very high (Ps

0.9982‐0.9990) for the log odds ratios and very low for

the coefficients (Ps 0.0057‐0.0062) (Table 6). The URM

model also gives results that differ somewhat from those

of the NMR model (see Table 7). To summarise, the

NMR model shows that an interaction exists for AR vs

AS (0.0187, 95% CrI, 0.0082‐0.0292), QU vs AS (0.0335,

95% CrI, 0.0244‐0.0425), and QU vs AR (0.0147, 95%

CrI, 0.0047‐0.0248) (Table 7) but there is also loop incon-

sistency in the size of the underlying coefficients based on

direct and indirect evidence that is seen using node split-

ting (Figure 5); the URM model identifies global

inconsistency.

Data set 4: No interaction and inconsistency

The DIC from the NMR model (model 1a) (DIC = 188.36)

is much higher than those from node splitting (model

2.1a) and the URM model (model 3.1a) (11.99‐12.00) indi-

cating inconsistency (Table 5). Similar to data set 3, in

node‐splitting models, the log odds ratios based on direct

and indirect evidence are comparable, but the coefficients

for AR vs. AS (−0.0400, 95% CrI, −0.0553 to −0.0246) and

QU vs. AS (0.0400, 95% CrI, 0.0273‐0.0529) and QU vs AR

TABLE 5 Model fit assessment results for fixed‐effect models assessing consistency of both the log odds ratio and regression coefficient

with independent treatment by average age interactions for the fabricated data sets

Data Set Model

Mean Residual

Deviance pD DIC

Data set 1: No interaction and consistency NMR model (model 1a) 4.00 4.00 8.01

Node‐splitting model: AR vs AS (model 2.1a) 6.00 6.00 12.00

Node‐splitting model: QU vs AS (model 2.1a) 5.99 5.99 11.98

Node‐splitting model: QU vs AR (model 2.1a) 5.99 5.99 11.98

URM model (model 3.1a) 5.99 5.99 11.97

Data set 2: Interaction and consistency NMR model (model 1a) 4.00 4.00 8.00

Node‐splitting model: AR vs AS (model 2.1a) 6.00 6.00 11.99

Node‐splitting model: QU vs AS (model 2.1a) 5.99 5.99 11.99

Node‐splitting model: QU vs AR (model 2.1a) 5.99 5.99 11.97

URM model (model 3.1a) 5.98 5.98 11.97

Data set 3: Interaction and inconsistency NMR model (model 1a) 43.14 3.99 47.14

Node‐splitting model: AR vs AS (model 2.1a) 5.99 5.99 11.99

Node‐splitting model: QU vs AS (model 2.1a) 6.00 6.00 11.99

Node‐splitting model: QU vs AR (model 2.1a) 5.98 5.98 11.97

URM model (model 3.1a) 5.99 5.99 11.97

Data set 4: No interaction and inconsistency NMR model (model 1a) 184.36 4.00 188.36

Node‐splitting model: AR vs AS (model 2.1a) 6.00 6.00 12.00

Node‐splitting model: QU vs AS (model 2.1a) 5.99 5.99 11.99

Node‐splitting model: QU vs AR (model 2.1a) 6.00 6.00 11.99

URM model (model 3.1a) 5.99 5.99 11.98

Abbreviations: AR, artemether; AS, artesunate; DIC, deviance information criterion; QU, quinine; NMR, network meta‐regression; URM, unrelated mean

effects. Number of data points: 30.
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TABLE 6 Results from fixed‐effect node‐splitting models splitting both the log odds ratio and regression coefficient including independent treatment by average age interactions (model 2.1a)

for the fabricated data sets

Data Set Parameter Evidence

Posterior Median (95% Credibility Interval), P

AR vs AS QU vs AS QU vs AR

Data set 1: No

interaction

and consistency

Log odds ratio (uncentered) Direct 0.1997 (−0.0948 to 0.4949) 0.2302 (−0.0566 to 0.5139) 0.0298 (−0.2356 to 0.2937)

Indirect 0.2001 (−0.1865 to 0.5902) 0.2306 (−0.1642 to 0.6265) 0.0297 (−0.3799 to 0.4398)

IE, P −0.0007 (−0.4870 to 0.4894),

P = 0.9974

−0.0004 (−0.4879 to 0.4875),

P = 0.9986

−0.0002 (−0.4891 to 0.4886),

P = 0.9990

Regression coefficient

for the interaction

Direct 0.0000 (−0.0107 to 0.0109) 0.0000 (−0.0135 to 0.0136) 0.0000 (−0.0115 to 0.0116)

Indirect 0.0000 (−0.0178 to 0.0178) 0.0000 (−0.0158 to 0.0158) 0.0000 (−0.0174 to 0.0174)

IE, P 0.0000 (−0.0210 to 0.0208),

P = 0.9980

0.0000 (−0.0208 to 0.0209),

P = 0.9980

0.0000 (−0.0208 to 0.0209),

P = 0.9982

Data set 2:

Interaction

and consistency

Log odds ratio (uncentered) Direct 0.1992 (−0.1284 to 0.5285) 0.2300 (−0.0268 to 0.4852) 0.0301 (−0.3372 to 0.3941)

Indirect 0.1998 (−0.2432 to 0.6460) 0.2304 (−0.2614 to 0.7213) 0.0299 (−0.3886 to 0.4447)

IE, P −0.0007 (−0.5528 to 0.5534),

P = 0.9980

−0.0001 (−0.5549 to 0.5537),

P = 0.9998

−0.0003 (−0.5542 to 0.5548),

P = 0.9996

Regression coefficient

for the interaction

Direct 0.0200 (0.0049‐0.0352) 0.0200 (0.0069‐0.0333) 0.0000 (−0.0239 to 0.0240)

Indirect 0.0200 (−0.0073 to 0.0473) 0.0199 (−0.0084 to 0.0485) 0.0000 (−0.0200 to 0.0201)

IE, P 0.0000 (−0.0313 to 0.0312),

P = 0.9974

0.0001 (−0.0315 to 0.0313),

P = 0.9954

0.0000 (−0.0311 to 0.0313),

P = 1.0000

Data set 3:

Interaction

and inconsistency

Log odds ratio (uncentered) Direct 0.2000 (−0.1389, 0.5372) 0.2301 (−0.0208, 0.4796) 0.0301 (−0.2355 to 0.2937)

Indirect 0.1999 (−0.1619, 0.5649) 0.2304 (−0.1985, 0.6584) 0.0299 (−0.3924 to 0.4492)

IE, P 0.0003 (−0.4955 to 0.4950),

P = 0.9990

−0.0006 (−0.4948 to 0.4955),

P = 0.9982

−0.0004 (−0.4971 to 0.4983),

P = 0.9986

Regression coefficient

for the interaction

Direct 0.0100 (−0.0039 to 0.0241) 0.0400 (0.0298‐0.0503) 0.0000 (−0.0125, 0.0126)

Indirect 0.0400 (0.0237‐0.0562) 0.0099 (−0.0088 to 0.0289) 0.0300 (0.0127‐0.0474)

IE, P −0.0300 (−0.0515 to −0.0088),

P = 0.0059

0.0301 (0.0085‐0.0514),

P = 0.0062

−0.0300 (−0.0515 to −0.0086),

P = 0.0057

Data set 4:

No interaction and

inconsistency

Log odds ratio (uncentered) Direct 0.2002 (−0.0926 to 0.4908) 0.2300 (0.0222‐0.4360) 0.0297 (−0.2260 to 0.2863)

Indirect 0.2000 (−0.1290, 0.5298) 0.2300 (−0.1569, 0.6178) 0.0301 (−0.3279 to 0.3866)

IE, P −0.0003 (−0.4376 to 0.4397),

P = 0.9990

−0.0007 (−0.4393 to 0.4399),

P = 0.9976

0.0000 (−0.4398 to 0.4398),

P = 1.0000

Regression coefficient

for the interaction

Direct −0.0400 (−0.0553 to −0.0246) 0.0400 (0.0273 to 0.0529) 0.0000 (−0.0115 to 0.0116)

Indirect 0.0399 (0.0227, 0.0574) −0.0400 (−0.0591, −0.0208) 0.0800 (0.0600‐0.1000)

IE, P −0.0799 (−0.1031 to −0.0571),

P = 0.0000

0.0800 (0.0568‐0.1030),

P = 0.0000

−0.0800 (−0.1031 to −0.0569),

P = 0.0000

Abbreviations: AR, artemether; AS, artesunate; IE, inconsistency estimate; P, probability of agreement between direct and indirect evidence; QU, quinine. Posterior median (95% credibility interval) presented.
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TABLE 7 Results from fixed‐effect network meta‐regression and unrelated mean effects models assessing consistency of both the log odds ratio and regression coefficient with independent

treatment by average age interactions for the fabricated data sets

Data Set Model Parameter

Posterior Median (95% Credibility Interval)

AR vs AS QU vs AS QU vs AR

Data set 1: No interaction

and consistency

NMR model (model 1a) Log odds ratio (uncentered) 0.2002 (−0.0305 to 0.4281) 0.2302 (0.0014‐0.4587) 0.0306 (−0.1911 to 0.2517)

Regression coefficient for

the interaction

0.0000 (−0.0090 to 0.0091) 0.0000 (−0.0102 to 0.0102) 0.0000 (−0.0096 to 0.0096)

URM model (model 3.1a) Log odds ratio (uncentered) 0.2002 (−0.0947 to 0.4926) 0.2301 (−0.0556 to 0.5148) 0.0303 (−0.2340 to 0.2937)

Regression coefficient for

the interaction

0.0000 (−0.0108 to 0.0108) 0.0000 (−0.0135 to 0.0136) 0.0000 (−0.0116 to 0.0116)

Data set 2: Interaction

and consistency

NMR model (model 1a) Log odds ratio (uncentered) 0.2006 (−0.0539 to 0.4514) 0.2302 (0.0043‐0.4558) 0.0298 (−0.2223 to 0.2828)

Regression coefficient for

the interaction

0.0200 (0.0074‐0.0327) 0.0200 (0.0080‐0.0321) 0.0000 (−0.0147 to 0.0147)

URM model (model 3.1a) Log odds ratio (uncentered) 0.2000 (−0.1289 to 0.5266) 0.2301 (−0.0264 to 0.4856) 0.0302 (−0.3364 to 0.3948)

Regression coefficient for

the interaction

0.0200 (0.0049‐0.0351) 0.0200 (0.0068‐0.0332) 0.0000 (−0.0240 to 0.0240)

Data set 3: Interaction

and inconsistency

NMR model (model 1a) Log odds ratio (uncentered) 0.2081 (−0.0390 to 0.4523) 0.1654 (−0.0503 to 0.3808) −0.0421 (−0.2636 to 0.1801)

Regression coefficient for

the interaction

0.0187 (0.0082‐0.0292) 0.0335 (0.0244‐0.0425) 0.0147 (0.0047‐0.0248)

URM model (model 3.1a) Log odds ratio (uncentered) 0.2003 (−0.1374 to 0.5353) 0.2301 (−0.0201 to 0.4795) 0.0303 (−0.2340 to 0.2938)

Regression coefficient for

the interaction

0.0100 (−0.0040 to 0.0240) 0.0400 (0.0297‐0.0503) 0.0000 (−0.0125 to 0.0125)

Data set 4: No interaction

and inconsistency

NMR model (model 1a) Log odds ratio (uncentered) 0.0877 (−0.1296 to 0.3034) 0.3389 (0.1566‐0.5214) 0.2515 (0.0472‐0.4567)

Regression coefficient for

the interaction

−0.0098 (−0.0211 to 0.0017) −0.0001 (−0.0105 to 0.0103) 0.0097 (−0.0002 to 0.0195)

URM model (model 3.1a) Log odds ratio (uncentered) 0.2004 (−0.0911 to 0.4899) 0.2302 (0.0231‐0.4372) 0.0305 (−0.2259 to 0.2854)

Regression coefficient for

the interaction

−0.0400 (−0.0553 to −0.0247) 0.0400 (0.0272‐0.0529) 0.0000 (−0.0115 to 0.0116)

Abbreviation: AR, artemether; AS, artesunate; NMR, network meta‐regression; QU, quinine; URM, unrelated mean effects.
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(0.0000, 95% CrI, −0.0115 to 0.0116) from direct evi-

dence differ from those from indirect evidence (ie,

0.0399, 95% CrI, 0.0227‐0.0574, −0.0400, 95% CrI,

−0.0591 to −0.0208, and 0.0800, 95% CrI, 0.0600‐

0.1000, respectively); the probabilities of agreement of

direct and indirect evidence are very high for log odds

ratios (Ps 0.9976‐1.000) and 0 for the coefficients

(Table 6). Also, results from the URM model are differ-

ent from those of the NMR model (see Table 7). Over-

all, the NMR model shows that no interaction exists

(Table 7) but there is inconsistency in the direction of

the underlying coefficients based on direct and indirect

evidence and this trend can be seen using node split-

ting (Figure 5); the URM model suggests global incon-

sistency respectively, but these models cannot show the

underlying trend.

4 | DISCUSSION

We have shown that node‐splitting and inconsistency

models can be useful for assessing the underlying consis-

tency assumptions of NMR when using aggregate data.

Once consistency has been assessed, the analyst must

decide which results to present. If the direct and indirect

evidence are consistent, the results from the NMR should

be reliable. However, the level of heterogeneity (from the

NMR or standard pairwise analyses) and goodness of fit

of the NMR should be considered when drawing conclu-

sions from the results. If there is inconsistency, the results

from the NMR are questionable and the causes of incon-

sistency should be considered. In some scenarios, for

example, when inconsistency masks an interaction, as

shown in Figure 1C,G, the results would not be useable.

FIGURE 5 Log odds ratio versus average age for direct and indirect from fixed‐effect node‐splitting models (model 2.1a) and for all

evidence from the fixed‐effect network meta‐regression model (model 1a) with independent treatment by average age interactions for the

fabricated data sets. AR, artemether; AS, artesunate; QU, quinine [Colour figure can be viewed at wileyonlinelibrary.com]
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If the original purpose of the NMR was to explore causes

of heterogeneity or inconsistency in an NMA and there is

no interaction and no inconsistency masking interactions

in the NMR, then analysts could proceed by exploring

other potentially relative treatment effect modifying

covariates or reconsidering the eligibility criteria.

Each of the proposed methods has different pros and

cons. DBT models assess design and loop consistency

and can assess global inconsistency, while node splitting

assesses loop consistency and URM models assess global

inconsistency; loop inconsistency is well recognized in

the methodological literature but design consistency is a

newer concept.7,11 Furthermore, the DBT model requires

parameterization by the analyst; therefore, the analyst

needs to have a good understanding of the model and

parameters. Key advantages of the DBT model and node

splitting is that IEs and the prob that direct and indirect

evidence agree can be obtained; however, the URM

model does not provide such results. Moreover, concerns

regarding multiple testing may apply to node‐splitting

and the DBT models where probabilities are calculated,

particularly when a Frequentist approach is taken; there-

fore, it is important to compare model fit statistics across

models, and also to be cautious in interpreting “P values”

making sure to allow for multiple testing. One disadvan-

tage of node splitting is that, as one model is fitted for

every comparison with contributing direct and indirect

evidence, many models may need to be fitted, which is

computationally demanding, whereas only one inconsis-

tency model would need to be applied.

Ideally, all three approaches (ie, node‐splitting model,

DBT model, and URM model) would be applied to pro-

vide a thorough assessment of consistency. However, in

practice, the reviewer may select their preferred approach

depending on the ease of application in software etc. We

recommend that at least one of the global tests (ie, incon-

sistency models) and also node splitting are performed.

Our preference is node splitting because estimates from

direct and indirect evidence can be found.

We proposed and applied methods to trial‐level

aggregated data in this article. However, it is straightfor-

ward to adapt the models to accommodate any type of

arm‐level outcome data, that is, a summary of the out-

come data for each arm of each trial and a covariate

value for each trial. To adapt the models, a suitable link

function would be chosen and nuisance parameters are

included in the model to represent the effect of the base-

line treatment in Arm 1 of trial i. Further details regard-

ing arm‐level NMA models are given by Dias, Sutton,

Ades, and Welton31

Moreover, collection and use of individual patient

data is generally advantageous over aggregate data when

studying patient‐level covariates because they avoid

ecological biases.32,33 Yet it is more common to explore

patient‐level covariates (eg, patient age) using study‐level

covariate summaries (eg, average age of patients) in meta‐

regression such as in the malaria data set. However,

when using aggregate data, the possibility of confounding

and ecological biases should be considered when patient‐

level covariates are explored.

There are a number of issues that can arise when

applying the methods, particularly with aggregate data.

Parameter estimation can be a problem with limited data,

such that models cannot be fitted at all, interactions exist

but cannot be detected, or inconsistency exists but is not

found. For instance, when all the trials that contribute

to the estimation of a regression coefficient have the same

covariate value or when only one trial contributes to a

coefficient, this would preclude the use of models with

independent interactions, but analysts may be able to

apply a model with exchangeable or common interactions

providing studies that contribute to another basic coeffi-

cient that has different covariate values. For example,

when exploring an interaction between relative treatment

effect and study location (ie, continent), studies that con-

tribute to results for Comparison 2 vs 1 may all be carried

out on the same continent provided that studies that con-

tribute to Comparison 3 vs 1 are located on different con-

tinents. Parameter estimation may particularly be a

problem when fitting the DBT model because the IEs

would be imprecise when the number of trials in one or

more designs is limited; to overcome this one could

assume exchangeability of the inconsistency factors or

use informative prior distributions. Similarly, if direct evi-

dence is limited for some comparisons (ie, few trials or

covariate values), the URM model and node‐splitting

models would produce imprecise results, and informative

prior distributions may need to be used. Ideally, any

informative prior distributions would be evidence based

by eliciting them from similar meta‐analyses or experts'

beliefs. Finally, it is also worth emphasising that no evi-

dence of inconsistency does not automatically imply there

is consistency; inconsistency may exist but cannot be

detected when data are limited and results are imprecise,

and therefore, arguably the consistency assumptions and

the NMR results are questionable. In the same way, in

such cases, no evidence of a treatment by covariate inter-

action does not imply there is truly no interaction.

Conversely, with abundant data, additional model-

ling extensions may be feasible. For example, in node‐

splitting models, we have assumed the between‐trial var-

iance is the same for direct evidence and indirect evi-

dence, yet it is possible to incorporate two variances,

one of each type of evidence. Also, the models could

be adapted to include more than one covariate or other

variance structures.34
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In conclusion, consistency of the assumptions under-

lying NMR must be assessed when NMR is applied, even

when no treatment by covariate interactions are detected.

It is possible that inconsistency is masking an interaction.

Furthermore, results of an NMR should not be reported

without assessing the underlying assumptions to deter-

mine whether the results are valid and reliable.
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