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ARTICLE

High-resolution patterning of solution-processable
materials via externally engineered pinning of
capillary bridges
Shunpu Li1, Young Tea Chun1, Shuo Zhao2, Hyungju Ahn3, Docheon Ahn3, Jung Inn Sohn 4, Yongbing Xu2,5,

Pawan Shrestha1, Mike Pivnenko1 & Daping Chu 1

Electronics based on solution-processable materials are promising for applications in many

fields which stimulated enormous research interest in liquid-drying and pattern formation.

However, assembling of structure with submicrometre/nanometre resolution through liquid

process is very challenging. We show a simple method to rapidly generate polymer struc-

tures with deep-submicrometre-sized features over large areas. In this method, a solution

film is dried on a substrate under a suspended flexible template with groove/ridge surface

topography. Upon solvent evaporation, the solution splits in the grooves and forms capillary

bridges between the template and substrate, which are firmly pinned by the edges of the

template grooves. This groove pinning stabilizes the contact lines, thereby allowing the

formation of fine patterned structures with high aspect ratios which were used to fabricate

various functional materials and electronic devices. We also produced secondary self-

assembled nano-stripe patterns with resolutions of about 50 nm on the primary lines.
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L
iquid flow/drying-induced edge deposition from solution/
suspension is frequently observed in daily life. For instance,
natural levees formed by the deposition of sediments along

flooded river banks have been utilized for settlement and agri-
culture since ancient times1,2. The drying of a solution deposited
on a solid surface often results in a dense, ring-like solute deposit
along the perimeter, which is known as the coffee-stain effect3,4.
Recent developments in thin-film coating, printing, and solution-
processable electronics have revived interest in micrometre/
nanometre-scale drying processes5–7, and considerable efforts
have been made to generate high-resolution patterned structures
by controlling solvent evaporation8,9. Several research groups
have generated structures with small features via the controlled
drying of solution through digital deposition, including drop-wise
deposition using inkjet printing and line-wise deposition by
pulling a sharp blade10–14. It is desirable to produce such fine
structures over large areas with improved resolution using a rapid
approach (e.g., a stamp-like technique). Attempts have been made
to control liquid evaporation in a confined geometry by holding
the solution in between a substrate and a cover object. Under a
parallel flat coverage without surface structure, the drying does
not produce any regular patterns as demonstrated in previous
works15,16. Thus, attempts have been made to control liquid
evaporation in a confined geometry by retaining the solution
between a substrate and a cover object with specific shape. For
example, gradient concentric ring patterns can be generated by
drying a solution confined between a flat substrate and spherical
surface8,17. However, several issues related to the use of these
patterns, including feature size, limited pattern geometry, pattern
instability, and low aspect ratio, must be addressed before they are
applied in practical applications. Fine structure fabrications with
stamp-guided drying through progressively shrinking capillary
bridges were reported18,19. In this study, we demonstrate an
approach with different drying mechanism to fabricate high-
resolution structures via solvent evaporation in confined geo-
metries. A surface-structured flexible template is used to pattern
the liquid into capillary bridges and further guide the liquid-
drying process with liquid bridge pinning. This work was pri-
marily motivated by the groove pinning of the contact line, which
was theoretically proposed several decades ago for drying liquids
on grooved substrates;20,21 however, in this study, the grooves are
patterned on a flexible cover object rather than a substrate. This
cover object effectively guides pattern formation on the substrate
and can be reused. The microgrooves on the applied template
firmly pin the patterned liquid, which is held by capillary force

between the substrate and template. This stabilizes the contact
line between the liquid and the substrate to form pinned liquid
walls, favouring nearby solute deposition with high aspect ratio
and high resolution. We show the applicability of this technique
with produced high-resolution patterns of various materials and
fabricated polymeric electronic devices.

Results
Principle of patterning and demonstration. The pattern-
formation principle is schematically illustrated in Fig. 1. A layer
of solution is introduced between a flexible microstructured
template and a substrate and dried at an appropriate temperature
(Fig. 1a). As solvent evaporation progresses, the solution splits in
the groove, and the formed liquid surface migrates towards the
sidewall of the groove; thus, the solution is patterned into capil-
lary bridges suspended between the substrate and template
(Fig. 1b). The solution splitting in the grooves and capillary
bridge formation process is illustrated in Supplementary Figure 1.
Because the template is well wetted with organic solvent, a tiny
amount of solution is trapped in the corner of the groove22,23 and
merges into the capillary bridges. Thus, the contact line between
the liquid bridge and the substrate is pinned by the groove. The
liquid that evaporates from the edge is replenished by liquid from
the interior; the resulting outward flow carries solute to the edge,
while solute in the bulk solution underneath the ridge does not
precipitate because evaporation from the top surface is inhibited.
To manipulate the capillary bridges, spacers with submicrometre
heights can be directly fabricated on the template surface, con-
trolling the gap between the template and substrate (red circle in
Fig. 1b, c). However, spacers are not always necessary because a
liquid film is often trapped between the template ridges and
substrate when a template is attached to a wet substrate (about
700 nm for isopropanol (IPA)-based and 1,2-dichlorobenzene
(DCB)-based solutions was estimated). In the absence of spacers,
the template shifts downward as the solvent evaporates, even-
tually coming into contact with the substrate when drying is
complete (Fig. 1d, e). If spacers are applied to suspend the tem-
plate, the capillary bridge underneath the template ridge will split
and is dragged gradually towards the groove as solvent evaporates
further (white arrow in Fig. 1b). In this case, the solute is
deposited only at the groove-pinned contact lines; no deposition
occurs next to the capillary walls under the ridges because they
are not pinned. We fabricated patterns both with and without
spacers (denoted as spacer-applied and spacer-free configurations,
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Fig. 1 Schematic illustration of the pattern-formation process. The solution is patterned and pinned by the groove corners during drying. Spacer-applied

(a→b→c) and spacer-free (a→d→e) configurations can be used to fabricate fine structure through solute transfer to the pinned contact line via capillary

flow. For convenience, only half of one ridge and groove is drawn. The molecular alignment and backbone packing with face-on configuration in the

generated lines are presented in f
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respectively). In fabrication experiments, a controlled volume of
solution (about 3 μl for a template with a 1 cm2 pattern area) was
drop-casted onto the surface of a structured polydimethylsiloxane
(PDMS) template. Then, a substrate (e.g., a silicon wafer) was
gently brought into contact with the solution-wetted template and
dried at room temperature for 90 min under a small applied
pressure (about 5MPa). Finally, the template was removed,
leaving the patterned polymer on the substrate (Fig. 1f). The
depths of grooves on the masters for duplicating PDMS templates
were 1.5 μm (photoresist) and 800 nm (poly(methyl methacrylate)
(PMMA)) for the two types of masters made with photo-
lithography and electron-beam (e-beam) lithography, respectively.

Figure 2a shows lines of poly(9,9-dioctylfluorene-alt-
bithiophene) (2008P), a p-type semiconductor polymer, patterned
using a spacer-free configuration from DCB solution (2.5 mgml
−1). To confirm the role of the liquid bridges, we performed
patterning using a spacer-applied configuration in which a first
layer of patterned lines produced using a spacer-free configura-
tion served as spacers for patterning a second layer. First, we
created patterned lines of poly-4-vinylphenol (PVP) from its IPA
solution (2.5 mgml−1). The PVP pattern was then used as a
spacer to further pattern polystyrene (PS) from DCB solution
(2.5 mgml−1). Figure 2b shows an image of the produced grid
consisting of perpendicularly oriented PVP and PS lines. The
lines are jointed at cross-points so that the morphology of lines
created by the second patterning was not influenced by the
existing lines from the first patterning. Both the PVP and PS lines
have similar morphologies originating from the similar mechan-
ism of line formation: capillary flow induces polymer deposition
next to the walls of the hanging liquid bridges to form triangular
prism-shaped polymer lines as a result of geometric restriction.
Such sequentially deposited grid structures are interesting for
many applications, like optical and hierarchical materials and so
on24. The experiments demonstrated that the proposed process is
robust and capable of producing uniform patterns over large

areas (Supplementary Figure 2). The obtained pattern area was
10 mm × 10mm and was limited by the available template size.
The feature size of the fabricated structure can be varied from
about 150 nm to several micrometres by tuning the solution
concentration (Fig. 2c and Supplementary Figures 3–5). To
investigate the influence of concentration, solutions with various
polymer concentrations ranging from 0.2 to 70 mgml−1 were
tested. When the polymer concentration exceeded the critical
concentration (about 30 mgml−1 for PS from DCB and about 50
mgml−1 for PVP from IPA), clear patterns were not obtained due
to the precipitation of residual polymer under the ridges of the
template (Supplementary Figure 3c and Supplementary Figure 4c),
which occurred because the polymer concentration crossed over
the binodal curve in the corresponding phase diagram25,26. The
effect of line separation on pattern quality was also investigated
(Supplementary Figures 6–8). The minimum line period (sum of
width and separation) we obtained was 600 nm (Fig. 2c), which is
superior to those achieved by other patterning methods based on
solution drying (e.g., the coffee-stain effect of inkjet printing;
Fig. 2c)11. For a solution with a concentration of 2.5 mgml−1, the
separation between patterned lines can be larger than 100 μm
with no observable residual polymer contamination between the
lines. The cleanness of the interline spaces is supported by atomic
force microscope (AFM) and energy dispersive x-ray (EDX)
analysis (Supplementary Note 1 and Supplementary Figure 9).

Unexpectedly, we also obtained a secondary pattern with high
resolution (about 50 nm) decorated on the walls of the primary
patterned lines described above. Figure 2d shows one such nano-
sized secondary stripe pattern on a primary PS line. Such
secondary stripe patterns only appeared on the sidewalls facing
the groove walls of the template when patterning was conducted
using the spacer-free configuration. The formation of such self-
assembled, regular patterns of single-phase materials using
solution processes is rare, and the pattern resolution observed
here is the highest reported to the best of our knowledge.
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Fig. 2 Scanning electron microscopy images of patterned structures. a Line pattern of 2008P, a polymeric semiconductor. b Grid structure composed of

sequentially patterned PVP and polystyrene lines. c Fabricated PS lines with about 300 nm resolution and 150 nm feature. d Self-assembled secondary

pattern (resolution around 50 nm) on a primary PS line. e, f SEM images of cross sections of patterned PS lines with different feature sizes and schematic

drawing to illustrate of how the sample was cleaved and imaged
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Liesegang rings, which were first observed a century ago, typically
have resolutions on the order of millimetres27, while evaporation-
induced concentric rings formed from solution in a sphere-on-
flat-surface geometry have micrometre-sized features9. We
attribute the observed nanopatterns to repeated pinning and
de-pinning events during the late stage of drying. When the
template ridges reach the substrate a tiny amount of solution
becomes trapped in the wedge-shaped space between the groove
sidewall and the newly formed primary polymer line (Supple-
mentary Note 2 and Supplementary Figure 10). The detailed
formation process of these secondary patterns requires further
investigation.

Finally, the cross-section SEM images clearly show a Gaussian-
like profile of the deposited lines with high aspect ratio (Fig. 2e, f).
The aspect ratio varies with line feature size, for instance, a 1 μm
featured line has aspect ratio around one (1 μm footprint, 1 μm
height), while for a 300 nm featured line the aspect ratio is around
0.6 (300 nm footprint, 180 nm height).

Evaluation of polymer wire patterns. To demonstrate the
potential of the developed process, we fabricated different types of
transistors with polymer wires as active materials which is
interesting for various applications, like brain mapping and
synaptic devices with low energy consumption28–30. Figure 3a
shows the performance of a top-gated field-effect transistor (FET)
comprising an array of poly{[N,N0-bis(2-octyldodecyl)-naphtha-
lene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)}
(P(NDI2OD-T2)) wires (about 900 nm in width) formed from
DCB solution (3 mgml−1) on a SiO2 (300 nm)/Si substrate with
patterned Au source-drain electrodes. Spin-coated PMMA and
thermally evaporated Al were used as the dielectrics and gate

electrode, respectively. The charge-carrier mobility of the device
was 0.34 cm2V–1 s–1, which is several times higher than that of
the spun-cast device (0.054 cm2V–1 s–1) fabricated with identical
process as that of the wire devices, except the deposition step of
the semiconductor layers (Supplementary Figure 11). The charge
mobility (μ) was calculated using the expression31 with a small
modification, that is, deduction of the interline space area by
replacing channel width W with aW λ−1, to suit the nature of our
devices:

μ ¼
2λLdID

Wεrε0aðVG � VTÞ
2 ; ð1Þ

where a and λ are the width and period of the patterned semi-
conductor wires, respectively, W and L are the channel width and
length of the electrode, respectively; εr and d are the relative
permittivity and thickness of the dielectrics, respectively; ε0 is the
vacuum permittivity; and ID, VG and VT are the drain current,
gate voltage and threshold voltage, respectively. The high aspect
ratio of the generated lines facilitates the transfer of the patterns
onto other materials using standard semiconductor techniques
such as plasma etching.

To demonstrate the transfer of the formed patterns, we
fabricated arrays of electrochemical transistors with individually
electrically addressed wires of active materials. Poly(3,4-ethyle-
nedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) was
chosen as the active material because it is robust to photolitho-
graphy processes, and PEDOT:PSS-based devices have promising
applications in electrophysiological recording29. An array of
PEDOT:PSS wires was created by transferring the pattern from an
array of PS lines generated using our method onto a spin-coated
PEDOT:PSS film via plasma etching. Au source-drain electrodes
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Fig. 3 Performances and images of devices, and molecule structures. a Top-gated FET with n-type P(NDI2OD-T2) wires. b Array of electrochemical
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were fabricated by optical lithography and subsequent lift-off
(Fig. 3b), and silver conducting wire and 0.1 M NaCl aqueous
solution were used as the gate electrode and electrolyte,
respectively, during device characterization. A millimetre-sized
PDMS frame was physically attached on the sample surface to
confine the electrolyte. The transistors were evaluated under small
applied gate and drain voltages (<0.5 V). The drain current
decreased as the gate voltage increased (i.e., working with
depletion model because of the partial balance of the negatively
charged PSS– by Na+, thus, PEDOT was de-doped). The potential
of this wire-based PEDOT:PSS electrochemical transistor was
further demonstrated through a local sensing experiment. We
masked the device with a photoresist film, leaving only a small
hole to expose a tiny segment of each PEDOT:PSS wire to the

electrolyte (Fig. 3c). The single-wire device performed well, even
when the doping and de-doping process occurred only locally,
which is crucial for high-resolution sensing (e.g., bio-recording),
where the ion concentration varies within the subcellular domain.
For clarity, the chemical structures of P(NDI2OD-T2) and
PEDOT:PSS are shown in Fig. 3d.

The high charge mobility of the produced P(NDI2OD-T2)
wires originates from the favourable backbone packing and
polymer chain alignment induced by the hydrodynamic process
during wire formation, as confirmed by grazing incident wide-
angle x-ray diffraction (GI-WAXD) and polarized microscopy.
Molecular orientation plays a significant role in charge transfer in
organic semiconductors32,33. Figure 4a–f show the two-
dimensional (2D) GI-WAXD patterns and line-cut intensity

2.0

1.5

1.0

0.5

103

102

102

102

103

104

103

104

101

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

103

(100)

(100)

(300)

(300) (300)

(100)

(200)

(400)

(001)

(010)

(010)

(010)

(001)

(002)

(002)

(200)

(200)

102

101

10 µm

10 µm

101

101

0.0
–1.5 –1.0 –0.5 0.5 1.0 1.50.0

q
z
 (

Å
–1

)

l (
a.

u.
)

l (
a.

u.
)

l (
a.

u.
)

l  
(a

.u
.)

qxy (Å
–1) qxy (Å

–1)

qxy (Å
–1)

qr,z (Å
–1)

qr,z (Å
–1)

–1.5 –1.0 –0.5 0.5 1.0 1.50.0

qxy (Å
–1)

2.0

1.5

1.0

0.5

0.0

1.2

1

0.6

0.8

0.4

0.2

0
0 30 60 90 120 150 180

Angle (°)

N
or

m
al

iz
ed

 li
gh

t i
nt

en
si

ty
 (

a.
u.

)

q
z
 (

Å
–1

)

a

d

b c

e f

g h

i
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direction. Both devices were annealed at 140 °C for 30min. Angle dependence of the brightness of patterned P(NDI2OD-T2) lines (g) measured under

polarized microscope for samples created using our patterning method (solid circles) and by plasma etching a spin-coated P(NDI2OD-T2) film with PVP

lines as a mask (solid diamonds). h, i Birefringence images of wires with different orientations around 45° and 180°, respectively
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profiles along the in-plane and out-of-plane directions for the
spun-cast film and patterned wires. In the GI-WAXD pattern of
the spun-cast film, (n00) diffraction peaks are observed for both
the in-plane and out-of-plane directions, indicating a mixed
packing structure with both edge-on and face-on orientations in
the spun-cast film. In the intensity profiles, (100) and (010)
diffraction peaks attributed to lamellar packing and π–π staking
are observed at qxy or qz = 0.249 Å–1 (d100 = 25.2 Å) and 1.6 Å–1

(dπ–π = 3.92 Å). A (001) diffraction peak attributable to the
repeating of chain backbone34 is also observed at qxy = 0.45 Å–1

(d001 = 14.0 Å). In the case of the patterned wire, (n00) and (00n)
diffraction peaks are observed along the in-plane direction in the
2D GI-WAXD pattern and in-plane intensity profiles. In contrast,
(010) peaks are only observed in the out-of-plane data, and the
(n00) peaks in the out-of-plane direction are significantly weaker
and broader compared to those of the spun-cast film. This
indicates that the molecules in the pattered wires are predomi-
nantly packed with face-on orientations. Based on the azimuthal
scans of the (200) diffraction peaks, we estimated the proportions
of molecules with face-on orientations to be approximately 48 and
70% for the spun-cast and patterned samples, respectively. Rivnay
et al. 34 reported enhanced charge mobility in organic FETs with
primarily face-on molecular orientations, in agreement with our
experimental results.

Figure 4g shows the angle dependence of the brightness of
patterned P(NDI2OD-T2) lines measured under polarized
microscope for samples fabricated using our patterning method
and samples produced by plasma etching a spin-coated P
(NDI2OD-T2) film with PVP lines as a mask. Figure 4h, i are
birefringence images of wires with different orientations around
45° and 180°, respectively. The P(NDI2OD-T2) lines generated by
our patterning method clearly show strong birefringence,
indicating that the polymer chains are aligned in the direction
of the wires.

In situ investigation of the formation of a polymer wires. To
investigate the drying process, pattern formation was tracked
using in situ optical images. Because of the colour of the 2008P
polymer semiconductor, the groove-pinning mechanism was
evident when the drying was investigated under a microscope
with transmitted light. Figure 5a shows an image of a sample with
the spacer-free configuration on a glass substrate taken at an early
stage of drying (2 min after sample loading); the image clearly
shows the liquid splitting and migrating towards the sidewalls of
the grooves (indicated by a black arrow). A similar event was

observed in the spacer-applied configuration when pre-patterned
PVP lines were used as the spacers for the patterning of 2008P.
Splitting of the liquid film underneath the ridges of the template
occurred in the samples with the spacer-applied configuration
(red arrow in the inset of Fig. 5a).

The organic solvents used in this study (IPA and DCB) wet the
PDMS well and tended to dwell in the corners of the grooves
because corners provide a larger liquid/solid interface than flat
surfaces and are thus favourable for energy minimization22,23.
According to the Concus–Finn relation, a liquid droplet will
spread in a corner with half-angle β formed by two solid walls if
the contact angle on both walls ϑ satisfies35

ϑ<
π

2
� β: ð2Þ

Based on Equation (2), ϑ < 45° is required for our experiment; the
measured contact angles (ϑ = 28.7° for IPA/PDMS and ϑ= 38.9°
for DCB/PDMS) satisfy this requirement. Figure 5b shows an
in situ image taken from the same sample shown in Fig. 5a at a
later stage of drying (10 min after sample loading), revealing fine
2008P lines deposited next to the sidewalls of the grooves. Groove
pinning is the primary mechanism for forming such fine, high-
aspect-ratio patterns. Although the substrate itself also contri-
butes to contact line pinning, if groove pinning does not occur at
one side of a template ridge, the pinning strength of the substrate
alone is not sufficiently strong to pin the liquid, and the solution
is dragged under the template ridge by capillary force. Figure 5c
shows such a failed patterning of 2008P using the spacer-applied
configuration with PVP lines as spacers on a Si substrate. Fine
polymer lines clearly formed before the onset of de-pinning
(indicated by the white arrow in Fig. 5c). Failed patterns such as
this were occasionally observed in our experiments and were
likely caused by the structural deformation of the template as a
result of shearing force, which can be avoided by optimizing a
number of factors, like mechanical properties of the template
materials, designs of the groove profile and the experimental
system and so on. From Fig. 2b and Fig. 5c we see that a sharp
groove profile is essential to pin the contact lines. This is in
contrast to previously reported work where stamps with
structures of spherical domes were applied to insure the shrinking
of capillary bridges with the solvent evaporation (i.e., the contact
line is unpinned)19. We have also conducted experiments with
PDMS template without grooves where polymer solutions were
dried between blank PDMS films and Si substrates with and
without micronmetre-sized spacers. No regular line patterns were

20 µm 20 µm 20 µm

PVP

2008P

Air front

a b c

Fig. 5 In situ analysis of drying process. The optical images of the drying of a solution of 2008P semiconducting polymer in DCB under a PDMS template at

2 min (a) and 10min (b) from sample loading. The black arrow indicates liquid splitting in the grooves of the template, and the red arrow in the inset of a

indicates a liquid boundary (partially marked by the dotted line) under a template ridge. The two horizontal lines in the inset of a indicate the PVP spacer

used when 2008P lines were created with the spacer-applied configuration. c Optical image showing the de-pinning of the contact line when groove

pinning is lost. The white arrow indicates the original contact line between the silicon substrate and 2008P solution bridges. The horizontal lines are the

PVP spacers for the patterning of 2008P. The inset of c shows air fronts moving in the grooves during drying in the spacer-applied configuration
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created on the Si surface (Supplementary Note 3 and Supple-
mentary Figure 12). This further proves the importance of the
grooves on PDMS to pattern and pin the solution.

Comparing with liquid drops on a flat solid surface, the micro-
liquid bridges formed using our method are more favourable for
solute transfer to the pinned contact line because evaporation
from the top surface is restricted, preventing precipitation in the
far field of contact line. Thus, the resulting outward flow can carry
all of the dissolved material to the pinning lines. For the template
used in this study (12 mm × 12mm with a 10 mm × 10mm
patterned area), we could not clearly observe how air is
introduced from the external environment during drying using
optical microscopy. Both external air and air trapped in the
template materials can contribute to solvent extraction36. Air
trapping from the external environment could be clearly observed
with reflected light under a microscope when the PDMS template
was cut along the direction perpendicular to the grooves in the
structured area (inset of Fig. 5c). A video of liquid splitting in
microgrooves during drying can be found in the Supplementary
Information movie 1 and 2. We chose DCB and IPA as solvents
in our experiments because a high-boiling-point solvent allows
for sufficient implementation time. Drying the samples at
elevated temperature or using a solvent with a low boiling point
allows the patterning to be completed in minutes, revealing the
potential to scale-up the patterning process. The rapid pattern
formation is attributed to efficient solvent extraction during
drying. To obtain more information about solvent extraction, we
dried PS from DCB solution on a silicon substrate with the
spacer-free configuration at various temperatures and measured
the advancing speed of the air fronts in situ. We found that for a
given temperature, the advancing speed of the front of inletting
air is constant regardless of its location within the sample; we
expected the advancing speed of the air front to decrease when
the air front was propelled into the deep side of the sample if the
solvent extraction was controlled by vapour diffusion. We found
the speed V and drying temperature T (in Kelvin scale, K) to be
exponentially related (Supplementary Note 4 for details):

V ¼ V0 exp �Q=kTð Þ; ð3Þ

where Q and k are the activation energy and Boltzmann constant,
respectively. By fitting our experimental V–T curve (Supplemen-
tary Figure 13) using Equation (3), we determined the activation
energy Q= 5.96 × 10−20 J and enthalpy of vaporization of the
solvent E=NaQ= 36,000 J mol−1, where Na is Avogadro’s con-
stant. This value of E is in good agreement with the chemical data
sheet value of 39,400 J mol−1. Thus, the solvent drying in this
experiment was controlled by the energy required for a solvent
molecule to escape from the liquid surface rather than by diffusion.
In other words, the solvent vapour can be quickly extracted once it
leaves the liquid surface. The value of V0 is about 250 μm s−1 which
represents the up-limit of the moving speed of the air front in the
grooves (i.e., when the temperature is very high).

The method presented in this paper can be used to fabricate
structures and materials that cannot be easily generated by
conventional methods. For example, we fabricated fine polymer
structures on curved surfaces (e.g., inner and external surfaces of
glass tubes with diameters of 6 mm; Supplementary Note 5 and
Supplementary Figure 14) and patterned DNA molecules while
avoiding heating and irradiation (Supplementary Note 6 and
Supplementary Figure 15) similar to that described in Byun
et al.19. We also patterned ZnO nanoparticles from a colloidal
suspension using the spacer-applied configuration (Supplementary
Note 6 and Supplementary Figure 16). No obvious impact on the
feature of the patterned lines has been observed from PDMS
swelling. The obtained Gaussian line shape is symmetric, although

asymmetric line shape can be observed occasionally which might
be caused by PDMS swelling. However, the impact of the PDMS
swelling on interline distance is observable which is induced by
changing the dimensions and shape of the protrusions of the
patterned PDMS37,38. Template material other than PDMS, like
NEA123L, a UV-curable adhesive, was also successfully applied to
pattern polymer materials (Supplementary Note 7 and Supple-
mentary Figure 17). Supplementary Table 1 compares our method
with conventional patterning techniques. We can see that the
fabrication process described here has the potential to fabricate
structures with resolution to match that fabricated with many well-
developed techniques while it is applicable for certain situations
where conventional lithography technologies are not suitable, for
instance, avoiding material degradation with UV irradiation and
chemical attack during structure development, multistep pattern-
ing without material overlap at cross-points.

Discussion
We have demonstrated a process to generate fine structures with
deep submicrometre features through controlled liquid drying. A
structured flexible template is used to pattern a liquid film via free
energy minimization based on the fact that the groove corners of
the template are energetically favourable locations for liquid
dwelling. During solvent evaporation, the solution splits in the
grooves of the template and migrates towards the groove side-
walls, where it is patterned into capillary bridges that are pinned
by the grooves during further drying. This groove pinning sta-
bilizes the contact line between the capillary liquid bridge and the
substrate where the solute is deposited. The liquid bridges pinned
by the groove sidewalls allow for the formation of fine, self-
assembled patterns with high aspect ratios. These patterns are
favourable for their subsequent transfer into other functional
materials. Comparison to droplets of solution on a flat solid
surface, the micro-liquid bridges formed during our process are
advantageous for transferring the solute to the pinned contact
lines and for avoiding residual formation in the far field of the
lines because evaporation from the top surface is restricted. In the
newness method, deposition along the contact line of a hanging
liquid bridge on the substrate allows the formation of lines with
both high-resolution and high aspect ratio.

The newness patterning process is favourable for chain align-
ment and backbone packing in polymers, as confirmed by GI-
WAXD and polarized microscopy. We successfully fabricated
transistors with the patterned polymer conductor/semiconductor
wires, demonstrating the potential applications of the generated
structures. Furthermore, secondary self-assembled nano-stripe
patterns with resolutions of about 50 nm are observed on the
sidewalls of the formed primary lines. These nano-stripes are
many orders of magnitude smaller than previously reported self-
assembled patterns formed via liquid processes (e.g., millimetre-
sized Liesegang rings and micrometre-sized concentric rings
formed from solutions confined in sphere-on-flat geometries).

Methods
Template preparation, line forming and in situ observation. The structured
PDMS template was duplicated by pouring commercial silicone elastomer (Syl-
gard®184, Dow Corning), supplied as a two-part liquid component kit, with a 10:1
mix ratio onto an optical or e-beam lithography-defined photoresist/PMMA
masters and annealing at 70 °C for 1 h. Material patterning was performed on a
homemade stainless-steel clamping tool, which provided the proper sample/tem-
plate alignment, under the application of controlled pressure. For in situ micro-
scopic observation, both transmissive and reflective modes were used. Samples
were clamped in transparent plastic boxes with open holes to allow solvent eva-
poration. Transmissive mode was used to investigate the formation of 2008P
polymer (American Dye Source, Inc.) patterns on glass substrates, whereas
reflective mode was used to investigate the drying dynamics on Si substrates.
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Device fabrication. To generate PEDOT:PSS wires, a PEDOT:PSS (Clevios PH-
1000) water-based suspension from Heraeus was modified by adding 20% ethylene
glycol (Sigma-Aldrich) to improve the conductivity and 1% Triton X-100 (Sigma-
Aldrich) to reduce surface tension and obtain a highly uniform film. A 90-nm-thick
PEDOT:PSS film was formed by spin-coating PEDOT:PSS onto an SiO2 (300 nm)/
Si substrate and annealing at 140 °C for 1 h. PVP lines were created from its IPA
solution using our developed method. After plasma etching with a gas mixture of
CF4+O2(1:1), the sample was rinsed with IPA to remove the PVP lines. Au elec-
trodes for addressing individual PEDOT:PSS lines were produced by optical
lithography, followed by the thermal evaporation of Au(80 nm)/Ti(10 nm) and lift-
off in acetone. The same process was used to pattern a spin-coated P(NDI2OD-T2)
(Polyera Corporation) film for polarized microscopy analysis. A 50-nm layer of P
(NDI2OD-T2) was spin-coated from its toluene solution and baked at 100 °C for
30 min. PVP lines were then generated by our method, and the sample was etched
with CF4+O2(1:1) plasma. Finally, the PVP lines were removed in IPA.

For FET fabrication, P(NDI2OD-T2) lines were generated from DCB solution
using our method on an SiO2 (300 nm)/Si substrate with patterned Au/Cr
electrodes. The sample was then annealed at 140 °C for 4 h in N2. PMMA
dielectrics (thickness of 900 nm) was spin-coated and annealed in N2 at 80 °C for
30 min, and an Al top gate was then deposited through a shadow mask by thermal
evaporation. The channel lengths and widths of the Au electrodes were 95 and
1750 μm, respectively. Similar process was applied for TFT fabrication with spun-
cast P(NDI2OD-T2) film.

Analysis of molecule conformation and sample quality. GI-WAXD measure-
ments were conducted at the PLS-II 9A U-SAXS beamline of PAL in Korea. The X-
rays from the in-vacuum undulator were monochromated (wavelength = 1.11 Å)
using a double-crystal monochromator and focused both horizontally and verti-
cally (FWHM = 300 μm (H) × 30 μm (V) at the sample position) using K–B type
mirrors. The GI-WAXD system was equipped with a seven-axis motorized sample
stage for the fine alignment of thin film. The sample-to-detector distance was 224
mm, and diffraction patterns were recorded with a 2D charge-coupled device
detector (Rayonix SX165).

The AFM and EDX analysis were performed on Nanoscope III and LEO
GEMINI 1530VP FEG-SEM system, respectively.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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