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Abstract. Magnetic skyrmions have potential applications in next-generation spintronics

devices with ultralow energy consumption. In this work, the current-driven skyrmion motion

in a narrow ferromagnetic nanotrack with voltage-controlled magnetic anisotropy (VCMA)

is studied numerically. By utilizing the VCMA effect, the transport of skyrmion can be

unidirectional in the nanotrack, leading to a one-way information channel. The trajectory of

the skyrmion can also be modulated by periodically located VCMA gates, which protects the

skyrmion from destruction by touching the track edge. In addition, the location of the skyrmion

can be controlled by adjusting the driving pulse length in the presence of the VCMA effect.

Our results provide guidelines for practical realization of the skyrmion-based information

channel, diode, and racetrack memory.
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1. Introduction

Magnetic skyrmions are nanoscale particle-like topological configurations, which have been

found in certain magnetic bulks, films and nanowire [1–8]. The skyrmion is stabilized by

delicate competitions among the ferromagnetic exchange coupling, perpendicular magnetic

anisotropy (PMA) and Dzyaloshinskii-Moriya interaction (DMI) in magnetic systems [9–14].

Magnetic skyrmions are expected to be used as information carriers in the next-generation

spintronic devices due to their low-power consumption and small sizes [15–26]. The skyrmion

can be driven by the spin polarized current and spin hall torque are investigated widely[27].

The external effects on the velocity and trajectory of the skyrmion in nanodevice are also

reported [31].

The skyrmion Hall effect(SkHE) is one of the most significant obstacle to the high-speed

transmission of skyrmions in confined geometries. The SkHE is previously theoretiacally

predicted and has been observed experimentally[28, 29]. The SkHE is caused by the Magnus

force acting on the transporting skyrmion with a topological number of Q = ± 1. The SkHE

display a detrimental effect which makes the skyrmion deviate from the desired transmission

path. One promising approach is to modulate the magnetic anisotropy in skyrmion racetrack

memory and avoid skyrmion break at the edge of nanotrack[30–32].

In this paper, we report the dynamics of a skyrmion in a narrow ferromagnetic nanotrack

channel with voltage-controlled perpendicular magnetic anisotropy(VCMA), which can be

used to build the skyrmion diode and ratchet memory [33, 34] and avoid from the SkHE. The

pinning and depinning of the magnetic skyrmion in the nanotrack through the VCMA gate

are investigated. This work will be useful for the design and development of the skyrmion

transport channel, which is a building block for any future skyrmion-based information

devices.

2. Model and simulations

The simulation model is an ultrathin ferromagnetic nanotrack, 1000 nm × 80 nm × 0.4 nm,

as shown in Fig. 1a. The model is discretized into tetragonal volume elements with the size

of 2 nm × 2 nm × 0.4 nm. The micromagnetic simulations are performed with the Object

Oriented MicroMagnetic Framework (OOMMF) [35]. The dynamic of magnetization are

described by Landau-Lifshitz-Gilbert LLG (LLG) equation, written as

dm

dt
= −γ0m× heff + α(m×

dm

dt
)− um× (m× p), (1)

where m is the reduced magnetization M
MS

, MS is the saturation magnetization. γ0 is the

gyromagnetic ratio and α is the damping coefficient. heff is the effective field including the

contributions of Heisenberg exchange, Dzyaloshinskii-Moriya interaction (DMI), magnetic

anisotropy and demagnetization field. The u can be defined as γ0h̄jP

2deµ0MS

, h̄ is the reduced

Plank constant, j is the current density, P = 0.08 is the spin Hall angle, a is the atomic

lattice constant, e is the electron charge, µ0 is the vacuum permeability constant, d is the

thickness of the magnetic nanotrack[36]. p is the direction of the spin polarization which is
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Figure 1. (a) A Schematic of the magnetic nanotrack where a magnetic skyrmion is initially

placed. The out-of-plane magnetization component is represented by the red (−z)-white (0)-

blue (+z) color scale. (b) A linear anisotropy profile. (c) A periodical repetition of a linear

anisotropy profile with a period w. (b) Sinusoidal function of x with a period w.

equal to −ŷ. The parameters for the micromagnetic simulation are adopted from Ref. [37]:

the saturation magnetization MS = 580 kA/m, the damping coefficient α = 0.3, the DMI

constant D = 3 mJ/m2, and the exchange constant A = 15 pJ/m. In the simulation, the

profile of the voltage-controlled magnetic anisotropy (VCMA) in the nanotrack are shown

in Figs. 1b-d. For the simulation of the pinning/depinning states of the skyrmion, the PMA

profile is shown in Fig. 1b. VCMA linearly varies from Ku0 to Kuv and Ku0 = 0.8 MJ/m3.

For the simulation of the motion of skyrmion, two types of VCMA profile are considered,

period wedge-shape and sinusoidal functions, as shown in Figs. 1c and d respectively. The

function for the period wedge-shape profile is given as:

Ku(x) = Ku0 +Kuv −Ku0wx, (2)

Ku(x) = Ku0 +Kuv −Ku02(1 + sin (2πx/w − ϕ)), (3)

where w is the period length w, ϕ is the phase, and x is the longitudinal coordinate. The

period wedge-shape is given in the Eq. 2 and the sinusoidal function is given in the Eq. 3. The

linear anisotropy profile and the sinusoidal function profile are given in the Figs. 1b and c.

3. Results and discussion

3.1. The pinning/depinning states of isolate skyrmion in nanotrack

Fig. 2 shows the pinning/depinning states of isolate skyrmion driven by the spin current in

a nanotrack with the PMA profile shown in Fig. 1b. Fig. 2a and b show the effect of the
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Figure 2. The pinning/depinning states of an isolate skyrmion driven by the current in a

magnetic track. (a), (b) The pinning/depinning states of a skyrmion at various width w and

driving current j along +x and −x axis for Kuv = 0.85 MJ/m3, respectively. (c), (d) The

pinning/depinning states of a skyrmion at various Kuv and j along +x and −x axis for the

fixed w = 50 nm, respectively. The solid circle means the skyrmion is not able to pass the

well or barrier, the solid square means the skyrmion can pass the well or barrier and the cross

means the skyrmion is destroyed.

width and the current density on the pinning/depinning states. Initially, the relaxed skyrmion

is located at the left side of the VCMA region when the spin current is applied along +x axis.

The skyrmion is not able to pass the VCMA region when the current density is smaller than

10 MA/cm2 and pass the VCMA region when 25 MA/cm2 < j < 30 MA/cm2. The skyrmion

will be destroyed when the current is larger than 30 MA/cm2. When the spin current is applied

along −x axis, the skyrmion is located at the right side of the VCMA region. Most states are

the same to the corresponding results in Fig. 1a, except for the case of j = 10 MA/cm2. For

j = 10 MA/cm2 and w > 30 nm, the skyrmion can pass the VCMA region when the current

is applied along +x axis while it can not pass when the current is applied along −x axis. It

means that the skyrmion can pass only in one direction, +x axis. The motion of skyrmion

is unidirectional. The parameters corresponding to the unidirectional pass along +x axis are

marked with blue box in Fig. 2a. Fig. 2c and d show the effect of the VCMA and the current

density on the pinning/depinning states. The results shows that the states is sensitive to the
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Figure 3. (a) The wedge-shaped profile of Ku for Kuv > Ku0. (b) The wedge-shaped profile

of Ku for Kuv < Ku0. (c) The trajectories of the skyrmion in the nanotrack with various Kuv

for j = 15 MA/cm2. (d) The trajectories of the skyrmion in the nanotrack with various Kuv

for j = 20 MA/cm2. (e) The equilibrium position of the skyrmion in the y direction for (b)

and (c). The spin current is applied along +x axis.

VCMA. The unidirectional behaviors also can be found. The parameters for the unidirectional

pass along +x axis are marked with blue box in Fig. 2c and these for the unidirectional pass

along −x axis are marked with blue box in Fig. 2d. The unidirectional behaviors show that

the voltage gate can be used to build skyrmion diode.

3.2. Skyrmion motion with the spatially dependence of VCMA gate

The skyrmion motion driven by the spin current in a magnetic nanotrack with the spatially

dependence of VCMA is simulated. The VCMA is periodical repetition of a wedge-shape

profile, as shown in Fig. 3a ( Kuv > Ku0 ) and b ( Kuv > Ku0 ). Initially, the relaxed

skyrmion is located at x = 86 nm and y = 40 nm. The trajectories of the skyrmion driven by

the spin current ( j = 15 MA/cm2 ) in the nanotrack with various Kuv are shown in Fig. 3c.

For Kuv = 0.800 MJ/m3, a uniform perpendicular magnetic anisotropy in the nanotrack, the

skyrmion shows a transverse motion towards to the upper edge resulted by the transverse

force due to skyrmion Hall effect firstly [29]. When the transverse force and edge-skyrmion

repulsive force are balanced, the skyrmion moves straightly [13, 14, 20]. It can be seen that the



6

Figure 4. (a) The profile of Ku as a sinusoidal function of x. (b) The trajectories of the

skyrmion in the nanotrack with various Kuv for j = 15 MA/cm2. (c) The trajectories of the

skyrmion in the nanotrack with various Ku for j = 20 MA/cm2. The spin current is applied

along +x axis.

skyrmion moves straightly at y = 60 nm finally. For Kuv = 0.850 MJ/m3, the skyrmion moves

in a periodical wavy trajectory with an equilibrium position at y = 60.6 nm. Similar behaviors

of the skyrmion are found when Kuv = 0.750 MJ/m3, 0.775 MJ/m3, and 0.825 MJ/m3. It can be

found that the equilibrium position increases with increasing Kuv, which is shown in Fig. 3e.

Periodical wavy trajectories and similar dependence of the equilibrium position on Kuv can

be also found in the case of j = 20 MA/cm2, as shown in Fig. 3d. The equilibrium positions

of the periodical wavy trajectories is larger compared to the case of j = 15 MA/cm2.

Fig. 4 shows the trajectories of the skyrmion in a nanotrack with sinusoidal dependence

of Ku on the position x. The profile of Ku is shown in Fig. 4a. Ku0 is the minimum and

Kuv is the maximum. It can be found from Fig. 4b that the skyrmion moves in a sinusoidal

trajectory when Kuv 6= 0.8 MJ/m3. Differently from the case of the wedge-shaped profile of

Ku, the equilibrium positions in y direction for various Kuv are almost the same, y = 60 nm.

When the current density increases to j = 20 MA/cm2, similar results can be found. Further,

the effect of the phase also has been simulated and the results are shown in Fig. 5.

The shape of skyrmion is inversely proportional to the anisotropy which has been shown
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Figure 5. (a) The profile of Ku and (b) the corresponding trajectories of the skyrmion in the

nanotrack with ϕ = 0, 0.5π, 1.0π, 1.5π. The driving current density is 20 MA/cm2 applied

along +x axis and Kuv = 0.850 MJ/m3.

in Fig.S1.( See Supplement Material )As shown in Fig.S1, the variation of anisotropy constant

will influence the size of skyrmion. The diameter of the skyrmion is inversely proportional to

the anisotropy and the diameter of the skyrmion decrease slowly after the anisotropy constant

larger than 0.70 MJ/m3. In this paper, we consider the skyrmion motion in a nanowire with

Kuv from 0.75 MJ/m3 to 0.85 MJ/m3 which only has a tiny shape variation of skyrmion.

The top-view of the skyrmion motion in the nanowire with a slope profile has been given in

Fig.S2 which the anisotropy only induces weak impact on the shape of the skyrmion.( See

Supplement Material )

In Fig. 3 - 5, the skyrmion has a transversal motion in the y direction which is influenced

by the collective effect of Magnus force and edge force. The Magnus force drives the

skyrmion from the center of the nanowire to the edge and depressed by the force between the

momoents at the edge of the nanotrack. The Magnus force in the y component is depending

on the velocity of the skyrmion in x direction[38] and the velocity of skyrmion motion in x

axis Vx and y axis Vy are given in Fig. 6. When the skyrmion move to a place with a lower

magnetic anisotropy, the velocity of skyrmion in x direction will increase and the Magnus

Force in y component increase. The skyrmion will be driven to the edge until the Magnus



8

Figure 6. Movement of Skyrmion in nanotrack with slope profile and sinusoidal profile. The

Kuv of the wedge-shaped profile is 0.75 MJ/m3 and for the sinusoidal profile is 0.825 MJ/m3.

The driving current density is j = 15 MA/cm2. The Kuv profile, trajectory, skyrmion velocity

in x direction, skyrmion velocity in y direction and diameter of the skyrmion are given in the

figure.

Force and the Edge Force is in a balance. When the skyrmion moves in a nanowire with

increasing magnetic anisotropy, the velocity of skyrmion decreases and the skyrmion reduces

to the center of the nanowire. This Phenomenon shows the nanowire with VCMA gate can

avoid the skyrmion destroy at the edge. On the other hand, when the skyrmion moves in

a nanotrack with increasing PMA, the skyrmions velocity decreases. Correspondingly, the

Magnus force decreases, the skyrmion is pushed toward the center of the nantrack. Then,

both repulsion and magnus force decrease, leading to that the skyrmion size increases.

3.3. Skyrmion motion driven by current pulse in nanotrack with VCMA gate

The motion of the magnetic skyrmion in the nanotrack with VCMA driven by the current

pulse also be simulated. The initial position the skyrmion is x = 86 nm which is the middle

of a voltage gate. Fig. 7 shows the motion of the skyrmion in the nanotrack with a periodical

wedge-shaped profile with Kuv = 0.750 MJ/m3 with the period length w = 50 nm. The

current density of the pulse is 20 MA/cm2. The pulse is applied at t = 0.5 ns. For one period
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Figure 7. The skyrmion motion driven by the current pulse in the nanotrack with the wedge-

shaped Ku with Kuv = 0.75 MJ/m3. The left panel shows the trajectories of the skyrmion.

The right panel shows the x position of the skyrmion and the current density as functions of

time t. For one period of the current pulse , te is the pulse time and tr is the relax time without

applying current. tr = 5 ns in the simulations. (a), (b) te = 1 ns. (c), (d) te = 2 ns. (c), (d)

te = 3 ns.

of the current pulse , te is the time interval applying the current and tr is the relax time without

applying current. tr = 5 ns in the simulations. When te = 1 ns, the skyrmion cannot pass the

voltage gate and moves in a circle trajectory as shown in Figs. 7a and b. For te = 2 ns, the

trajectory of the skyrmion is shown in Fig. 7c. The time-dependence of the position in the x

direction and the current density are shown in Fig. 7d. At t = 14.5 ns, the skyrmion is located

at x = 187 nm. After applying the pulse, x = 241 nm at t = 16.5 ns. Then the applied current

is off. The skyrmion further relax to x = 236 nm before the next pulse. The displacement of

skyrmion is 50 nm after a pulse is applied. For te = 3 ns, Figs. 7e and f, one current pulse

results in a displacement of 100 nm.

Fig. 8 shows the results for the case of wedge-shaped Kuv with Kuv = 0.850 MJ/m3 and

the period length w = 50 nm. The current density of the pulse is 20 MA/cm2 and the pulse is

applied at t = 0.5 ns with tr = 5 ns. In the Figs. 8a and b, compared with the state with Kuv
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Figure 8. The skyrmion motion driven by the current pulse for the wedge-shaped Ku with

Kuv = 0.85 MJ/m3. The left panel shows the trajectories of the skyrmion. The right panel

shows the x position of the skyrmion and the current as functions of time t. tr = 5 ns in the

simulations. (a), (b) te = 1 ns. (c), (d) te = 3 ns. (c), (d) te = 4 ns.

= 0.750 MJ/m3, the skyrmion can more easily pass the voltage gate. This state also has been

explained in the Fig. 2c. The skyrmion passes the first voltage gate and cannot pass the second

voltage gate. Then the skyrmion moves in a circle trajectory. When the te = 2 ns and 3 ns,

the states is similar as the Figs. 7c-f. The skyrmion passes one or two voltage gates are shown

in the Figs. 8c-f. In Figs. 8c and d, for te = 2 ns, the skyrmion is located at x = 212 nm when

t = 16.5 ns. After applying the pulse, skyrmion moves to x = 277 nm. When the current

is off, the skyrmion further relaxes to x = 263 nm before the next pulse. The displacement

of skyrmion is 50 nm after a pulse is applied. For te = 3 ns, as shown in Figs. 8e and f, one

current pulse lead to a displacement of 100 nm.

Fig. 9 shows the motion of the skyrmion in the nanotrack with a sinusoidal function

profile with Kuv = 0.850 MJ/m3 with the period length w = 50 nm. The trajectories of

skyrmion with te = 1 ns are shown in the Fig. 9a and b. The skyrmion cannot pass the voltage

gate and moves in a circle which is like the Figs. 9a and b. For te = 2 ns, the trajectory of

the skyrmion is shown in Fig. 9c. The time-dependence of the position in x direction and the
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Figure 9. The skyrmion motion driven by the current pulse for the sinusoidal Ku with

Kuv = 0.85 MJ/m3 and ϕ = 0. The left panel shows the trajectories of the skyrmion.

The right panel shows the x position of the skyrmion and the current as functions of time.

tr = 5 nm in the simulations. (a), (b) te = 1 ns. (c), (d) te = 3 ns. (c), (d) te = 4 ns.

current density are shown in Fig. 9d. At t = 16.5 ns, the skyrmion is located at x = 186 nm.

After applying the pulse, x = 236 nm at t = 18.5 ns. Then the applied current is off. The

skyrmion further relax to x = 234 nm before the next pulse. The skyrmion moves with a pulse

time te = 3 ns is shown in Figs. 9e and f which one current pulse results in a displacement of

100 nm. From Fig. 7 to Fig. 9, it can be seen that the model with multiple voltage gates can

be used to realize high density racetrack memory device.

4. Conclusions

In this paper, the skyrmion motion in a ferromagnetic nanotrack with single or multiple VC-

MA gates is studied. This work shows the trajectory and location of the skyrmion can be

controlled by periodically located VCMA gates as well as the driving current pulse. The u-

nidirectional motion of the skyrmion realized by the VCMA effect can be used to build the

skyrmion-based one-way information channel and the skyrmion diode. Our results are useful
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for the design and development of the skyrmion-based spintronic devices.

See supplementary material for the deformation of skyrmion due to the variation of PMA.
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